Land Cover and Landscape Structural Changes Using Extreme Gradient Boosting Random Forest and Fragmentation Analysis
Abstract
:1. Introduction
1.1. Land Cover Change Overview
1.2. Machine-Learning Land Cover Classification
2. Materials and Methods
2.1. The Study Area
2.2. Method
- A Google Earth Engine account must be in place and the necessary libraries installed in Python, including the Earth Engine Python API, scikit-learn, and XGBoost.
- Define the region of interest (ROI) and the date range for Landsat imagery. Filter the Landsat collection to the ROI and date range. Preprocess the imagery by masking clouds and shadows.
- Identify the target macro and micro LULC classes (Indigenous forest, Open bush, Natural grassland, and Bare rock). Generates uniformly random points within the given classes (Feature Collection). Create training data and validation data. Split data into training (70%) and validation (30%) sets. Sample pixels from the Landsat imagery within the ROI (creating training samples).
- Choose the bands to use. Prepare the training and validation datasets as NumPy arrays. Train the XGBoost classifier (define the hyperparameters for tuning)/Naïve Bayes (lambda = 0.5) accuracy assessment using training and validation datasets. If the user’s accuracy, producer’s accuracy, overall accuracy, and Kappa coefficient are within range, proceed to step 5. Otherwise, repeat steps 3 and 4 (it may be necessary to retune hyperparameters).
- Use the trained classifier to classify the entire Landsat image. Export the image to Google Drive for use in QGIS.
- Open QGIS. Load the images from Google Earth Engine to perform stratified random sampling.
- Use the macro classes Indigenous forest, Open bush, Natural grassland, and Bare rock for stratification. Calculate the size of the samples within each stratum.
- Go to the Processing Toolbox (Ctrl+Shift+T). Search for the “Random selection within subsets” tool.
- Run the tool. This will create a new layer with the stratified random sample.
- Add the sampled layer to your map to visualise the selected features.
- Load data to Handheld GPS and field visits.
- Compare the classified image to ground truth for accuracy assessment.
- Load the images from Google Earth Engine.
- Go to the “Raster” menu and select “Landscape Metrics”. Select the land cover or land use raster layer.
- Choose the attribute field that represents the land cover or land use classes.
- Choose the metrics you want to calculate from the available options. You can select multiple metrics and specify output options.
- Choose where to save the output file (e.g., a shapefile).
- Click the “Run” button to start the calculation.
- Export the calculated metrics for further analysis or reporting.
2.2.1. Satellite Data Downloading, Processing, and Classification
Macroclasses (Landscape Level) | Class Name (Class Level) | Adopted from Appendix B: 73 x Class National LC Legend and Class Definition [98,99] |
---|---|---|
Forest | Indigenous forest | Natural tall woody vegetation communities, with canopy cover ranging between 35% and 75% and canopy heights exceeding 2.5 m. They are typically represented by dense bush, dense woodland, and scrub communities. |
Open bush | Natural tall woody vegetation communities, with canopy cover ranging between 10% and 35% and canopy heights exceeding 2.5 m. They are typically represented by open bush and woodland communities. | |
Grassland | Natural grassland | Natural and semi-natural indigenous grasslands typically lack significant tree or bush cover, and the grassland component is dominant over adjacent exposed bare ground. Generally representative of low, grass-dominated vegetation communities in the Grassland and Savanna Biomes. |
Bare | Bare ground/rock outcrop | Semi-natural or man-created non-vegetated areas. It is typically associated with permanent or near permanent bare ground sites that have insufficient spatial or temporal characteristics to be otherwise classified. |
2.2.2. XGBRFClassifier
2.2.3. Naïve Bayes
2.2.4. Assessment of Classification Accuracy
2.2.5. Ground Truthing Sampling Techniques and Field Surveys
2.2.6. The Landscape Metrics
- (a)
- Total landscape area (ha) (TA): useful for landscape fragmentation analysis. It is the sum of the area of all patches in the landscape. TA increases without limit as the size of the landscape increases.
- (b)
- Percentage of Landscape (PLAND): useful for class-level fragmentation analysis. PLAND approaches zero as the proportional class area decreases, and if one patch is present, then PLAND will equal 100.
- (c)
- Largest patch index (LPI): determines the area of the most extensive patch in each class, expressed as a percentage of total landscape area, useful for landscape and class-level fragmentation analysis. LPI is a measure of dominance; as the value approaches zero, the largest patch becomes smaller; an LPI of 100 indicates that one patch is present.
- (d)
- The number of patches (NP): indicates the total number of patches. It is helpful for landscape and class-level fragmentation analysis. For a single patch, NP equals one, and the NPs increase as NP increases unlimitedly, the more fragmented the landscape.
- (e)
- Patch density (PD): indicates the number of patches per unit area. It is useful for landscape and class-level fragmentation analysis. Higher PD indicates a highly fragmented landscape.
- (f)
- Mean patch size (MPS): provides the average patch size for the class in hectares. It is useful for landscape and class-level fragmentation analysis. A small MPS implies a highly fragmented landscape.
- (g)
- Patch cohesion index (COHESION): provides valuable information for class-level connectivity analysis. COHESION approaches zero as the patches become more isolated, and higher values indicate more aggregated patches.
- (h)
- Shannon’s diversity index (SHDI): provides valuable information for landscape-level heterogeneity analysis. Its value ranges from 0 to 1; it approaches 0 as the landscape is dominated by one LC type or less diversity. It approaches one as the LC types become roughly equal, implying a more diversified landscape.
2.2.7. Land Use/Land Cover Changes
3. Results
3.1. Comparison of Accuracy Assessment of Classification Algorithms Using 2020 Dataset
- Future Proofing: Even if the XGBRFClassifier does not significantly outperform Naïve Bayes on our current dataset, it may be more adaptable to future changes in data distribution or feature sets [116]. Naïve Bayes is relatively simple and may not handle data shifts or feature additions as gracefully as the XGBRFClassifier [117].
- Continuous Model Improvement: In machine-learning competitions and real-world applications, practitioners often use a variety of algorithms, including the XGBRFClassifier, to continually improve model performance. The XGBRFClassifier can be an essential tool in this iterative process [116].
- Hyperparameter Tuning: The XGBRFClassifier offers more hyperparameter tuning options and flexibility compared to Naïve Bayes [117]. If we have the resources and time to perform thorough hyperparameter tuning, we may be able to fine-tune the XGBRFClassifier to achieve better performance than the current results [116,117].
3.2. Ground Truthing Accuracy Assessment
3.3. Accuracy Assessment and Land Cover Digital Classification of Study Area (1990–2020)
3.4. Land Use/Land Cover Spatial Temporal Change Detection
3.5. The Landscape Metrics and Dynamics: Class Level
4. Discussion
4.1. Comparison of Naïve Bayes and Gradient Boosting Random Forest Classifiers
4.2. Land Use and Land Cover Changes from 1990 to 2020
4.3. Landscape Structural Changes due to Fragmentation
- Increasing fragmentation and decline in vegetation will ultimately reduce the grazing and browsing capacity of the nature reserve and the area’s game-carrying capacity. Loss of native vegetation species associated with paleo-diets also impacts archaeological studies in the world heritage site.
- Unchecked land cover degradation has long-term ecological consequences because it disrupts the delicate balance of the natural environment within and around the nature reserve, including loss of habitat, biodiversity decline, soil erosion, and alteration of local ecosystems, which together diminish the aesthetic value of the heritage site and negatively impact its tourism value. Consequently, it destroys the crucial local economies and threatens sustainable tourism.
