Ice Identification with Error-Accumulation Enhanced Neural Dynamics in Optical Remote Sensing Images
Abstract
:1. Introduction
- The proposed EAEND model, using a Taylor numerical difference formula to enable steady-state error to reach , is capable of improving the Arctic sea ice identification accuracy of the CEM method.
- The proposed EAEND model eliminates the computing error by using an error integration term, and therefore effectively suppresses noises and improves the solution accuracy, which is able to assist the CEM method in identifying Arctic sea ice in noisy environments.
- Theoretical analyses and comparative experiments confirm that the CEM method with the proposed EAEND model has high accuracy and strong stability.
2. Problem Formulation
3. Theoretical Analysis and Proof
3.1. Model Simplification
3.2. Convergence Analysis
3.3. Robustness Analysis
4. Identification Experiments and Accuracy Assessment
- MNI model:
- NRI model:
- ETZNN model:
4.1. Dataset
4.2. Parameter Descriptions
4.3. Experiments with Different Datasets
4.3.1. Sentinel-2
4.3.2. HY-1C
4.3.3. ZY3-02
4.3.4. HJ-2A
5. Identification Experiments with Different Sensors in the Same Area
5.1. ZY3-02 TMS
5.2. HJ-2A CCD3
6. Discussion
6.1. Resolution of Sensors
6.2. Inherent Characteristics of the Images
6.3. Identification Methods
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zelenskaya, E. Geopolitics and Tourism in the Arctic: The Case of the National Park ‘Russian Arctic’. J. Policy Res. Tour. Leis. Events 2018, 10, 33–47. [Google Scholar] [CrossRef]
- Saarinen, J.; Varnajot, A. The Arctic in Tourism: Complementing and Contesting Perspectives on Tourism in the Arctic. Polar Geogr. 2019, 42, 109–124. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, R.; Gao, Y.; Tian, Z.; Zuo, Y. Hub Ports in Economic Shocks of the Melting Arctic. Marit. Policy Manag. 2021, 48, 917–940. [Google Scholar] [CrossRef]
- Liu, X.; Feng, T.; Shen, X.; Li, R. PMDRnet: A Progressive Multiscale Deformable Residual Network for Multi-Image Super-Resolution of AMSR2 Arctic Sea Ice Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4304118. [Google Scholar] [CrossRef]
- Perovich, D.K.; Richter-Menge, J.A. Loss of Sea Ice in the Arctic. Annu. Rev. Mar. Sci. 2009, 1, 417–441. [Google Scholar] [CrossRef]
- Chang, L.; Gao, G.; Li, Y.; Zhang, Y.; Zhang, C.; Zhang, Y.; Feng, G. Variations in Water Vapor from AIRS and MODIS in Response to Arctic Sea Ice Change in December 2002–2016. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7395–7405. [Google Scholar] [CrossRef]
- Li, F.; Wan, X.; Wang, H.; Orsolini, Y.J.; Cong, Z.; Gao, Y.; Kang, S. Arctic Sea-Ice Loss Intensifies Aerosol Transport to the Tibetan Plateau. Nat. Clim. Chang. 2020, 10, 1037–1044. [Google Scholar] [CrossRef]
- Noh, G.H.; Ahn, K.H. Long-Lead Predictions of Early Winter Precipitation Over South Korea Using a SST Anomaly pattern in the North Atlantic Ocean. Clim. Dyn. 2022, 58, 3455–3469. [Google Scholar] [CrossRef]
- Dammann, D.O.; Eicken, H.; Mahoney, A.; Meyer, F.; George, J.C. Traversing Sea Ice–Linking Surface Roughness and Ice Trafficability Through SAR Polarimetry and Interferometry. IEEE J. Sel. Top. Appl. Earth Observ. 2017, 11, 416–433. [Google Scholar] [CrossRef]
- Li, H.; Pan, D.; Wang, D.; Gong, F.; Bai, Y.; He, X.; Hao, Z.; Ke, C. The Impact of Summer Arctic Cyclones on Chlorophyll–A Concentration and Sea Surface Temperature in the Kara Sea. IEEE J. Sel. Top. Appl. Earth Observ. 2019, 12, 1396–1408. [Google Scholar] [CrossRef]
