Dual-Channel Semi-Supervised Adversarial Network for Building Segmentation from UAV-Captured Images
Abstract
:1. Introduction
- (1)
- This paper presents a unique dual-channel semi-supervised segmentation network within an adversarial network framework, aimed at improving the accuracy of complex building image segmentation. The network efficiently combines optical flow estimation channels with building-aware ASPP (BA-ASPP) features. It incorporates advanced modules, including hierarchical channel attention modules (HCAM) and multilevel feature fusion modules (MFFMs), to achieve a comprehensive understanding of building structures and textures.
- (2)
- To address challenges related to lighting and texture, this paper presents a method that complements optical flow results with building-related information, encompassing symmetry and connected domain features. This innovative approach substantially diminishes the dependency on labeled data, rendering it well suited for semi-supervised tasks with just a 30% labeled sample set.
- (3)
- Our network contains complementary components such as an adaptive attention mechanism feature fusion module and a composite loss function.
- (4)
- Our network was evaluated on the drone building dataset and the publicly available UDD6 [26] dataset.
2. Materials and Methods
2.1. Data Acquisition and Dataset Construction
2.2. Methodology
2.2.1. Architecture Overview
2.2.2. Semi-Supervised Optical Flow Estimation Channel in Dual-Channel Generator
2.2.3. Improved Deeplabv3+ Module in Dual-Channel Generator
- Building-Aware Atrous Spatial Pyramid Pooling network construction
- 2.
- Multilevel Feature Fusion Module (MFFM)
2.2.4. Feature Fusion Module
2.2.5. Loss Function
- Cross-Entropy Loss Function
- 2.
- Building Perceived Loss Function
- 3.
- Composite Perceptual Loss Function
2.2.6. Benchmark Methods
- AffinityNet [16] leverages class activation mapping (CAM) to accentuate localized discriminative areas of the target, thereby enhancing segmentation.
- AdvSemiSeg [17] is grounded in adversarial training principles and leverages a generator–discriminator tandem to fuse semi-supervised signals, ultimately enhancing segmentation performance.
- SemiCycleGan [18] is based on cyclic generative adversarial networks and employs cyclic consistency and adversarial loss in its generator to achieve improved segmentation results.
- CCVC [19] uses a two-branch co-training framework to encourage learning distinct features from irrelevant viewpoints. The CVC strategy promotes consistent prediction scores for input.
2.3. Implementation Setting and Evaluation Indicators
2.3.1. Evaluation Metrics
2.3.2. Preparation for the Experiments
3. Results
3.1. Qualitative Analysis of Comparative Experimental Results
3.2. Quantitative Analysis of Comparative Experimental Results
3.3. Ablation Experiment Using the Drone Building Dataset and UDD6 Dataset
4. Discussion
4.1. Influence of UAV Imaging on Model
4.1.1. Imaging Conditions of Uneven Illumination
4.1.2. Multiresolution Imaging Properties of UAV
4.2. Influence of Label Ratio on Model Accuracy
4.3. Optical Flow Estimation and Motion Image Segmentation
4.4. Limitations and Perspective
5. Conclusions
- (1)
- The optical flow estimation channel proves effective in compensating for complex background defects when the ratio of light and shade change in the building image is no more than 50% of the total image.
- (2)
- In the case of UAV images exhibiting multiscale and multiresolution characteristics, the hierarchical channel attention module (HCAM) with a cascade structure captures potential building information across high, middle, and low dimensions and different spatial contexts.
- (3)
- Even with only 30% of the labeled datasets, the mIoU of the two-channel parallel structure still reached 82.69% and 79.37% on the two UAV datasets, respectively. And when the labeled data increased from 30% to 70%, the accuracy improved the fastest.
