Bridging the Gap: Analyzing the Relationship between Environmental Justice Awareness on Twitter and Socio-Environmental Factors Using Remote Sensing and Big Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data Collection and Pre-Processing
2.2.1. Social Sensing Data Derived from Twitter
2.2.2. Remotely Sensed Imagery
Green and Blue Space Observed Remotely
Index | Formula | Citation |
---|---|---|
Normalized Difference Vegetation Index (NDVI) | Kriegler, 1969 [61] | |
Modified Soil Adjusted Vegetation Index (MSAVI) | Qi et al., 1994 [62] | |
Visible Atmospherically Resistant Index (VARI) | Gitelson et al., 2002 [63] | |
Normalized Difference Moisture Index (NDMI) | Gao, 1996 [64] | |
Modified Normalized Difference Water Index (MNDWI) | Xu, 2006 [60] | |
Automated Water Extraction Index (AWEI) | Feyisa et al., 2014 [65] |
Estimating Smoke Distribution Using Imagery
2.2.3. Additional Environmental Factors
2.2.4. Social Vulnerability
2.3. Methodology
2.3.1. EJ Awareness
2.3.2. Inverse Normal Transformation
2.3.3. Regression and Spatial Regression Models
3. Results
3.1. Environmental Justice Awareness
3.2. Impact of Smoke on Tweets
4. Discussion
4.1. Relationships between Environmental Justice, Remotely Sensed Imagery, and Social Sensing
4.2. Big Data, Additional Environmental Factors, and Social Vulnerability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Blue, G.; Bronson, K.; Lajoie-O’Malley, A. Beyond distribution and participation: A scoping review to advance a comprehensive environmental justice framework for impact assessment. Environ. Impact Assess. Rev. 2021, 90, 106607. [Google Scholar] [CrossRef]
- Knoble, C.; Yu, D. Environmental justice: An evolving concept in a dynamic era. Sustain. Dev. 2023, 31, 2091–2108. [Google Scholar] [CrossRef]
- Kolosna, C.; Spurlock, D. Uniting geospatial assessment of neighborhood urban tree canopy with plan and ordinance evaluation for environmental justice. Urban For. Urban Green. 2019, 40, 215–223. [Google Scholar] [CrossRef]
- Pulido, L. Rethinking Environmental Racism: White Privilege and Urban Development in Southern California; Routledge: Abingdon, UK, 2017; pp. 379–407. [Google Scholar]
- Agyeman, J.; Schlosberg, D.; Craven, L.; Matthews, C. Trends and Directions in Environmental Justice: From Inequity to Everyday Life, Community, and Just Sustainabilities. In Annual Review of Environment and Resources; Gadgil, A., Gadgil, T.P., Eds.; Annual Reviews: Palo Alto, CA, USA, 2016; Volume 41, pp. 321–340. [Google Scholar]
- USEPA. Learn about Environmental Justice. Available online: https://www.epa.gov/environmentaljustice/learn-about-environmental-justice (accessed on 10 December 2021).
- NJDEP. Where Are NJ’s Environmental Justice Communities? Available online: https://www.nj.gov/dep/ej/communities-location.html (accessed on 24 August 2022).
- Department of Justice. Justice Department and EPA Officials Focus on Environmental Justice in Newark, New Jersey. 12 July 2011; Office of Public Affairs. Available online: https://www.justice.gov/opa/pr/justice-department-and-epa-officials-focus-environmental-justice-newark-new-jersey (accessed on 3 March 2023).
- Armstrong, K. ‘Hallelujah Moment’: How This City Overcame Its Lead Crisis. The New York Times. 11 August 2021, p. 10.A. Available online: https://www.nytimes.com/2021/08/11/nyregion/newark-lead-pipes-drinking-water.html (accessed on 20 August 2023).