- Larson, E. Turning the World Upside Down. Nature 2011, 480, 29–31. [Google Scholar] [CrossRef]
- Cavalieri, D.J.; Gloersen, P.; Wilheit, T.T. Aircraft and Satellite Passive Microwave Observations of the Bering Sea Ice Cover During MIZEX West. IEEE Trans. Geosci. Remote Sens. 1986, 368–377. [Google Scholar] [CrossRef]
- Mikhalevsky, P.N.; Gavrilov, A.N.; Baggeroer, A.B. The Transarctic Acoustic Propagation Eexperiment and Climate Monitoring in the Arctic. IEEE J. Ocean Eng. 1999, 24, 183–201. [Google Scholar] [CrossRef]
- Crocker, R.I.; Maslanik, J.A.; Adler, J.J.; Palo, S.E.; Herzfeld, U.C.; Emery, W.J. A Sensor Package for Ice Surface Observations Using Small Unmanned Aircraft Systems. IEEE Trans. Geosci. Remote Sens. 2011, 50, 1033–1047. [Google Scholar] [CrossRef]
- Nghiem, S.V.; Clemete-Colon, P. Arctic Sea Ice Mapping with Satellite Radars. IEEE Trans. Aerosp. Electron. Syst. 2009, 24, 41–44. [Google Scholar] [CrossRef]
- Gollin, N.; Giez, J.; Martone, M.; Rizzoli, P.; Scheiber, R.; Krieger, G. Dynamic Predictive Quantization for Staggered SAR: Experiments with Real Data. IEEE Trans. Geosci. Remote Sens. Lett. 2023, 20, 4000605. [Google Scholar] [CrossRef]
- Du, Z.; Li, X.; Miao, J.; Huang, Y.; Shen, H.; Zhang, L. Concatenated Deep Learning Framework for Multi-task Change Detection of Optical and SAR Images. IEEE J. Sel. Top. Appl. Earth Observ. 2023; early access. [Google Scholar] [CrossRef]
- Pacifici, F.; Del Frate, F.; Solimini, C.; Emery, W.J. An Innovative Neural-Net Method to Detect Temporal Changes in High-Resolution Optical Satellite Imagery. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2940–2952. [Google Scholar] [CrossRef]
- Osadchiev, A.; Sedakov, R. Spreading Dynamics of Small River Plumes Off the Northeastern Coast of the Black Sea Observed by Landsat 8 and Sentinel-2. Remote Sens. Environ. 2019, 221, 522–533. [Google Scholar] [CrossRef]
- Ye, X.; Liu, J.; Lin, M.; Ding, J.; Zou, B.; Song, Q. Global Ocean Chlorophyll-a Concentrations Derived from COCTS Onboard the HY-1C Satellite and Their Preliminary Evaluation. IEEE Trans. Geosci. Remote Sens. 2020, 59, 9914–9926. [Google Scholar] [CrossRef]
- Wang, Y.; Dou, Y.; Guo, J.; Yang, Z.; Yang, B.; Sun, Y.; Liu, W. Feasibility Study for an Ice-Based Image Monitoring System for Polar Regions Using Improved Visual Enhancement Algorithms. IEEE J. Sel. Top. Appl. Earth Observ. 2022, 15, 3788–3799. [Google Scholar] [CrossRef]
- Haverkamp, D.; Soh, L.K.; Tsatsoulis, C. A Dynamic Local Thresholding Technique for Sea Ice Classification. In Proceedings of the IGARSS’93-IEEE International Geoscience and Remote Sensing Symposium, Tokyo, Japan, 18–21 August 1993; IEEE: Piscataway, NJ, USA, 1993; pp. 638–640. [Google Scholar]
- Komarov, A.S.; Buehner, M. Adaptive Probability Thresholding in Automated Ice and Open Water Detection from RADARSAT-2 Images. IEEE Geosci. Remote Sens. Lett. 2018, 15, 552–556. [Google Scholar] [CrossRef]
- Lindsay, R.W.; Percival, D.B.; Rothrock, D.A. The Discrete Wavelet Transform and the Scale Analysis of the Surface Properties of Sea Ice. IEEE Trans. Geosci. Remote Sens. 1996, 4, 771–787. [Google Scholar] [CrossRef]
- Li, X.M.; Sun, Y.; Zhang, Q. Extraction of Sea Ice Cover By Sentinel-1 SAR Based on Support Vector Machine with Unsupervised Generation of Training Data. IEEE Trans. Geosci. Remote Sens. 2020, 59, 3040–3053. [Google Scholar] [CrossRef]