- (4)
- The experiment demonstrated that when irregular buildings dominated the study area, the building perception loss forced the network to prioritize the building’s structural information, and the actual result was a significant improvement in key metrics, including F1 scores, mIoU, and accuracy.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Güneralp, B.; Zhou, Y.; Ürge-Vorsatz, D.; Gupta, M.; Yu, S.; Patel, P.L.; Fragkias, M.; Li, X.; Seto, K.C. Global Scenarios of Urban Density and Its Impacts on Building Energy Use through 2050. Proc. Natl. Acad. Sci. USA 2017, 114, 8945–8950. [Google Scholar] [CrossRef] [PubMed]
- Claassens, J.; Koomen, E.; Rouwendal, J. Urban Density and Spatial Planning: The Unforeseen Impacts of Dutch Devolution. PLoS ONE 2020, 15, e0240738. [Google Scholar] [CrossRef]
- Shao, Z.; Tang, P.; Wang, Z.; Saleem, N.; Yam, S.; Sommai, C. BRRNet: A Fully Convolutional Neural Network for Automatic Building Extraction from High-Resolution Remote Sensing Images. Remote Sens. 2020, 12, 1050. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Moghalles, K.; Li, H.C.; Alazeb, A. Weakly Supervised Building Semantic Segmentation Based on Spot-Seeds and Refinement Process. Entropy 2022, 24, 16. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.S.; Liu, X.Y.; Zhang, Y.J.; Wan, Y.; Ji, Z. Object-based building instance segmentation from airborne LiDAR point clouds. Int. J. Remote Sens. 2022, 43, 6783–6808. [Google Scholar] [CrossRef]
- Ye, H.; Liu, S.; Jin, K.; Cheng, H. CT-UNet: An Improved Neural Network Based on U-Net for Building Segmentation in Remote Sensing Images. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021. [Google Scholar]
- Larochelle, H.; Hinton, G.E. Learning to combine foveal glimpses with a third-order Boltzmann machine. In Proceedings of the 24th Annual Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 6–9 December 2010; pp. 1243–1251. [Google Scholar]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-excitation networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the 15th European Conference on Computer Vision, Munich, German, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st Annual Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008. [Google Scholar]
- Wei, X.L.; Li, W.; Zhang, M.M.; Li, Q.L. Medical Hyperspectral Image Classification Based on End-to-End Fusion Deep Neural Network. IEEE Trans. Instrum. Meas. 2019, 68, 4481–4492. [Google Scholar] [CrossRef]
- Wen, T.; Ding, S.; Lang, H.; Lu, J.J.; Yuan, Y.; Peng, Y.C.; Chen, J.; Wang, A.D. Automated pavement distress segmentation on asphalt surfaces using a deep learning network. Int. J. Pavement Eng. 2022, 1–14. [Google Scholar] [CrossRef]
- You, H.F.; Yu, L.; Tian, S.W.; Ma, X.; Xing, Y. Medical image segmentation based on dual-channel integrated cross-layer residual algorithm. Multimed. Tools Appl. 2023, 82, 5587–5603. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, A. Affinity network fusion and semi-supervised learning for cancer patient clustering. Methods 2018, 145, 16–24. [Google Scholar] [CrossRef]
- Hung, W.C.; Tsai, Y.H.; Liou, Y.T.; Lin, Y.-Y.; Yang, M.-H. Adversarial learning for semi-supervised semantic segmentation. arXiv 2018, arXiv:1802.07934. [Google Scholar]
- Mondal, A.K.; Agarwal, A.; Dolz, J.; Desrosiers, C. Revisiting CycleGAN for semi-supervised segmentation. arXiv 2019, arXiv:1908.11569. [Google Scholar]
- Wang, Z.; Zhao, Z.; Xing, X.; Xu, D.; Kong, X.; Zhou, L. Conflict-Based Cross-View Consistency for Semi-Supervised Semantic Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 19585–19595. [Google Scholar]