- The results from the study are informative to the development and implementation of effective legal and policy frameworks for the Cradle Nature Reserve site management and conservation. It is hoped that the findings from the study highlight the need for more stringent regulations and enforcement measures to protect the reserve from invasive alien species such as the pompom weed.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez-Valderrama, J.; Ahmed, Z.; Gui, D. Oasification and Desertification under the Framework of Land Degradation Neutrality Chapter Invitation—”Symbiotic Association of Microorganisms with Medicinal and Herbal Plants” View Project Special Issue “Sustainable Approaches for Plant Conservation under Emerging Pollutants Volume II” Sustainability (Impact Factor = 3.889) View Project Oasification and Desertification under the Framework of Land Degradation Neutrality †. Environ. Sci. 2023, 25, 94. [Google Scholar] [CrossRef]
- Chasek, P.S. The Convention to Combat Desertification: Lessons Learned for Sustainable Development; Sage Publications Inc.: Thousand Oaks, CA, USA, 1997; Volume 6. [Google Scholar]
- Pricope, N.G.; Daldegan, G.A.; Zvoleff, A.; Mwenda, K.M.; Noon, M.; Lopez-Carr, D. Operationalizing an Integrative Socio-Ecological Framework in Support of Global Monitoring of Land Degradation. Land Degrad. Dev. 2023, 34, 109–124. [Google Scholar] [CrossRef]
- Ambalam, K. Challenges of Compliance with Multilateral Environmental Agreements: The Case of the United Nations Convention to Combat Desertification in Africa. J. Sustain. Dev. Stud. 2014, 5, 145–168. [Google Scholar]
- Adepoju, K.A.; Salami, A.T. Geospatial Assessment of Forest Fragmentation and Its Implications for Ecological Processes in Tropical Forests. J. Landsc. Ecol. 2017, 10, 19–34. [Google Scholar] [CrossRef]
- Kellndorfer, J. SAR for Mapping Deforestation and Forest Degradation. In The Synthetic Aperture Radar (SAR) Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation; NTRS: Washington, DC, USA, 2019; pp. 41–57. [Google Scholar]
- Martinez del Castillo, E.; García-Martin, A.; Longares Aladrén, L.A.; de Luis, M. Evaluation of Forest Cover Change Using Remote Sensing Techniques and Landscape Metrics in Moncayo Natural Park (Spain). Appl. Geogr. 2015, 62, 247–255. [Google Scholar] [CrossRef]
- Maitima, J.M.; Mugatha, S.M.; Reid, R.S.; Gachimbi, L.N.; Majule, A.; Lyaruu, H.; Pomery, D.; Mathai, S.; Mugisha, S. The Linkages between Land Use Change, Land Degradation and Biodiversity across East Africa. Afr. J. Environ. Sci. Technol. 2009, 3, 310–325. [Google Scholar]
- Mitchell, A.L.; Rosenqvist, A.; Mora, B. Current Remote Sensing Approaches to Monitoring Forest Degradation in Support of Countries Measurement, Reporting and Verification (MRV) Systems for REDD+. Carbon Balance Manag. 2017, 12, 9. [Google Scholar] [CrossRef]
- Zekarias, T.; Gelaw, A. Impacts of Land Use/Land Cover Change on Wetland Ecosystem Services of Lake Abaya-Chamo Wetland, Rift Valley of Ethiopia. Geol. Ecol. Landsc. 2023, 1–12. [Google Scholar] [CrossRef]
- Raihan, A. The Dynamic Nexus between Economic Growth, Renewable Energy Use, Urbanization, Industrialization, Tourism, Agricultural Productivity, Forest Area, and Carbon Dioxide Emissions in the Philippines. Energy Nexus 2023, 9, 100180. [Google Scholar] [CrossRef]
- Shewit, G.; Minwyelet, M.; Tesfaye, M.; Lewoye, T.; Ferehiwot, M. Land Use Change and Its Drivers in Kurt Bahir Wetland, North-Western Ethiopia. Afr. J. Aquat. Sci. 2017, 42, 45–54. [Google Scholar] [CrossRef]
- Anh, N.T.; Nhan, N.T.; Schmalz, B.; Le Luu, T. Influences of Key Factors on River Water Quality in Urban and Rural Areas: A Review. Case Stud. Chem. Environ. Eng. 2023, 8, 100424. [Google Scholar] [CrossRef]
- Singh, S.; Giri, K.; Mishra, G.; Kumar, M.; Singh, R.K.; Pandey, S.; Mullick, M.; Sharma, R. Pathways to Achieve Land Degradation Neutrality in India; Indian Council of Forestry Research and Education: Dehradun, India, 2023; p. 3. [Google Scholar]
- Hussein, A. Impacts of Land Use and Land Cover Change on Vegetation Diversity of Tropical Highland in Ethiopia. Appl. Environ. Soil Sci. 2023, 2023, 2531241. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Olayanju, T.M.A.; Ejue, S.W.; Alori, E.T.; Adegbite, K.A. Abiotic and Biotic Factors Influencing Soil Health and/or Soil Degradation. In Soil Health; Springer: Berlin/Heidelberg, Germany, 2020; Volume 59, pp. 145–161. [Google Scholar]
- Abdulahi, M.M.; Hashim, H.; Teha, M. Rangeland Degradation: Extent, Impacts, and Alternative Restoration Techniques in the Rangelands of Ethiopia. Trop. Subtrop. Agroecosystems 2016, 19, 305–318. [Google Scholar]
- Olsson, L.; Barbosa, H.; Bhadwal, S.; Cowie, A.; Delusca, K.; Flores-Renteria, D.; Hermans, K.; Jobbagy, E.; Kurz, W.; Li, D.; et al. Land Degradation. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Zhou, L.; Tian, Y.; Myneni, R.B.; Ciais, P.; Saatchi, S.; Liu, Y.Y.; Piao, S.; Chen, H.; Vermote, E.F.; Song, C. Widespread Decline of Congo Rainforest Greenness in the Past Decade. Nature 2014, 509, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Adjorlolo, C.; Botha, J.O. Integration of Remote Sensing and Conventional Models for Modeling Grazing/Browsing Capacity in Southern African Savannas. J. Appl. Remote Sens. 2015, 9, 096041. [Google Scholar] [CrossRef]
- Meshesha, D.T.; Tsunekawa, A.; Tsubo, M. Continuing Land Degradation: Cause–Effect in Ethiopia’s Central Rift Valley. Land Degrad. Dev. 2012, 23, 130–143. [Google Scholar] [CrossRef]
- Akter, T.; Gazi, M.Y.; Mia, M.B. Assessment of Land Cover Dynamics, Land Surface Temperature, and Heat Island Growth in Northwestern Bangladesh Using Satellite Imagery. Environ. Process. 2021, 8, 661–690. [Google Scholar] [CrossRef]
- Braga, J.; Fourvel, J.B.; Lans, B.; Bruxelles, L.; Thackeray, J.F. Evolutionary, Chrono-Cultural and Palaeoenvironmental Backgrounds to the Krondraai Site: A Regional Perspective. In Kromdraai, a Birthplace of Paranthropus in the Cradle of Humankind; AFRICAN SUN MeDIA: Stellenbosch, South Africa, 2016; pp. 1–16. ISBN 978-1928355-06-9. [Google Scholar]
- Fahad, K.H.; Hussein, S.; Dibs, H. Spatial-Temporal Analysis of Land Use and Land Cover Change Detection Using Remote Sensing and GIS Techniques. IOP Conf. Ser. Mater. Sci. Eng. 2020, 671, 012046. [Google Scholar] [CrossRef]
- Mairota, P.; Cafarelli, B.; Boccaccio, L.; Leronni, V.; Labadessa, R.; Kosmidou, V.; Nagendra, H. Using Landscape Structure to Develop Quantitative Baselines for Protected Area Monitoring. Ecol. Indic. 2013, 33, 82–95. [Google Scholar] [CrossRef]
- Camarretta, N.; Puletti, N.; Chiavetta, U.; Corona, P. Quantitative Changes of Forest Landscapes over the Last Century across Italy. Plant Biol. 2018, 152, 1011–1019. [Google Scholar] [CrossRef]