- Xie, H.; He, S.; Cheng, X. A Convolution Neural Network-based Method for Sea Ice Remote Sensing Using GNSS-R Data. In Proceedings of the 2022 4th International Conference on Communications, Information System and Computer Engineering (CISCE), Shenzhen, China, 27–29 May 2022; pp. 284–289. [Google Scholar]
- Jiang, M.; Xu, L.; Clausi, D.A. Sea Ice–Classification of RADARSAT-2 Imagery Based on Residual Neural Networks (ResNet) with Regional Pooling. Remote Sens. 2022, 14, 3025. [Google Scholar] [CrossRef]
- Zhong, H.F.; Sun, H.M.; Jia, R.S.; Zhang, Q. FR-GAN: A Self-Supervised Learning Method for Super-Resolution Reconstruction of Optical Remote Sensing Images. J. Appl. Remote Sens. 2022, 16, 026509. [Google Scholar] [CrossRef]
- Harsanyi, J.C. Detection and Classification of Subpixel Spectral Signatures in Hyperspectral Image Sequences; Department of Electrical Engineering University of Maryland: Baltimore County, ML, USA, 1993. [Google Scholar]
- Ma, K.Y.; Chang, C.I. Kernel-Based Constrained Energy Minimization for Hyperspectral Mixed Pixel Classification. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5510723. [Google Scholar] [CrossRef]
- Zhong, Y.; Liao, S.; Yu, G.; Fu, D.; Huang, H. Harbor Aquaculture Area Extraction Aided with an Integration-Enhanced Gradient Descent Algorithm. Remote Sens. 2021, 13, 4554. [Google Scholar] [CrossRef]
- Chowdhury, S.; Chao, D.K.; Shipman, T.C.; Wulder, M.A. Utilization of Landsat Data to Quantify Land-Use and Land-Cover Changes Related to Oil and Gas Activities in West-Central Alberta from 2005 to 2013. GISci. Remote Sens. 2017, 54, 700–720. [Google Scholar] [CrossRef]
- Brown, J.C.; Jepson, W.E.; Kastens, J.H.; Wardlow, B.D.; Lomas, J.M.; Price, K.P. Multitemporal, Moderate-Spatial-Resolution Remote Sensing of Modern Agricultural Production and Land Modification in the Brazilian Amazon. GISci. Remote Sens. 2007, 44, 117–148. [Google Scholar] [CrossRef]
- Maiti, S.; Bhattacharya, A.K. A Three-Unit-Based Approach in Coastal-Change Studies Using Landsat Images. Int. J. Remote Sens. 2011, 32, 209–229. [Google Scholar] [CrossRef]
- Chang, C.I. Constrained Energy Minimization Anomaly Detection for Hyperspectral Imagery Via Dummy Variable Trick. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5517119. [Google Scholar] [CrossRef]
- Xi, Y.; Ji, L.; Yang, W.; Geng, X.; Zhao, Y. Multitarget Detection Algorithms for Multitemporal Remote Sensing Data. IEEE Trans. Geosci. Remote Sens. 2020, 60, 5400115. [Google Scholar] [CrossRef]
- Zhu, X.; Li, S.; Zhang, X.; Li, H.; Kot, A.C. Detection of Spoofing Medium Contours for Face Anti–Spoofing. IEEE Trans. Circuits Syst. Video Technol. 2019, 31, 2039–2045. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, W.; Cai, B. From Zhang Neural Network to Newton Iteration for Matrix Inversion. IEEE Trans. Circuits Syst. I Regul. Pap. 2008, 56, 1405–1415. [Google Scholar] [CrossRef]
- Jin, L.; Li, S.; Liao, B.; Zhang, Z. Zeroing Neural Networks: A Survey. Neurocomputing 2017, 267, 597–604. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, Y. Robust Zeroing Neural-Dynamics and Its Time-Varying Disturbances Suppression Model Applied to Mobile Robot Manipulators. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 4385–4397. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Wang, D.; Fu, D.; Wang, Y. Discrete-Time Noise-Suppression Neural Dynamics for Optical Remote Sensing Image Extraction. IEEE Access 2023, 11, 92111–92119. [Google Scholar] [CrossRef]