- Li, M.; Shen, Q.K.; Xiao, Y.; Liu, X.G.; Chen, Q.H. PolSAR Image Building Extraction with G0 Statistical Texture Using Convolutional Neural Network and Superpixel. Remote Sens. 2023, 15, 23. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, Z.; Yu, X.X.; Zhao, X.W.; Yan, Z.G. A Novel Moving Object Detection Algorithm Based on Robust Image Feature Threshold Segmentation with Improved Optical Flow Estimation. Appl. Sci. 2023, 13, 19. [Google Scholar] [CrossRef]
- Hu, F.Z.; Zhang, Z.L.; Hu, X.; Chen, T.T.; Guo, H.; Quan, Y.; Zhang, P.J. A scene flow estimation method based on fusion segmentation and redistribution for autonomous driving. IET Contr. Theory Appl. 2023, 17, 1779–1788. [Google Scholar] [CrossRef]
- Aspragkathos, S.N.; Karras, G.C.; Kyriakopoulos, K.J. A Hybrid Model and Data-Driven Vision-Based Framework for the Detection, Tracking and Surveillance of Dynamic Coastlines Using a Multirotor UAV. Drones 2022, 6, 28. [Google Scholar] [CrossRef]
- Shabayek, A.E.; Demonceaux, C.; Morel, O.; Fofi, D. Vision Based UAV Attitude Estimation: Progress and Insights. J. Intell. Robot. Syst 2012, 65, 295–308. [Google Scholar] [CrossRef]
- Zhu, H.; Ma, W.P.; Li, L.L.; Jiao, L.C.; Yang, S.Y.; Hou, B. A Dual-Branch Attention fusion deep network for multiresolution remote-Sensing image classification. Inf. Fusion 2020, 58, 116–131. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Lu, P.; Chen, Y.; Wang, G. Large-Scale Structure from Motion with Semantic Constraints of Aerial Images. In Proceedings of the Chinese Conference on Pattern Recognition and Computer Vision (PRCV), Guangzhou, China, 23–26 November 2018; pp. 347–359. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Courville, A.; Bengio, Y. Generative Adversarial Networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Sheng, C.Y. Research on the Application of Data Set Expansion Based on Conditional Generative Adversarial Network in Right Ventricle Segmentation. Ph.D. Thesis, Suzhou University, Suzhou, China, 2021. (In Chinese). [Google Scholar]
- Wang, P.; Bai, X. Thermal infrared pedestrian segmentation based on conditional GAN. IEEE Trans. Image Process. 2019, 28, 6007–6021. [Google Scholar] [CrossRef]
- Anilkumar, P.; Venugopal, P. An Enhanced Multi-Objective-Derived Adaptive DeepLabv3 Using G-RDA for Semantic Segmentation of Aerial Images. Arab. J. Eng 2023, 48, 10745–10769. [Google Scholar] [CrossRef]
- Li, X.L.; Li, Y.Y.; Ai, J.Q.; Shu, Z.H.; Xia, J.; Xia, Y.P. Semantic segmentation of UAV remote sensing images based on edge feature fusing and multi-level upsampling integrated with Deeplabv3+. PLoS ONE 2023, 18, e0279097. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.J.; Zeng, Z.X.; Liu, A.; Xie, X.C.; Wang, H.P.; Xu, F.; Hong, W. A Lightweight Complex-Valued DeepLabv3+for Semantic Segmentation of PolSAR Image. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens 2022, 15, 930–943. [Google Scholar] [CrossRef]
- Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A.A. Generative adversarial networks: An overview. IEEE Signal Process. Mag. 2018, 35, 53–65. [Google Scholar] [CrossRef]
- Cho, W.; Choi, Y. LMGAN: Linguistically Informed Semi-Supervised GAN with Multiple Generators. Sensors 2022, 22, 17. [Google Scholar] [CrossRef] [PubMed]
- Bruhn, A.; Weickert, J.; Schnorr, C. Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods. Int. J. Comput. Vis 2005, 61, 211–231. [Google Scholar] [CrossRef]
- Xiang, X.Z.; Yu, Z.T.; Lv, N.; Kong, X.D.; El Saddik, A. Attention-Based Generative Adversarial Network for Semi-supervised Image Classification. Neural Process. Lett 2020, 51, 1527–1540. [Google Scholar] [CrossRef]
- Kim, K.K.; Ban, S.W.; Lee, K.I. Motion estimation with optical flow-based adaptive search region. IEICE Trans. Fundam. Electron. Commun. Comput 2001, E84A, 1529–1531. [Google Scholar]