- Verschoof-Van der Vaart, W.B.; Lambers, K. Learning to Look at LiDAR: The Use of R-CNN in the Automated Detection of Archaeological Objects in Lidar Data from the Netherlands. J. Comput. Appl. Archaeol. 2019, 2, 31–40. [Google Scholar] [CrossRef]
- Mitchell, T.M. The Discipline of Machine Learning. Mach. Learn. 2006, 17, 1–7. [Google Scholar]
- Guyot, A.; Hubert-Moy, L.; Lorho, T. Detecting Neolithic Burial Mounds from LiDAR-Derived Elevation Data Using a Multi-Scale Approach and Machine Learning Techniques. Remote Sens. 2018, 10, 225. [Google Scholar] [CrossRef]
- Tapete, D.; Cigna, F. Appraisal of Opportunities and Perspectives for the Systematic Condition Assessment of Heritage Sites with Copernicus Sentinel-2 High-Resolution Multispectral Imagery. Remote Sens. 2018, 10, 561. [Google Scholar] [CrossRef]
- Grilli, E.; Özdemir, E.; Remondino, F. Application of Machine and Deep Learning Strategies for the Classification of Heritage Point Clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 447–454. [Google Scholar] [CrossRef]
- Davis, D.S.; Douglass, K. Aerial and Spaceborne Remote Sensing in African Archaeology: A Review of Current Research and Potential Future Avenues. Afr. Archaeol. Rev. 2020, 37, 9–24. [Google Scholar] [CrossRef]
- Eloff, G. The Phytosociology of the Natural Vegetation Occuring in the Cradle of Humankind World Heritage Site, Gauteng. South Africa. Ph.D. Thesis, University of South Africa, Pretoria, South Africa, 2010. [Google Scholar]
- Fasona, M.I.; Soneye, A.S.O.; Gregory, A.J.; Egonmwan, R.I. Geo-Spatial Evaluation of the Land-Use and Landscape Metrics of Omo-Shasha-Oluwa Forest Reserves Landscape: The Conservation Challenge for Wildlife. Lagos J. Geo-Inf. Sci. 2018, 5, 1–19. [Google Scholar]
- Fan, C.; Myint, S.W.; Rey, S.J.; Li, W. Time Series Evaluation of Landscape Dynamics Using Annual Landsat Imagery and Spatial Statistical Modeling: Evidence from the Phoenix Metropolitan Region. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 12–25. [Google Scholar] [CrossRef]
- Stewart, C.; Oren, E.D.; Cohen-Sasson, E. Satellite Remote Sensing Analysis of the Qasrawet Archaeological Site in North Sinai. Remote Sens. 2018, 10, 1090. [Google Scholar] [CrossRef]
- Shahrokhnia, M.H.; Ahmadi, S.H. Remotely Sensed Spatial and Temporal Variations of Vegetation Indices Subjected to Rainfall Amount and Distribution Properties; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Tapete, D.; Cigna, F. COSMO-SkyMed SAR for Detection and Monitoring of Archaeological and Cultural Heritage Sites. Remote Sens. 2019, 11, 1326. [Google Scholar] [CrossRef]
- Ampofo, S.; Sackey, I.; Ampadu, B. Landscape Changes and Fragmentation Analysis in a Guinea Savannah Ecosystem: Case Study of Talensi and Nabdam Districts of the Upper East Region, Ghana. J. Geogr. Geol. 2016, 8, 41. [Google Scholar] [CrossRef]
- Fan, C.; Myint, S. A Comparison of Spatial Autocorrelation Indices and Landscape Metrics in Measuring Urban Landscape Fragmentation. Landsc. Urban Plan. 2014, 121, 117–128. [Google Scholar] [CrossRef]
- Comer, D.C.; Chapman, B.D.; Comer, J.A. Detecting Landscape Disturbance at the Nasca Lines Using SAR Data Collected from Airborne and Satellite Platforms. Geosciences 2017, 7, 106. [Google Scholar] [CrossRef]
- Fan, C.; Myint, S.W.; Zheng, B. Measuring the Spatial Arrangement of Urban Vegetation and Its Impacts on Seasonal Surface Temperatures. Prog. Phys. Geogr. 2015, 39, 199–219. [Google Scholar] [CrossRef]
- Gessesse, A.A.; Melesse, A.M. Temporal Relationships between Time Series CHIRPS-Rainfall Estimation and EMODIS-NDVI Satellite Images in Amhara Region, Ethiopia. In Extreme Hydrology and Climate Variability; Elsevier: Amsterdam, The Netherlands, 2019; pp. 81–92. [Google Scholar]
- Viana, C.M.; Oliveira, S.; Oliveira, S.C.; Rocha, J. Land Use/Land Cover Change Detection and Urban Sprawl Analysis; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Southworth, J.; Munroe, D.; Nagendra, H. Land Cover Change and Landscape Fragmentation—Comparing the Utility of Continuous and Discrete Analyses for a Western Honduras Region. Agric. Ecosyst. Environ. 2004, 101, 185–205. [Google Scholar] [CrossRef]
- Alam, A.; Bhat, M.S.; Maheen, M. Using Landsat Satellite Data for Assessing the Land Use and Land Cover Change in Kashmir Valley. GeoJournal 2020, 85, 1529–1543. [Google Scholar] [CrossRef]
- Dang, H.N.; Trung, D.N. Evaluation of Land Cover Changes and Secondary Ecological Succession of Typical Agroforestry Landscapes in Phu Yen Province. For. Soc. 2022, 6, 1–19. [Google Scholar] [CrossRef]
- Britz, T.M.W. Detecting Land Use and Land Cover Change for a 28-Year Period Using Multi-Temporal Landsat Satellite Images in the Jukskei River. S. Afr. J. Geomat. 2022, 11, 13–29. [Google Scholar] [CrossRef]
- Smiraglia, D.; Ceccarelli, T.; Bajocco, S.; Perini, L.; Salvati, L. Unraveling Landscape Complexity: Land Use/Land Cover Changes and Landscape Pattern Dynamics (1954–2008) in Contrasting Peri-Urban and Agro-Forest Regions of Northern Italy. Environ. Manag. 2015, 56, 916–932. [Google Scholar] [CrossRef]
- McCarty, D.A.; Kim, H.W.; Lee, H.K. Evaluation of Light Gradient Boosted Machine Learning Technique in Large Scale Land Use and Land Cover Classification. Environments 2020, 7, 84. [Google Scholar] [CrossRef]
- Grinand, C.; Vieilledent, G.; Razafimbelo, T.; Rakotoarijaona, J.R.; Nourtier, M.; Bernoux, M. Landscape-Scale Spatial Modelling of Deforestation, Land Degradation, and Regeneration Using Machine Learning Tools. Land Degrad. Dev. 2020, 31, 1699–1712. [Google Scholar] [CrossRef]
- Rukhovich, D.I.; Koroleva, P.V.; Rukhovich, D.D.; Kalinina, N.V. The Use of Deep Machine Learning for the Automated Selection of Remote Sensing Data for the Determination of Areas of Arable Land Degradation Processes Distribution. Remote Sens. 2021, 13, 155. [Google Scholar] [CrossRef]
- Torabi Haghighi, A.; Darabi, H.; Karimidastenaei, Z.; Davudirad, A.A.; Rouzbeh, S.; Rahmati, O.; Sajedi-Hosseini, F.; Klöve, B. Land Degradation Risk Mapping Using Topographic, Human-Induced, and Geo-Environmental Variables and Machine Learning Algorithms, for the Pole-Doab Watershed, Iran. Environ. Earth Sci. 2021, 80, 1. [Google Scholar] [CrossRef]
- Kussul, N.; Kolotii, A.; Shelestov, A.; Yailymov, B.; Lavreniuk, M. Land Degradation Estimation from Global and National Satellite Based Datasets within UN Program. In Proceedings of the 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Bucharest, Romania, 21–23 September 2017. [Google Scholar]
- Kavzoglu, T.; Teke, A. Predictive Performances of Ensemble Machine Learning Algorithms in Landslide Susceptibility Mapping Using Random Forest, Extreme Gradient Boosting (XGBoost) and Natural Gradient Boosting (NGBoost). Arab. J. Sci. Eng. 2022, 47, 7367–7385. [Google Scholar] [CrossRef]
- Pafka, S. Benchmarking Random Forest Implementations|Data Science Los Angeles. 2015. Available online: http://datascience.la/benchmarking-random-forest-implementations/ (accessed on 30 January 2023).