- Jin, L.; Yan, J.; Du, X.; Xiao, X.; Fu, D. RNN for Solving Time-Variant Generalized Sylvester Equation with Applications to Robots and Acoustic Source Localization. IEEE Trans. Ind. Inform. 2020, 16, 6359–6369. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, Z.; Guo, D.; Mao, M.; Yin, Y. Singularity Tracking Control of A Class of Chaotic Systems Using Zhang Dynamics. IET Control Theory Appl. 2015, 9, 871–881. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, X.; Liao, B.; Zhang, Y.; Ding, Y. Z-Type Control of Populations for Lotka–Volterra Model with Exponential Convergence. Math. Biosci. 2016, 272, 15–23. [Google Scholar] [CrossRef]
- Qi, Y.; Jin, L.; Wang, Y.; Xiao, L.; Zhang, J. Complex-Valued Discrete-Time Neural Dynamics for Perturbed Time-Dependent Complex Quadratic Programming with Applications. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 3555–3569. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, X.; Shang, M. Computational Neural Dynamics Model for Time-Variant Constrained Nonlinear Optimization Applied to Winner-Take-All Operation. IEEE Trans. Ind. Inform. 2021, 18, 5936–5948. [Google Scholar] [CrossRef]
- Jin, L.; Liufu, Y.; Lu, H.; Zhang, Z. Saturation-Allowed Neural Dynamics Applied to Perturbed Time-Dependent System of Linear Equations and Robots. IEEE Trans. Ind. Electron. 2021, 68, 9844–9854. [Google Scholar] [CrossRef]
- Jin, L.; Zhang, Y.; Qiu, B. Neural Network-Based Discrete-Time Z-Type Model of High Accuracy in Noisy Environments for Solving Dynamic System of Linear Equations. Neural Comput. Appl. 2018, 29, 1217–1232. [Google Scholar] [CrossRef]
- Liufu, Y.; Jin, L.; Xu, J.; Xiao, X.; Fu, D. Reformative Noise-Immune Neural Network for Equality-Constrained Optimization Applied to Image Target Detection. IEEE Trans. Emerg. Top. Comput. 2021, 10, 973–984. [Google Scholar] [CrossRef]
- Huang, H.; Fu, D.; Xiao, X.; Ning, Y.; Wang, H.; Jin, L.; Liao, S. Modified Newton Integration Neural Algorithm for Dynamic Complex-Valued Matrix Pseudoinversion Applied to Mobile Object Localization. IEEE Trans. Ind. Inform. 2020, 17, 2432–2442. [Google Scholar] [CrossRef]
- Jin, L.; Li, S.; Hu, B.; Liu, M.; Yu, J. A Noise-Suppressing Neural Algorithm for Solving The Time-Varying System of Linear Equations: A Control-Based Approach. IEEE Trans. Ind. Inform. 2018, 15, 236–246. [Google Scholar] [CrossRef]
- Fu, D.; Huang, H.; Xiao, X.; Xia, L.; Jin, L. A Generalized Complex-Valued Constrained Energy Minimization Scheme for The Arctic Sea Ice Extraction Aided with Neural Algorithm. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4303017. [Google Scholar] [CrossRef]
- Li, W.; Swetits, J. A Newton Method for Convex Regression, Data Smoothing, and Quadratic Programming with Bounded Constraints. SIAM J. Optim. 1993, 3, 466–488. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, B.; Perrie, W. Arctic Sea Ice and Open Water Classification from Spaceborne Fully Polarimetric Synthetic Aperture Radar. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4203713. [Google Scholar] [CrossRef]
- Hwang, B.; Wang, Y. Multi-Scale Satellite Observations of Arctic Sea Ice: New Insight Into The Life Cycle of The Floe Size Distribution. Philos. Trans. R. Soc. A 2022, 380, 20210259. [Google Scholar] [CrossRef] [PubMed]
Performance Index | Noise-Free | Random Noise | ||||||
---|---|---|---|---|---|---|---|---|
EAEND | MNI | NRI | ETZNN | EAEND | MNI | NRI | ETZNN | |
RE | ||||||||