- Shi, T.; Yang, C.; Liu, H.; Wu, C.; Wang, Z.; Li, H.; Zhang, H.; Guo, L.; Wu, G.; Su, F. Mapping lead concentrations in urban topsoil using proximal and remote sensing data and hybrid statistical approaches. Environ. Pollut. 2021, 272, 116041. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Jiménez, A.; Cañada-Torrecilla, R.; Vidal-Domínguez, M.J.; Palacios-García, A.; Martínez-Suárez, P. Assessing environmental justice through potential exposure to air pollution: A socio-spatial analysis in Madrid and Barcelona, Spain. Geoforum 2016, 69, 117–131. [Google Scholar] [CrossRef]
- Zeng, P.; Sun, F.; Shi, D.; Liu, Y.; Zhang, R.; Tian, T.; Che, Y. Integrating anthropogenic heat emissions and cooling accessibility to explore environmental justice in heat-related health risks in Shanghai, China. Landsc. Urban Plan. 2022, 226, 104490. [Google Scholar] [CrossRef]
- Shrestha, R.; Telkmann, K.; Schüz, B.; Pramesh, K.; Shrestha, R.; Karmacharya, B.; Bolte, G. Measuring Environmental Justice in Real Time: A Pilot Study Using Digital Participatory Method in the Global South, Nepal. Int. J. Environ. Res. Public Health 2022, 19, 4752. [Google Scholar] [CrossRef]
- Davide, D.F.; Alessandra, F.; Roberto, P. Distributive justice in environmental health hazards from industrial contamination: A systematic review of national and near-national assessments of social inequalities. Soc. Sci. Med. 2022, 297, 114834. [Google Scholar] [CrossRef]
- Althor, G.; Witt, B. A quantitative systematic review of distributive environmental justice literature: A rich history and the need for an enterprising future. J. Environ. Stud. Sci. 2020, 10, 91–103. [Google Scholar] [CrossRef]
- Cutter, S.L.; Mitchell, J.T.; Scott, M.S. Revealing the Vulnerability of People and Places A Case Study of Georgetown County, South Carolina. Ann. Assoc. Am. Geogr. 2000, 90, 713–737. [Google Scholar] [CrossRef]
- Chakraborty, L.; Rus, H.; Henstra, D.; Thistlethwaite, J.; Scott, D. A place-based socioeconomic status index: Measuring social vulnerability to flood hazards in the context of environmental justice. Int. J. Disaster Risk Reduct. 2020, 43, 101394. [Google Scholar] [CrossRef]
- Maantay, J.; Maroko, A. Mapping Urban Risk: Flood Hazards, Race, & Environmental Justice In New York. Appl. Geogr. 2009, 29, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Sotolongo, M.; Kuhl, L.; Baker, S.H. Using environmental justice to inform disaster recovery: Vulnerability and electricity restoration in Puerto Rico. Environ. Sci. Policy 2021, 122, 59–71. [Google Scholar] [CrossRef]
- Montgomery, M.C.; Chakraborty, J.; Grineski, S.E.; Collins, T.W. An environmental justice assessment of public beach access in Miami, Florida. Appl. Geogr. 2015, 62, 147–156. [Google Scholar] [CrossRef]
- Karasov, O.; Heremans, S.; Külvik, M.; Domnich, A.; Burdun, I.; Kull, A.; Helm, A.; Uuemaa, E. Beyond land cover: How integrated remote sensing and social media data analysis facilitates assessment of cultural ecosystem services. Ecosyst. Serv. 2022, 53, 101391. [Google Scholar] [CrossRef]
- Sinclair, M.; Ghermandi, A.; Signorello, G.; Giuffrida, L.; De Salvo, M. Valuing Recreation in Italy’s Protected Areas Using Spatial Big Data. Ecol. Econ. 2022, 200, 107526. [Google Scholar] [CrossRef]
- Pallathadka, A.; Pallathadka, L.; Rao, S.; Chang, H.; Van Dommelen, D. Using GIS-based spatial analysis to determine urban greenspace accessibility for different racial groups in the backdrop of COVID-19: A case study of four US cities. GeoJournal 2021, 87, 4879–4899. [Google Scholar] [CrossRef]
- Mullen, C.; Flores, A.; Grineski, S.; Collins, T. Exploring the distributional environmental justice implications of an air quality monitoring network in Los Angeles County. Environ. Res. 2022, 206, 112612. [Google Scholar] [CrossRef]
- Shamasunder, B.; Chan, M.; Navarro, S.; Eckel, S.; Johnston, J.E. Mobile daily diaries to characterize stressors and acute health symptoms in an environmental justice neighborhood. Health Place 2022, 76, 102849. [Google Scholar] [CrossRef]
- Banerjee, D.; Steinberg, S.L. Exploring spatial and cultural discourses in environmental justice movements: A study of two communities. J. Rural. Stud. 2015, 39, 41–50. [Google Scholar] [CrossRef]
- He, J.; Martin, A.; Lang, R.; Gross-Camp, N. Explaining success on community forestry through a lens of environmental justice: Local justice norms and practices in China. World Dev. 2021, 142, 105450. [Google Scholar] [CrossRef]