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Yuh, Y.G.; Tracz, W.; Matthews, H.D.; Turner, S.E. Application of Machine Learning Approaches for Land Cover Monitoring in Northern Cameroon. Ecol. Inform. 2023, 74, 101955. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Omarzadeh, D.; Kazemi Garajeh, M.; Lakes, T.; Blaschke, T. Machine Learning Data-Driven Approaches for Land Use/Cover Mapping and Trend Analysis Using Google Earth Engine. J. Environ. Plan. Manag. 2023, 66, 665–697. [Google Scholar] [CrossRef]
- Kumawat, M.; Khaparde, A.; Karad, V. Land Cover Change Detection Using TIMESAT Software and Machine Learning Algorithms near Ujani Dam: A Case Study. J. Integr. Sci. Technol. 2024, 12, 717. [Google Scholar]
- Rogan, J.; Miller, J.; Stow, D.; Franklin, J.; Levien, L.; Fischer, C. Land-Cover Change Monitoring with Classification Trees Using Landsat TM and Ancillary Data. Photogramm. Eng. Remote Sens. 2003, 69, 793–804. [Google Scholar] [CrossRef]
- Pande, C.B. Land Use/Land Cover and Change Detection Mapping in Rahuri Watershed Area (MS), India Using the Google Earth Engine and Machine Learning Approach. Geocarto Int 2022, 37, 13860–13880. [Google Scholar] [CrossRef]
- Ao, Y.; Li, H.; Zhu, L.; Ali, S.; Yang, Z. The Linear Random Forest Algorithm and Its Advantages in Machine Learning Assisted Logging Regression Modeling. J. Pet. Sci. Eng. 2019, 174, 776–789. [Google Scholar] [CrossRef]
- Georganos, S.; Grippa, T.; Vanhuysse, S.; Lennert, M.; Shimoni, M.; Wolff, E. Very High Resolution Object-Based Land Use-Land Cover Urban Classification Using Extreme Gradient Boosting. IEEE Geosci. Remote Sens. Ing Lett. 2018, 15, 607–611. [Google Scholar] [CrossRef]
- Man, C.D.; Nguyen, T.T.; Bui, H.Q.; Lasko, K.; Nguyen, T.N.T. Improvement of Land-Cover Classification over Frequently Cloud-Covered Areas Using Landsat 8 Time-Series Composites and an Ensemble of Supervised Classifiers. Int. J. Remote Sens. 2018, 39, 1243–1255. [Google Scholar] [CrossRef]
- Hirayama, H.; Sharma, R.C.; Tomita, M.; Hara, K. Evaluating Multiple Classifier System for the Reduction of Salt-and-Pepper Noise in the Classification of Very-High-Resolution Satellite Images. Int. J. Remote Sens. 2019, 40, 2542–2557. [Google Scholar] [CrossRef]
- Sun, F.; Wang, R.; Wan, B.; Su, Y.; Guo, Q.; Huang, Y.; Wu, X. Efficiency of Extreme Gradient Boosting for Imbalanced Land Cover Classification Using an Extended Margin and Disagreement Performance. ISPRS Int. J. Geoinf. 2019, 8, 315. [Google Scholar] [CrossRef]
- Chen, S.; Wang, S.; Li, C.; Hu, Q.; Yang, H. A Seismic Capacity Evaluation Approach for Architectural Heritage Using Finite Element Analysis of Three-Dimensional Model: A Case Study of the Limestone Hall in the Ming Dynasty. Remote Sens. 2018, 10, 963. [Google Scholar] [CrossRef]
- Viswambharan, B.V.; Lenhardt, J. Introducing the Spectral Index Library in ArcGIS. 2019. Available online: https://www.esri.com/about/newsroom/wp-content/uploads/2019/05/Intro-the-spectral-index-library-in-arcgis.pdf (accessed on 23 June 2023).
- Matarira, D.; Mutanga, O.; Naidu, M. Google Earth Engine for Informal Settlement Mapping: A Random Forest Classification Using Spectral and Textural Information. Remote Sens. 2022, 14, 5130. [Google Scholar] [CrossRef]
- Uuemaa, E.; Antrop, M.; Roosaare, J.; Marja, R.; Mander, Ü. Landscape Metrics and Indices: An Overview of Their Use in Landscape Research. Living Rev. Landsc. Res. 2009, 3, 1–28. [Google Scholar] [CrossRef]
- Sudhira, H.S.; Shetty, P.J.; Gowda, S.; Gururaja, K.V. Effect of landscape metrics on varied spatial extents of Bangalore, India. Asian J. Geoinform. 2012, 12, 1–11. [Google Scholar]
- O’Connor, T.G.; van Wilgen, B.W. The Impact of Invasive Alien Plants on Rangelands in South Africa. In Biological Invasions in South Africa; van Wilgen, B.W., Measey, J., Richardson, D.M., Wilson, J.R., Zengeya, T.A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 459–487. ISBN 978-3-030-32394-3. [Google Scholar]
- Cammeraat, L.H.; Imeson, A.C. The Evolution and Significance of Soil-Vegetation Following Land Abandonment and Fire in Spain. Catena 1999, 37, 107–127. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, X. Human Disturbance Caused Stronger Influences on Global Vegetation Change than Climate Change. PeerJ 2019, 2019, e7763. [Google Scholar] [CrossRef]
- Valentin, C.; D’herbes, J.M.; Poesen, J. Soil and Water Components of Banded Vegetation Patterns. Catena 1999, 37, 1–24. [Google Scholar] [CrossRef]
- Le Maitre, D.C.; Blignaut, J.N.; Clulow, A.; Dzikiti, S.; Everson, C.S.; Görgens, A.H.M.; Gush, M.B. Impacts of Plant Invasions on Terrestrial Water Flows in South Africa. In Biological Invasions in South Africa; van Wilgen, B.W., Measey, J., Richardson, D.M., Wilson, J.R., Zengeya, T.A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 431–457. ISBN 978-3-030-32394-3. [Google Scholar]
- Rodríguez-Lozano, B.; Martínez-Sánchez, J.; Maza-Maza, J.; Cantón, Y.; Rodríguez-Caballero, E. New Methodological Approach to Characterize Drylands Ecohydrological Functionality on the Basis of Balance between Connectivity and Potential Water Retention Capacity (BalanCR). J. Hydrol. Hydromech. 2023, 71, 188–198. [Google Scholar] [CrossRef]
- Baker, S.E.; Lombard, M.; Bradfield, J. The Hominin-Predator effect during the pleistocene in the Cradle of Humankind, South Africa. Ph.D. Thesis, University of Johannesburg, Johannesburg, South Africa, 2006. [Google Scholar]
- Rogerson, C.M.; van der Merwe, C.D. Heritage Tourism in the Global South: Development Impacts of the Cradle of Humankind World Heritage Site, South Africa. Local Econ. 2016, 31, 234–248. [Google Scholar] [CrossRef]
- Lelliott, A. Visitors’ Views of Human Origins after Visiting the Cradle of Humankind World Heritage Site. S. Afr. J. Sci. 2016, 112, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Bradley, C.; Cross, J.; Durand, J.F.; Ellis, R.; Groenewald, J.; Grove, A.; Holland, M.; Jamison, A.A.; Kenyon, P.; Krige, G.; et al. The Karst System of the Cradle of Humankind World Heritage Site. Water Res. Comm. 2010, 401, 88–101. [Google Scholar]
- SA-Venues.com Cradle Nature Reserve, Gauteng. Available online: https://www.sa-venues.com/game-reserves/cradle.php (accessed on 23 May 2022).
- FLOW. Communications Maropeng and Sterkfontein Caves. Available online: https://www.maropeng.co.za/content/page/environment-and-climate (accessed on 23 May 2022).
- Department of Rural Development and Land Reform Chief Surveyor General. Available online: http://csg.drdlr.gov.za/index.html (accessed on 4 October 2022).