- Zheng, J.; Wang, H.Y.; Pei, B.N. Robust optical flow estimation based on wavelet. Signal Image Video Process. 2019, 13, 1303–1310. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Zhang, L.; Wang, M.Y.; Fu, Y.J.; Ding, Y.H. A Forest Fire Recognition Method Using UAV Images Based on Transfer Learning. Forests 2022, 13, 20. [Google Scholar] [CrossRef]
- Zhang, R.L.; Zhu, Y.J.; Ge, Z.S.J.; Mu, H.B.; Qi, D.W.; Ni, H.M. Transfer Learning for Leaf Small Dataset Using Improved ResNet50 Network with Mixed Activation Functions. Forests 2022, 13, 21. [Google Scholar] [CrossRef]
- Rasin, A.G. Computation of generating symmetries. Commun. Nonlinear Sci. Numer. Simul. 2023, 118, 12. [Google Scholar] [CrossRef]
- Brown, J.L. SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 2014, 5, 694–700. [Google Scholar] [CrossRef]
- Kim, C.E.; Stojmenovic, I. Sequential and parallel approximate convex hull algorithms. Comput. Artif. Intell. 1995, 14, 597–610. [Google Scholar]
- Zhang, Z.L.; Sabuncu, M. Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 2–8 December 2018; pp. 8792–8802. [Google Scholar]
- Dong, Y.Q.; Zhang, L.; Cui, X.M.; Ai, H.B.; Xu, B.A. Extraction of Buildings from Multiple-View Aerial Images Using a Feature-Level-Fusion Strategy. Remote Sens. 2018, 10, 30. [Google Scholar] [CrossRef]
- He, L.; Shan, J.; Aliaga, D. Generative Building Feature Estimation From Satellite Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 13. [Google Scholar] [CrossRef]
- Brown, G.; Pocock, A.; Zhao, M.J.; Lujan, M. Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection. J. Mach. Learn. Res. 2012, 13, 27–66. [Google Scholar]
- Kang, J.; Fernandez-Beltran, R.; Sun, X.; Ni, J.G.; Plaza, A. Deep Learning-Based Building Footprint Extraction With Missing Annotations. IEEE Geosci. Remote Sens. Lett. 2022, 19, 5. [Google Scholar] [CrossRef]
- Lu, T.T.; Ming, D.; Lin, X.G.; Hong, Z.L.; Bai, X.D.; Fang, J. Detecting Building Edges from High Spatial Resolution Remote Sensing Imagery Using Richer Convolution Features Network. Remote Sens. 2018, 10, 19. [Google Scholar] [CrossRef]
- Wang, Z.; Simoncelli, E.P.; Bovik, A.C. Multiscale structural similarity for image quality assessment. In Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 9–12 November 2003; pp. 1398–1402. [Google Scholar]
- Ma, K.D.; Wu, Q.B.; Wang, Z.; Duanmu, Z.; Yong, H.; Li, H.; Zhang, L. Group MAD Competition? A New Methodology to Compare Objective Image Quality Models. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 166–1673. [Google Scholar]
- Huang, X.; Zhang, L. Morphological Building/Shadow Index for Building Extraction From High-Resolution Imagery Over Urban Areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 161–172. [Google Scholar] [CrossRef]
- Ding, Q.; Shao, Z.F.; Huang, X.; Feng, X.X.; Altan, O.; Hu, B. Consistency-guided lightweight network for semi-supervised binary change detection of buildings in remote sensing images. GISci. Remote Sens. 2023, 60, 26. [Google Scholar] [CrossRef]
- Sakkos, D.; Ho, E.S.L.; Shum, H.P.H. Illumination-Aware Multi-Task GANs for Foreground Segmentation. IEEE Access 2019, 7, 10976–10986. [Google Scholar] [CrossRef]
- Vrsnak, D.; Domislovic, I.; Subasic, M.; Loncaric, S. Framework for Illumination Estimation and Segmentation in Multi-Illuminant Scenes. IEEE Access 2023, 11, 2128–2137. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Shin, B.S. Robust color medical image segmentation on unseen domain by randomized illumination enhancement. Comput. Biol. Med. 2022, 145, 14. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xu, W.F.; Yu, Y.; Peng, C.L.; Gong, W.P. Reliable Label-Supervised Pixel Attention Mechanism for Weakly Supervised Building Segmentation in UAV Imagery. Remote Sens. 2022, 14, 3196. [Google Scholar] [CrossRef]