- deSouza, P.N.; Oriama, P.A.; Pedersen, P.P.; Horstmann, S.; Gordillo-Dagallier, L.; Christensen, C.N.; Franck, C.O.; Ayah, R.; Kahn, R.A.; Klopp, J.M.; et al. Spatial variation of fine particulate matter levels in Nairobi before and during the COVID-19 curfew: Implications for environmental justice. Environ. Res. Commun. 2021, 3, 071003. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Bai, K.; Wei, Y.; Xie, Y.; Zhang, Y.; Ou, Y.; Cohen, J.; Zhang, Y.; Peng, Z.; et al. Satellite remote sensing of atmospheric particulate matter mass concentration: Advances, challenges, and perspectives. Fundam. Res. 2021, 1, 240–258. [Google Scholar] [CrossRef]
- Liu, G.; Moore, K.; Su, W.C.; Delclos, G.L.; De Porras, D.G.R.; Yu, B.; Tian, H.Z.; Luo, B.; Lin, S.; Lewis, G.T.; et al. Chemical explosion, COVID-19, and environmental justice: Insights from low-cost air quality sensors. Sci. Total Environ. 2022, 849, 11. [Google Scholar] [CrossRef] [PubMed]
- Venter, Z.S.; Figari, H.; Krange, O.; Gundersen, V. Environmental justice in a very green city: Spatial inequality in exposure to urban nature, air pollution and heat in Oslo, Norway. Sci. Total Environ. 2023, 858, 160193. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Q.; Wang, H.; Du, X.; Huang, H. Community scale livability evaluation integrating remote sensing, surface observation and geospatial big data. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 173–186. [Google Scholar] [CrossRef]
- Kshetri, N.; Rojas Torres, D.C.; Besada, H.; Moros Ochoa, M.A. Big Data as a Tool to Monitor and Deter Environmental Offenders in the Global South: A Multiple Case Study. Sustainability 2020, 12, 10436. [Google Scholar] [CrossRef]
- Boyd, D.; Crawford, K. Critical Questions for Big Data. Inf. Commun. Soc. 2012, 15, 662–679. [Google Scholar] [CrossRef]
- Kitchin, R. The Data Revolution: Big Data, Open Data, Data Infrastructures and Their Consequences; Sage: Thousand Oaks, CA, USA, 2014. [Google Scholar]
- Xu, Y.; Jiang, S.; Li, R.; Zhang, J.; Zhao, J.; Abbar, S.; González, M.C. Unraveling environmental justice in ambient PM2.5 exposure in Beijing: A big data approach. Comput. Environ. Urban Syst. 2019, 75, 12–21. [Google Scholar] [CrossRef]
- Yu, D.; Fang, C. Urban Remote Sensing with Spatial Big Data: A Review and Renewed Perspective of Urban Studies in Recent Decades. Remote Sens. 2023, 15, 1307. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, S.; Yuan, Y.; Zhang, F.; Kang, C.; Kang, Y.; Wang, K. Methods of Social Sensing for Urban Studies. In Urban Remote Sensing; Wiley: Hoboken, NJ, USA, 2021; pp. 71–89. [Google Scholar]
- Deng, X.D.; Liu, P.H.; Liu, X.P.; Wang, R.Y.; Zhang, Y.Y.; He, J.; Yao, Y. Geospatial Big Data: New Paradigm of Remote Sensing Applications. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3841–3851. [Google Scholar] [CrossRef]
- Huang, J.-H.; Floyd, M.F.; Tateosian, L.G.; Aaron Hipp, J. Exploring public values through Twitter data associated with urban parks pre- and post- COVID-19. Landsc. Urban Plan. 2022, 227, 104517. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Zhang, D.; Liu, T.; Yao, S.; Fan, Z.; Xie, Y.; Wang, X.; Li, X. A multi-level investigation of environmental justice on cultural ecosystem services at a national scale based on social media data: A case of accessibility to Five-A ecological attractions in China. J. Clean. Prod. 2021, 286, 124923. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, J.; Wu, X.; Lo, S.M. Escaping to nature during a pandemic: A natural experiment in Asian cities during the COVID-19 pandemic with big social media data. Sci. Total Environ. 2021, 777, 146092. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, L.; Cai, M.; Liu, L.; Wu, H.; Peng, Z. Measuring Urban Poverty Spatial by Remote Sensing and Social Sensing Data: A Fine-Scale Empirical Study from Zhengzhou. Remote Sens. 2023, 15, 381. [Google Scholar] [CrossRef]
- McCaw, Z.R.; Lane, J.M.; Saxena, R.; Redline, S.; Lin, X.H. Operating characteristics of the rank-based inverse normal transformation for quantitative trait analysis in genome-wide association studies. Biometrics 2020, 76, 1262–1272. [Google Scholar] [CrossRef]
- America Counts Staff. New Jersey Population Topped 9 Million in Last Decade. Available online: https://www.census.gov/library/stories/state-by-state/new-jersey-population-change-between-census-decade.html#:~:text=New%20Jersey%20Population%20Topped%209%20Million%20in%20Last%20Decade&text=Through%20interactive%20state%20and%20county,to%202020%20on%20five%20topics (accessed on 21 September 2022).