- Tomaszewski, P.; Yu, S.; Borg, M.; Ronnols, J. Machine Learning-Assisted Analysis of Small Angle X-Ray Scattering. In Proceedings of the 2021 Swedish Workshop on Data Science, SweDS 2021, Växjö, Sweden, 2–3 December 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Brownlee, J. XGBoost with Python. 2019. Available online: https://machinelearningmastery.com/xgboost-python-mini-course/ (accessed on 27 February 2023).
- Zhang, S.L.; Chang, T.C. A Study of Image Classification of Remote Sensing Based on Back-Propagation Neural Network with Extended Delta Bar Delta. Math. Probl. Eng. 2015, 2015, 178598. [Google Scholar] [CrossRef]
- Chen, G.; Li, S.; Knibbs, L.D.; Hamm, N.; Cao, W.; Li, T.; Guo, J.; Ren, H.; Abramson, M.J.; Guo, Y.; et al. A machine learning method to estimate PM2. 5 concentrations across China with remote sensing, meteorological and land use information. Sci. Total Environ. 2018, 636, 52–60. [Google Scholar] [CrossRef]
- Ryu, S.E.; Shin, D.H.; Chung, K. Prediction Model of Dementia Risk Based on XGBoost Using Derived Variable Extraction and Hyper Parameter Optimization. IEEE Access 2020, 8, 177708–177719. [Google Scholar] [CrossRef]
- Wojcik, T. What Explains the Difference between Naive Bayesian Classifiers and Tree-Augmented Bayesian Network Classifiers. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2023. [Google Scholar]
- Shoko, C.; Dube, T.; Sibanda, M.; Bangamwabo, V. Quantifying the Spatial and Temporal Changes in Forested Landcover Using Landscape Metrics Derived from Remotely Sensed Data in Rural Parts of Zimbabwe. Trans. R. Soc. S. Afr. 2016, 71, 105–113. [Google Scholar] [CrossRef]
- Kamusoko, C.; Aniya, M. Land Use/Cover Change and Landscape Fragmentation Analysis in the Bindura District, Zimbabwe. Land Degrad. Dev. 2007, 18, 221–233. [Google Scholar] [CrossRef]
- Thompson, M. DEA E1434 Land-Cover South African National Land-Cover 2018 Report & Accuracy Assessment. (Public Release Report); GeoTerraImage SA Pty Ltd.: Pretoria, South Africa, 2019. [Google Scholar]
- Hardy, E.E.; Anderson, J.R. Purdue E-Pubs A Land Use Classification System for Use with Remote-Sensor Data. In Proceedings of the Conference on Machine Processing of Remotely Sensed Data, West Lafayette, IN, USA, 16–18 October 1973. [Google Scholar]
- Gregorio, A.D. Land Cover Classification System; Food and Agriculture Organization: Roma, Italy, 2016; ISBN 978-92-5-109017-6. [Google Scholar]
- Qu Quinn, J.W. Landsat 5 & 7 Band Combinations Landsat 5 (TM Sensor) Wavelength (Micrometers) Resolution (Meters) Band 1. Available online: https://d32ogoqmya1dw8.cloudfront.net/files/NAGTWorkshops/gis/activities/landsat_thematic_mapper_inform.pdf (accessed on 29 August 2022).
- Department of Environment Forestry and Fisheries. South African National Land-Cover 2020 Accuracy Assessment Report; Department of Environment Forestry and Fisheries: Canberra, Australia, 2021.
- Department of Environment Forestry and Fisheries. South African National Land-Cover 2018 Accuracy Assessment Report; Department of Environment Forestry and Fisheries: Canberra, Australia, 2021.
- Brownlee, J. A Gentle Introduction to the Bootstrap Method—MachineLearningMastery.Com. Available online: https://machinelearningmastery.com/a-gentle-introduction-to-the-bootstrap-method/ (accessed on 30 January 2023).
- Sagar, R. What are Hyperparameters and How do They Determine a Model’s Performance. Available online: https://analyticsindiamag.com/what-are-hyperparameters-and-how-do-they-determine-a-models-performance/ (accessed on 23 May 2023).
- Al-Hameedi, W.M.M.; Chen, J.; Faichia, C.; Nath, B.; Al-Shaibah, B.; Al-Aizari, A. Geospatial Analysis of Land Use/Cover Change and Land Surface Temperature for Landscape Risk Pattern Change Evaluation of Baghdad City, Iraq, Using CA–Markov and ANN Models. Sustainability 2022, 14, 8568. [Google Scholar] [CrossRef]
- Maladkar, K. Why is Random Search Better than Grid Search for Machine Learning. 2020. Available online: https://analyticsindiamag.com/why-is-random-search-better-than-grid-search-for-machine-learning/ (accessed on 23 May 2023).
- Dewi, C.; Chen, R.-C.; Christanto, H.J.; Cauteruccio, F. Multinomial Naïve Bayes Classifier for Sentiment Analysis of Internet Movie Database. Vietnam. J. Comput. Sci. 2023, 9, 1–14. [Google Scholar] [CrossRef]
- Ray, S. Learn Naive Bayes Algorithm|Naive Bayes Classifier Examples. 2017. Available online: https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/ (accessed on 19 September 2023).
- Rwanga, S.S.; Ndambuki, J.M. Accuracy Assessment of Land Use/Land Cover Classification Using Remote Sensing and GIS. Int. J. Geosci. 2017, 8, 611–622. [Google Scholar] [CrossRef]
- Olofsson, P.; Foodu, G.M.; Martin, H.; Stephen, V.S.; Curtis, E.W.; Wuldwe, M.A. Good Practices for Estimating Area and Assessing Accuracy of Land Change. Remote Sens. Environ. 2013, 148, 42–57. [Google Scholar] [CrossRef]
- Nusser, S.M.; Klaas, E.E. Statistics Publications Statistics Survey Methods for Assessing Land Cover Map Accuracy Survey Methods for Assessing Land Cover Map Accuracy Survey Methods for Assessing Land Cover Map Accuracy. Environ. Ecol. Stat. 2003, 10, 309–331. [Google Scholar] [CrossRef]
- Henrico, S.; Coetzee, S.; Cooper, A.; Rautenbach, V. Acceptance of Open Source Geospatial Software: Assessing QGIS in South Africa with the UTAUT2 Model. Trans. GIS 2021, 25, 468–490. [Google Scholar] [CrossRef]
- Grinberg, E. 4.3 Spatial Stratified Sampling with QGIS|Technical Guide for Estimating Building Rooftop Solar Potential in a City. Available online: https://bookdown.org/einavg7/sp_technical_guide/spatial-stratified-sampling-with-qgis.html (accessed on 2 June 2022).
- Congedo, L. Semi-Automatic Classification Plugin: A Python Tool for the Download and Processing of Remote Sensing Images in QGIS. J. Open Source Softw. 2021, 6, 3172. [Google Scholar] [CrossRef]
- Matsushita, B.; Xu, M.; Fukushima, T. Characterizing the Changes in Landscape Structure in the Lake Kasumigaura Basin, Japan Using a High-Quality GIS Dataset. Landsc. Urban Plan 2006, 78, 241–250. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.A.; Ene, E. Landscape Metrics for Categorical Map Patterns—Assigned Reding. 2017. Available online: https://search.r-project.org/CRAN/refmans/landscapemetrics/html/00Index.html (accessed on 31 May 2022).