- Xu, G.; Ling, R.; Deng, L.S.; Wu, Q.; Ma, W.Y. Image Interpolation via Gaussian-Sinc Interpolators with Partition of Unity. CMC-Comput. Mat. Contin. 2020, 62, 309–319. [Google Scholar] [CrossRef]
- Fatty, A.; Li, A.J.; Yao, C.Y. Instance segmentation based building extraction in a dense urban area using multispectral aerial imagery data. Multimed. Tools Appl. 2023, 1. [Google Scholar] [CrossRef]
- Niu, M.J.; Zhang, Y.J.; Yang, G.; Wang, Z.W.; Liu, J.W.; Cui, Z.W. Semantic segmentation for remote sensing images via dense feature extraction and companion loss neural network. Int. J. Remote Sens. 2021, 42, 8640–8660. [Google Scholar] [CrossRef]
- Ahfock, D.; McLachlan, G.J. Harmless label noise and informative soft-labels in supervised classification. Comput. Stat. Data Anal. 2021, 161, 12. [Google Scholar] [CrossRef]
- Lee, J.; Ilyas, T.; Jin, H.; Lee, J.; Won, O.; Kim, H.; Lee, S.J. A pixel-level coarse-to-fine image segmentation labelling algorithm. Sci. Rep. 2022, 12, 18. [Google Scholar] [CrossRef]
- Zhou, G.Q.; Wang, Y.F.; Yue, T.; Ye, S.Q.; Wang, W. Building Occlusion Detection From Ghost Images. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1074–1084. [Google Scholar] [CrossRef]
- Cai, W.; Wen, X.D.; Tu, Q.; Guo, X.J. Research on image processing of intelligent building environment based on pattern recognition technology. J. Vis. Commun. Image Represent. 2019, 61, 141–148. [Google Scholar] [CrossRef]
- Xue, L.L.; Zeng, P.; Yu, H.B. SETNDS: A SET-Based Non-Dominated Sorting Algorithm for Multi-Objective Optimization Problems. Appl. Sci. 2020, 10, 15. [Google Scholar] [CrossRef]
Method | Drone Building Dataset | UDD6 Dataset | ||||
---|---|---|---|---|---|---|
F1 Score (%) | mIoU (%) | Precision (%) | F1 Score (%) | mIoU (%) | Precision (%) | |
AffinityNet | 70.31 | 74.56 | 73.34 | 69.71 | 70.18 | 71.64 |
AdvSemiSeg | 77.82 | 76.93 | 78.47 | 75.63 | 77.65 | 76.82 |
SemiCycleGan | 69.75 | 73.59 | 72.63 | 68.56 | 71.89 | 70.02 |
CCVC | 80.18 | 80.26 | 79.82 | 77.25 | 78.59 | 77.49 |
Ours | 79.36 | 82.69 | 80.56 | 77.68 | 79.37 | 79.43 |
Improved Deeplabv3+ | Morphology-Driven Channel | Composite Loss Function | F1 Score (%) | mIoU (%) | Precision (%) |
---|---|---|---|---|---|
√ | × | × | 75.94 | 74.51 | 73.68 |
√ | √ | × | 78.69 | 80.36 | 78.47 |
√ | × | √ | 73.19 | 75.47 | 74.05 |
√ | √ | √ | 79.36 | 82.69 | 80.56 |
Improved Deeplabv3+ | Morphology-Driven Channel | Composite Loss Function | F1 Score (%) | mIoU (%) | Precision (%) |
---|---|---|---|---|---|
√ | × | × | 69.34 | 71.73 | 70.48 |
√ | √ | × | 75.59 | 75.44 | 73.87 |
√ | × | √ | 74.39 | 76.17 | 75.39 |
√ | √ | √ | 77.68 | 79.37 | 79.43 |
Label Ratio (%) | Drone Building Dataset | UDD6 Dataset | ||||
---|---|---|---|---|---|---|
F1 Score (%) | mIoU (%) | Precision (%) | F1 Score (%) | mIoU (%) | Precision (%) | |
30 | 79.36 | 82.69 | 80.56 | 77.68 | 79.37 | 79.43 |
50 | 81.39 | 83.53 | 83.16 | 81.92 | 83.33 | 82.67 |
70 | 87.25 | 86.41 | 87.36 | 85.42 | 86.18 | 87.52 |
100 | 94.68 | 93.77 | 93.36 | 89.21 | 91.47 | 92.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Wu, C.; Man, W.; Liu, M. Dual-Channel Semi-Supervised Adversarial Network for Building Segmentation from UAV-Captured Images. Remote Sens. 2023, 15, 5608. https://doi.org/10.3390/rs15235608
Zhang W, Wu C, Man W, Liu M. Dual-Channel Semi-Supervised Adversarial Network for Building Segmentation from UAV-Captured Images. Remote Sensing. 2023; 15(23):5608. https://doi.org/10.3390/rs15235608
Chicago/Turabian StyleZhang, Wenzheng, Changyue Wu, Weidong Man, and Mingyue Liu. 2023. "Dual-Channel Semi-Supervised Adversarial Network for Building Segmentation from UAV-Captured Images" Remote Sensing 15, no. 23: 5608. https://doi.org/10.3390/rs15235608