OA | 0.977508 | 0.977508 | 0.977508 | 0.977508 | 0.976217 | 0.938427 | 0.944174 | 0.919061 |
AA | 0.979355 | 0.979355 | 0.979355 | 0.979355 | 0.976105 | 0.936266 | 0.942694 | 0.911631 |
PP | 0.996358 | 0.996358 | 0.996358 | 0.996358 | 0.980148 | 0.935552 | 0.944720 | 0.888814 |
Kappa | 0.954620 | 0.954620 | 0.954620 | 0.954620 | 0.951829 | 0.874898 | 0.886712 | 0.833880 |
Performance Index | Noise-Free | Random Noise | ||||||
---|---|---|---|---|---|---|---|---|
EAEND | MNI | NRI | ETZNN | EAEND | MNI | NRI | ETZNN | |
RE | ||||||||
OA | 0.993540 | 0.993540 | 0.993540 | 0.993530 | 0.985849 | 0.960501 | 0.962652 | 0.893607 |
AA | 0.993517 | 0.993517 | 0.993517 | 0.993523 | 0.988190 | 0.967137 | 0.968926 | 0.911480 |
PP | 0.990438 | 0.990438 | 0.990438 | 0.990331 | 0.965948 | 0.909932 | 0.914417 | 0.789504 |
Kappa | 0.986538 | 0.986538 | 0.986538 | 0.986517 | 0.970668 | 0.918992 | 0.923335 | 0.787680 |
Performance Index | Noise-Free | Random Noise | ||||||
---|---|---|---|---|---|---|---|---|
EAEND | MNI | NRI | ETZNN | EAEND | MNI | NRI | ETZNN | |
RE | ||||||||
OA | 0.987369 | 0.987369 | 0.987369 | 0.987369 | 0.986070 | 0.946487 | 0.954705 | 0.805042 |
AA | 0.991306 | 0.991306 | 0.991306 | 0.991306 | 0.974054 | 0.900326 | 0.915633 | 0.636869 |
PP | 0.999856 | 0.999856 | 0.999856 | 0.999856 | 0.981315 | 0.931837 | 0.941694 | 0.789579 |
Kappa | 0.967889 | 0.967889 | 0.967889 | 0.967889 | 0.963942 | 0.854575 | 0.878169 | 0.355451 |
Performance Index | Noise-Free | Random Noise | ||||||
---|---|---|---|---|---|---|---|---|
EAEND | MNI | NRI | ETZNN | EAEND | MNI | NRI | ETZNN | |
RE | ||||||||
OA | 0.983006 | 0.983006 | 0.983006 | 0.983006 | 0.964755 | 0.719159 | 0.737988 | 0.543572 |
AA | 0.984047 | 0.984047 | 0.984047 | 0.984047 | 0.962296 | 0.736358 | 0.754035 | 0.571525 |
PP | 0.964915 | 0.964915 | 0.964915 | 0.964915 | 1.000000 | 0.624656 | 0.640781 | 0.505928 |
Kappa | 0.965942 | 0.965942 | 0.965942 | 0.965942 | 0.928881 | 0.455939 | 0.491205 | 0.134977 |
Method | EAEND | SVM | Otsu Thresholding | MD | |
---|---|---|---|---|---|
Metrics | |||||
OA | 0.982533 | 0.974369 | 0.965996 | 0.928233 | |
AA | 0.988634 | 0.932212 | 0.979035 | 0.979034 | |
PP | 0.999629 | 0.969362 | 1.000000 | 0.922038 | |
Kappa | 0.944920 | 0.911825 | 0.896257 | 0.730540 |
Method | EAEND | SVM | Otsu Thresholding | MD | |
---|---|---|---|---|---|
Metrics | |||||
OA | 0.980968 | 0.809322 | 0.922221 | 0.965818 | |
AA | 0.987546 | 0.797767 | 0.949104 | 0.976625 | |
PP | 1.000000 | 0.969362 | 1.000000 | 0.999060 | |
Kappa | 0.948641 | 0.529627 | 0.806326 | 0.909534 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Y.; Wang, D.; Fu, D.; Huang, H. Ice Identification with Error-Accumulation Enhanced Neural Dynamics in Optical Remote Sensing Images. Remote Sens. 2023, 15, 5555. https://doi.org/10.3390/rs15235555
Xiong Y, Wang D, Fu D, Huang H. Ice Identification with Error-Accumulation Enhanced Neural Dynamics in Optical Remote Sensing Images. Remote Sensing. 2023; 15(23):5555. https://doi.org/10.3390/rs15235555
Chicago/Turabian StyleXiong, Yizhen, Difeng Wang, Dongyang Fu, and Haoen Huang. 2023. "Ice Identification with Error-Accumulation Enhanced Neural Dynamics in Optical Remote Sensing Images" Remote Sensing 15, no. 23: 5555. https://doi.org/10.3390/rs15235555
APA StyleXiong, Y., Wang, D., Fu, D., & Huang, H. (2023). Ice Identification with Error-Accumulation Enhanced Neural Dynamics in Optical Remote Sensing Images. Remote Sensing, 15(23), 5555. https://doi.org/10.3390/rs15235555