- Abedini, A.; Khalili, A.; Asadi, N. Urban Sprawl Evaluation Using Landscape Metrics and Black-and-White Hypothesis (Case Study: Urmia City). J. Indian Soc. Remote Sens. 2020, 48, 1021–1034. [Google Scholar] [CrossRef]
- Mcalpine, C.A.; Eyre, T.J. Testing Landscape Metrics as Indicators of Habitat Loss and Fragmentation in Continuous Eucalypt Forests (Queensland, Australia). Landsc. Ecol. 2003, 17, 711–728. [Google Scholar] [CrossRef]
- Andriy Burkov, B. The Hundred-Page Machine Learning; Andriy Burkov, Ed.; Andriy Burkov: Quebec City, QC, Canada, 2019. [Google Scholar]
- Hendrawan, I.R.; Utami, E.; Hartanto, A.D. Comparison of Naïve Bayes Algorithm and XGBoost on Local Product Review Text Classification. Edumatic J. Pendidik. Inform. 2022, 6, 143–149. [Google Scholar] [CrossRef]
- Irwanto, A.; Goeirmanto, L. Sentiment Analysis from Twitter about Covid-19 Vaccination in Indonesia Using Naïve Bayes and XGboost Classifier Algorithm. Sinergi 2023, 27, 145–152. [Google Scholar] [CrossRef]
- Cucco, P.; Maselli, G.; Nesticò, A.; Ribera, F. An Evaluation Model for Adaptive Reuse of Cultural Heritage in Accordance with 2030 SDGs and European Quality Principles. J. Cult. Herit. 2023, 59, 202–216. [Google Scholar] [CrossRef]
- Mousazadeh, H.; Ghorbani, A.; Azadi, H.; Almani, F.A.; Zangiabadi, A.; Zhu, K.; Dávid, L.D. Developing Sustainable Behaviors for Underground Heritage Tourism Management: The Case of Persian Qanats, a UNESCO World Heritage Property. Land 2023, 12, 808. [Google Scholar] [CrossRef]
- Mensah, J.; Tachie, B.Y.; Potakey, H.M.D. Open Defecation near a World Heritage Site: Causes and Implication for Sustainable Tourism and Heritage Management. J. Cult. Herit. Manag. Sustain. Dev. 2023, 13, 167–184. [Google Scholar] [CrossRef]
- Osipova, E.; Emslie-Smith, M.; Osti, M.; Murai, M.; Åberg, U.; Shadie, P. IUCN World Heritage Outlook 3; IUCN, International Union for Conservation of Nature: Gland, Switzerland, 2020. [Google Scholar]
- Zeng, T.; Wu, L.; Peduto, D.; Glade, T.; Hayakawa, Y.S.; Yin, K. Ensemble Learning Framework for Landslide Susceptibility Mapping: Different Basic Classifier and Ensemble Strategy. Geosci. Front. 2023, 14, 101645. [Google Scholar] [CrossRef]
- Plataridis, K.; Mallios, Z. Flood Susceptibility Mapping Using Hybrid Models Optimized with Artificial Bee Colony. J. Hydrol. 2023, 624, 129961. [Google Scholar] [CrossRef]
- Abedi, R.; Costache, R.; Shafizadeh-Moghadam, H.; Pham, Q.B. Flash-Flood Susceptibility Mapping Based on XGBoost, Random Forest and Boosted Regression Trees. Geocarto Int. 2022, 37, 5479–5496. [Google Scholar] [CrossRef]
- Pontius, R.G.; Millones, M. Death to Kappa: Birth of Quantity Disagreement and Allocation Disagreement for Accuracy Assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Arora, N.K. Impact of Climate Change on Agriculture Production and Its Sustainable Solutions. Environ. Sustain. 2019, 2, 95–96. [Google Scholar] [CrossRef]
- Holm, A.M.R.; Bennett, L.T.; Loneragan, W.A.; Adams, M.A. Relationships between Empirical and Nominal Indices of Landscape Function in the Arid Shrubland of Western Australia. J. Arid. Environ. 2002, 50, 1–21. [Google Scholar] [CrossRef]
- Van De Koppel, J.; Rietkerk, M.; Van Langevelde, F.; Kumar, L.; Klausmeier, C.A.; Fryxell, J.M.; Hearne, J.W.; Van Andel, J.; De Ridder, N.; Skidmore, A.; et al. Spatial Heterogeneity and Irreversible Vegetation Change in Semiarid Grazing Systems. Am. Nat. 2002, 159, 209–218. [Google Scholar] [CrossRef]
- Nkonya, E.; Mirzabaev, A.; Von Braun Editors, J. Economics of Land Degradation and Improvement: An Introduction and Overview. In Economics of Land Degradation and Improvement—A Global Assessment for Sustainable Development; OAPEN Home: The Hague, The Netherlands, 2016. [Google Scholar]
- Roncero-Ramos, B.; Román, J.R.; Rodríguez-Caballero, E.; Chamizo, S.; Águila-Carricondo, P.; Mateo, P.; Cantón, Y. Assessing the Influence of Soil Abiotic and Biotic Factors on Nostoc Commune Inoculation Success. Plant Soil 2019, 444, 57–70. [Google Scholar] [CrossRef]
- Pickup, G.; Chewings, V.H. A Grazing Gradient Approach to Land Degradation Assessment in Arid Areas from Remotely-Sensed Data. Int. J. Remote Sens. 1994, 15, 517–520. [Google Scholar] [CrossRef]
- Wei, P.; Zhao, S.; Lu, W.; Ni, L.; Yan, Z.; Jiang, T. Grazing Altered the Plant Diversity-Productivity Relationship in the Jianghan Plain of the Yangtze River Basin. For. Ecol. Manag. 2023, 531, 120767. [Google Scholar] [CrossRef]
- Goodall, J.; Witkowski, E.T.F.; Morris, C.D.; Henderson, L. Are Environmental Factors Important Facilitators of Pompom Weed (Campuloclinium Macrocephalum) Invasion in South African Rangelands? Biol. Invasions 2011, 13, 2217–2231. [Google Scholar] [CrossRef]
- Henderson, L.; Goodall, J.M.; Klein, H. Pamphlet by Produced by Agricultural Research Council; Plant Protection Research Institute: Pretoria, South Africa, 2006. [Google Scholar]
- Turnbull, L.; Wainwright, J.; Brazier, R.E. A Conceptual Framework for Understanding Semi-Arid Land Degradation: Ecohydrological Interactions across Multiple-Space and Time Scales. Ecohydrology 2008, 1, 23–34. [Google Scholar] [CrossRef]
- Trethowan, P.D.; Robertson, M.P.; McConnachie, A.J. Ecological Niche Modelling of an Invasive Alien Plant and Its Potential Biological Control Agents. S. Afr. J. Bot. 2011, 77, 137–146. [Google Scholar] [CrossRef]
- FAO. Natural and Semi-Natural Vegetated Areas; FAO: Rome, Italy, 2000. [Google Scholar]
- Schoeman, F.; Newby, T.S.; Thomson, M.W.; Van den Berg, E.C. South African National Land-Cover Change Map. S. Afr. J. Geomat. 2013, 2, 94–105. [Google Scholar]
- Nath, B.; Ni-Meister, W.; Choudhury, R. Impact of Urbanization on Land Use and Land Cover Change in Guwahati City, India and Its Implication on Declining Groundwater Level. Groundw. Sustain. Dev. 2021, 12, 100500. [Google Scholar] [CrossRef]
- Zengeya, T.A.; Kumschick, S.; Weyl, O.L.F.; van Wilgen, B.W. An Evaluation of the Impacts of Alien Species on Biodiversity in South Africa Using Different Assessment Methods. In Biological Invasions in South Africa; van Wilgen, B.W., Measey, J., Richardson, D.M., Wilson, J.R., Zengeya, T.A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 489–512. ISBN 978-3-030-32394-3. [Google Scholar]
- Nagendra, H.; Munroe, D.K.; Southworth, J. From Pattern to Process: Landscape Fragmentation and the Analysis of Land Use/Land Cover Change. Agric. Ecosyst. Environ. 2004, 101, 111–115. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Azizi, P.; Moghadasi, M. Land Use Change, Urbanization, and Change in Landscape Pattern in a Metropolitan Area. Sci. Total Environ. 2019, 655, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Luo, Y.; Wang, M.; Su, S.; Pi, J.; Li, G. Essential Fragmentation Metrics for Agricultural Policies: Linking Landscape Pattern, Ecosystem Service and Land Use Management in Urbanizing China. Agric. Syst. 2020, 182, 102833. [Google Scholar] [CrossRef]
- Zhao, S.M.; Ma, Y.F.; Wang, J.L.; You, X.Y. Landscape Pattern Analysis and Ecological Network Planning of Tianjin City. Urban Urban Green 2019, 46, 126479. [Google Scholar] [CrossRef]
- Pyšek, P.; Hulme, P.E.; Simberloff, D.; Bacher, S.; Blackburn, T.M.; Carlton, J.T.; Dawson, W.; Essl, F.; Foxcroft, L.C.; Genovesi, P.; et al. Scientists’ Warning on Invasive Alien Species. Biol. Rev. 2020, 95, 1511–1534. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.L.; He, Q.S.; Zhang, Y.D.; Hou, J.H.; Yu, F.H. Effects of Soil Nutrient Heterogeneity on the Growth and Invasion Success of Alien Plants: A Multi-Species Study. Front. Ecol. Evol. 2021, 8, 619861. [Google Scholar] [CrossRef]
- Goodall, J.; Witkowski, E.T.F.; Ammann, S.; Reinhardt, C. Does Allelopathy Explain the Invasiveness of Campuloclinium Macrocephalum (Pompom Weed) in the South African Grassland Biome? Biol. Invasions 2010, 12, 3497–3512. [Google Scholar] [CrossRef]
- Villalobos Perna, P.; Di Febbraro, M.; Carranza, M.L.; Marzialetti, F.; Innangi, M. Remote Sensing and Invasive Plants in Coastal Ecosystems: What We Know So Far and Future Prospects. Multidiscip. Digit. Publ. Inst. 2023, 12, 341. [Google Scholar] [CrossRef]
- Hulme, P.E. Invasive Species Unchecked by Climate. Science 2012, 335, 537–538. [Google Scholar] [CrossRef]
- Qu, T.; Du, X.; Peng, Y.; Guo, W.; Zhao, C.; Losapio, G. Invasive Species Allelopathy Decreases Plant Growth and Soil Microbial Activity. PLoS ONE 2021, 16, e0246685. [Google Scholar] [CrossRef]
- Dunkerley, D.L.; Brown, K.J. Runoff and Runon Areas in a Patterned Chenopod Shrubland, Arid Western New South Wales, Australia: Characteristics and Origin. J. Arid. Environ. 1995, 30, 41–55. [Google Scholar] [CrossRef]
- Bryan, R.B.; Brun, S.E. Laboratory Experiments on Sequential/Deposition and Their Application to the development of Banded Vegetation. Catena 1999, 37, 147–163. [Google Scholar] [CrossRef]
- Lepron, J.C. The Influences of Ecological Factors on Tiger bush and Dotted Bush Patterns along a Gradient from Mali to Northern Burkina Faso. Catena 1999, 37, 25–44. [Google Scholar] [CrossRef]
Hyperparameter | Value |
---|---|
Number of decision trees | 20 |
Shrinkage (the shrinkage parameter controls the learning rate of the procedure) | 0.05 |
Sampling rate (the sampling rate for stochastic boosting) | 0.70 |
Maximum node (the maximum number of leaf nodes in each tree) | 20 |
Loss (loss function for regression) | Least absolute deviation |
Seed (the randomisation seed) | 0 |
Landscape Metric | Hypothesis |
---|---|
Total Landscape Area (TA) | The total landscape area for each class in the Cradle Nature Reserve has been altered by land cover degradation during the study period (1990 to 2020). |
Landscape Proportion | Land cover degradation has altered the proportion of landscape area for each class during the study period (1990 to 2020). |
Patch Density | There was an increase in landscape fragmentation in the study period (1990 to 2020) due to the rise in the number of patches per unit area. |
Number of Patches | There is an increase in landscape fragmentation in the study period (1990 to 2020) due to the rise in the total number of patches. |
Largest Patch Index | One class of land cover dominates during the period (1990 to 2020) in the study area. |
Mean Patch Area | There is a decrease in the average size of patches in each class due to land cover degradation during the study period (1990 to 2020). |
Patch cohesion index | There are no isolated classes (landscape class-connectivity) in the Cradle Nature Reserve landscape during the study period (1990 to 2020). |
Shannon Index | The Cradle Nature Reserve landscape is dominated by one land cover class during the study period (1990 to 2020). |
Naïve Bayes (lambda = 0.5) | XGBRFClassifier | |||||
---|---|---|---|---|---|---|
70% | Producer’s Accuracy | User’s Accuracy | F1 | Producer’s Accuracy | User’s Accuracy | F1 |
Indigenous forest | 0.87 | 0.78 | 0.82 | 0.88 | 0.85 | 0.86 |
Open bush | 0.71 | 0.85 | 0.77 | 0.83 | 0.87 | 0.85 |
Natural grass | 0.91 | 0.82 | 0.86 | 0.92 | 0.93 | 0.92 |
Bare ground/rock outcrop | 0.82 | 0.86 | 0.84 | 0.95 | 0.92 | 0.93 |
Overall accuracy | 0.83 | 0.90 | ||||
Kappa index | 0.76 | 0.86 | ||||
30% | ||||||
Indigenous forest | 0.88 | 0.78 | 0.83 | 0.78 | 0.78 | 0.78 |
Open bush | 0.7 | 0.81 | 0.75 | 0.72 | 0.77 | 0.74 |
Natural grass | 0.93 | 0.77 | 0.84 | 0.96 | 0.83 | 0.89 |
Bare ground/rock outcrop | 0.83 | 0.97 | 0.89 | 0.93 | 0.98 | 0.95 |
Overall accuracy | 0.83 | 0.85 | ||||
Kappa index | 0.78 | 0.8 |
Ground Truthing | 2020 | ||
---|---|---|---|
Producer’s Accuracy | User’s Accuracy | F1 | |
Indigenous forest | 0.93 | 0.93 | 0.93 |
Open bush | 0.77 | 0.90 | 0.83 |
Natural grass | 0.93 | 0.87 | 0.90 |
Bare ground/rock outcrop | 0.96 | 0.87 | 0.91 |
Overall accuracy | 0.89 | ||
Kappa index | 0.86 |
XGBRFClassifier | 1990 | 1998 | 2009 | 2015 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
70% | Producer’s Accuracy | User’s Accuracy | F1 | Producer’s Accuracy | User’s Accuracy | F1 | Producer’s Accuracy | User’s Accuracy | F1 | Producer’s Accuracy | User’s Accuracy | F1 |
Indigenous forest | 0.93 | 0.97 | 0.95 | 0.91 | 0.89 | 0.90 | 0.86 | 0.96 | 0.91 | 0.92 | 0.90 | 0.91 |
Open bush | 0.95 | 0.92 | 0.93 | 0.84 | 0.91 | 0.87 | 0.90 | 0.84 | 0.87 | 0.82 | 0.89 | 0.85 |
Natural grass | 0.99 | 0.96 | 0.97 | 1.00 | 0.92 | 0.96 | 0.97 | 0.89 | 0.93 | 0.97 | 0.92 | 0.94 |
Bare ground/rock outcrop | 0.97 | 0.98 | 0.97 | 0.96 | 1.00 | 0.98 | 0.94 | 0.98 | 0.96 | 0.99 | 0.99 | 0.99 |
Overall accuracy | 0.96 | 0.93 | 0.92 | 0.92 | ||||||||
Kappa index | 0.95 | 0.90 | 0.89 | 0.89 | ||||||||
30% | ||||||||||||
Indigenous forest | 0.93 | 0.80 | 0.86 | 0.88 | 0.77 | 0.82 | 0.72 | 0.88 | 0.79 | 0.92 | 0.76 | 0.83 |
Open bush | 0.79 | 0.94 | 0.86 | 0.67 | 0.89 | 0.76 | 0.86 | 0.84 | 0.85 | 0.78 | 0.85 | 0.81 |
Natural grass | 0.92 | 0.92 | 0.92 | 1.00 | 0.81 | 0.90 | 0.97 | 0.84 | 0.90 | 0.90 | 0.90 | 0.90 |
Bare ground/rock outcrop | 1.00 | 0.95 | 0.97 | 0.94 | 1.00 | 0.97 | 0.91 | 0.91 | 0.91 | 0.90 | 1.00 | 0.95 |
Overall accuracy | 0.91 | 0.87 | 0.88 | 0.87 | ||||||||
Kappa index | 0.88 | 0.82 | 0.84 | 0.83 |
1990–1998 Land Cover Change Matrix (ha) | 1998–2009 Land Cover Change Matrix (ha) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
New Class | New Class | |||||||||
Reference class | 1 | 2 | 3 | 4 | Total | 1 | 2 | 3 | 4 | Total |
1 | 65.85 | 71.83 | 0.32 | 0.08 | 138.08 | 60.76 | 31.75 | 0.16 | 0.00 | 92.67 |
2 | 25.77 | 634.64 | 78.94 | 0.00 | 739.35 | 45.08 | 593.43 | 532.51 | 0.08 | 1171.11 |
3 | 1.05 | 464.40 | 6190.69 | 396.54 | 7052.68 | 0.89 | 216.77 | 6262.83 | 135.25 | 6615.74 |
4 | 0.00 | 0.24 | 345.80 | 348.63 | 694.67 | 1.21 | 16.32 | 467.39 | 260.32 | 745.24 |
Total | 92.67 | 1171.11 | 6615.74 | 745.24 | 8624.77 | 107.94 | 858.28 | 7262.90 | 395.65 | 8624.77 |
2009–2015 land cover change matrix (ha) | 2015–2020 land cover change matrix (ha) | |||||||||
New class | New class | |||||||||
Reference class | 1 | 2 | 3 | 4 | Total | 1 | 2 | 3 | 4 | Total |
1 | 92.99 | 14.95 | 0.00 | 0.00 | 107.94 | 97.44 | 129.84 | 0.97 | 0.00 | 228.24 |
2 | 129.43 | 535.02 | 184.94 | 8.89 | 858.28 | 11.88 | 748.88 | 328.19 | 2.99 | 1091.93 |
3 | 5.82 | 538.82 | 6100.92 | 617.35 | 7262.90 | 0.00 | 217.66 | 5421.77 | 727.39 | 6366.82 |
4 | 0.00 | 3.15 | 80.96 | 311.54 | 395.65 | 0.00 | 2.42 | 522.09 | 413.26 | 937.78 |
Total | 228.24 | 1091.93 | 6366.82 | 937.78 | 8624.77 | 109.31 | 1098.80 | 6273.01 | 1143.64 | 8624.77 |
1990–2020 land cover change matrix (ha) | ||||||||||
New class | Key | |||||||||
Reference class | 1 | 2 | 3 | 4 | Total | Class | Value | |||
1 | 71.99 | 66.09 | 0.00 | 0.00 | 138.08 | Indigenous forest | 1 | |||
2 | 36.03 | 598.76 | 104.14 | 0.40 | 739.35 | Open bush | 2 | |||
3 | 1.29 | 427.00 | 5758.60 | 865.79 | 7052.68 | Natural grassland | 3 | |||
4 | 0.00 | 6.95 | 410.27 | 277.45 | 694.67 | Bare ground/rock outcrop | 4 | |||
Total | 109.31 | 1098.80 | 6273.01 | 1143.64 | 8624.77 |
Landscape Matrices May 2020 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Class | Total Landscape Area (ha) | Landscape Proportion | Patch Density | Number of Patches | Largest Patch Index | Mean Patch area | Patch Cohesion Index | Metric | Value | |
Indigenous forest | 123.57 | 1.28 | 2.06 | 198 | 0.07 | 0.62 | 8.03 | DIV_SH | 0.82 | Shannon Index |
Open bush | 1229.22 | 12.76 | 4.06 | 391 | 2.48 | 3.14 | 9.59 | |||
Natural grassland | 6989.40 | 72.55 | 1.68 | 162 | 69.21 | 43.14 | 9.94 | |||
Bare ground/rock outcrop | 1292.13 | 13.41 | 6.76 | 651 | 3.13 | 1.98 | 9.63 | |||
Total | 1402 | |||||||||
Landscape Matrices May 2015 | ||||||||||
Class | Total Landscape Area (ha) | Landscape Proportion | Patch density | Number of Patches | Largest Patch Index | Mean patch area | Patch cohesion index | Metric | Value | |
Indigenous forest | 254.07 | 2.64 | 3.56 | 343 | 0.15 | 0.74 | 8.52 | DIV_SH | 0.83 | Shannon Index |
Open bush | 1236.15 | 12.83 | 9.49 | 914 | 2.48 | 1.35 | 9.52 | |||
Natural grassland | 7091.01 | 73.60 | 2.44 | 235 | 70.34 | 30.17 | 9.94 | |||
Bare ground/rock outcrop | 1053.09 | 10.93 | 5.15 | 496 | 1.02 | 2.12 | 9.43 | |||
Total | 1988 | |||||||||
Landscape Matrices May 2009 | ||||||||||
Class | Total Landscape Area (ha) | Landscape Proportion | Patch density | Number of Patches | Largest Patch Index | Mean patch area | Patch cohesion index | Metric | Value | |
Indigenous forest | 121.50 | 1.26 | 2.23 | 215 | 0.07 | 0.57 | 7.91 | DIV_SH | 0.57 | Shannon Index |
Open bush | 961.92 | 9.98 | 8.87 | 855 | 1.01 | 1.13 | 9.23 | |||
Natural grassland | 8103.96 | 84.12 | 1.19 | 115 | 83.49 | 70.47 | 9.95 | |||
Bare ground/rock outcrop | 446.94 | 4.64 | 4.57 | 440 | 0.26 | 1.02 | 8.87 | |||
Total | 1625 | |||||||||
Landscape Matrices May 1998 | ||||||||||
Class | Total Landscape Area (ha) (ha) | Landscape Proportion | Patch density | Number of Patches | Largest Patch Index | Mean patch area | Patch cohesion index | Metric | Value | |
Indigenous forest | 106.29 | 1.10 | 1.79 | 172 | 0.06 | 0.62 | 7.80 | DIV_SH | 0.74 | Shannon Index |
Open bush | 1309.05 | 13.59 | 4.69 | 452 | 5.22 | 2.90 | 9.73 | |||
Natural grassland | 7374.33 | 76.54 | 1.60 | 154 | 75.34 | 47.89 | 9.94 | |||
Bare ground/rock outcrop | 844.65 | 8.77 | 5.64 | 543 | 0.66 | 1.56 | 9.16 | |||
Total | 1321 | |||||||||
Landscape Matrices May 1990 | ||||||||||
Class | Total Landscape Area (ha) | Landscape Proportion | Patch density | Number of Patches | Largest Patch Index | Mean patch area | Patch cohesion index | Metric | Value | |
Indigenous forest | 156.06 | 1.62 | 1.94 | 187 | 0.12 | 0.83 | 8.40 | DIV_SH | 0.65 | Shannon Index |
Open bush | 822.06 | 8.53 | 4.72 | 455 | 0.78 | 1.81 | 9.34 | |||
Natural grassland | 7873.83 | 81.73 | 1.06 | 102 | 81.05 | 77.19 | 9.94 | |||
Bare ground/rock outcrop | 782.37 | 8.12 | 5.39 | 519 | 0.81 | 1.51 | 9.34 | |||
Total | 1263 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matyukira, C.; Mhangara, P. Land Cover and Landscape Structural Changes Using Extreme Gradient Boosting Random Forest and Fragmentation Analysis. Remote Sens. 2023, 15, 5520. https://doi.org/10.3390/rs15235520
Matyukira C, Mhangara P. Land Cover and Landscape Structural Changes Using Extreme Gradient Boosting Random Forest and Fragmentation Analysis. Remote Sensing. 2023; 15(23):5520. https://doi.org/10.3390/rs15235520
Chicago/Turabian StyleMatyukira, Charles, and Paidamwoyo Mhangara. 2023. "Land Cover and Landscape Structural Changes Using Extreme Gradient Boosting Random Forest and Fragmentation Analysis" Remote Sensing 15, no. 23: 5520. https://doi.org/10.3390/rs15235520
APA StyleMatyukira, C., & Mhangara, P. (2023). Land Cover and Landscape Structural Changes Using Extreme Gradient Boosting Random Forest and Fragmentation Analysis. Remote Sensing, 15(23), 5520. https://doi.org/10.3390/rs15235520