- Jersey, S.O.N. A Short History of New Jersey. Available online: https://nj.gov/nj/about/history/short_history.html (accessed on 3 September 2022).
- Kahn, D.N.J. Gets Real on Environmental Justice. Politico. 14 June 2022. Available online: https://www.politico.com/newsletters/the-long-game/2022/06/14/ej-makes-inroads-in-nj-00039412 (accessed on 3 September 2022).
- Clark, L. Environmental Racism: NJ Signs Histroic Environmental Justice Legislation. Black Star News. 30 September 2020. Available online: https://www.njlcv.org/news/environmental-racism-nj-signs-historic-environmental-justice-legislation (accessed on 3 September 2022).
- Carvalho, C.; Del Campo, A.G.; De Carvalho Cabral, D. Scales of inequality: The role of spatial extent in environmental justice analysis. Landsc. Urban Plan. 2022, 221, 104369. [Google Scholar] [CrossRef]
- Weigand, M.; Wurm, M.; Dech, S.; Taubenböck, H. Remote Sensing in Environmental Justice Research—A Review. ISPRS Int. J. Geo-Inf. 2019, 8, 20. [Google Scholar] [CrossRef]
- Adams, M.D.O.; Charnley, S. Environmental justice and U.S. Forest Service hazardous fuels reduction: A spatial method for impact assessment of federal resource management actions. Appl. Geogr. 2018, 90, 257–271. [Google Scholar] [CrossRef]
- Debbage, N. Multiscalar spatial analysis of urban flood risk and environmental justice in the Charlanta megaregion, USA. Anthropocene 2019, 28, 100226. [Google Scholar] [CrossRef]
- Shaban, H. Twitter Reveals Its Daily Active User Numbers for the First Time. The Washington Post. 7 February 2019. Available online: https://www.washingtonpost.com/technology/2019/02/07/twitter-reveals-its-daily-active-user-numbers-first-time/ (accessed on 19 February 2023).
- Kearney, M.W. Rtweet: Collecting and Analyzing Twitter Data, version 0.7.0; Michael W. Kearney: Columbia, MO, USA, 2019.
- Barrie, C.; Chun-ting Ho, J. Academictwitter: An R Package to Access the Twitter Academic Research Product Track v2 API Endpoint, version 0.3.1; Christopher Barrie and Justin Chung-ting Ho: Edinburgh, UK, 2021.
- Gaur, J.; Goel, A.K.; Rose, A.; Bhushan, B. Emerging Trends in Machine Learning. In Proceedings of the 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), Kannur, India, 5–6 July 2019; pp. 881–885. [Google Scholar]
- Meng, R.; Xu, B.; Zhao, F.; Dong, Y.; Wang, C.; Sun, R.; Zhou, Y.; Zhou, L.; Gong, S.; Zhang, D. Characterizing the provision and inequality of primary school greenspaces in China’s major cities based on multi-sensor remote sensing. Urban For. Urban Green. 2022, 75, 127670. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Kriegler, F.J.; Malila, W.A.; Nalepka, R.F.; Richardson, W. Preprocessing Transformations and Their Effects on Multispectral Recognition. Remote Sens. Environ. 1969, 5, 97. [Google Scholar]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Shinske, C. Spring Hill Wildfire in Pinelands Reaches 100 Percent Containment. New Jersey Department of Environmental Protection; 1 April 2019. Available online: https://www.nj.gov/dep/newsrel/2019/19_0022.htm (accessed on 18 June 2023).
- Bachmeier, S. Spring Hill Fire in New Jersey. CIMSS Satellite Blog. 31 March 2019. Available online: https://cimss.ssec.wisc.edu/satellite-blog/archives/32668 (accessed on 28 June 2023).
- Zhao, L.; Liu, J.; Peters, S.; Li, J.; Oliver, S.; Mueller, N. Investigating the Impact of Using IR Bands on Early Fire Smoke Detection from Landsat Imagery with a Lightweight CNN Model. Remote Sens. 2022, 14, 3047. [Google Scholar] [CrossRef]
- Dewitz, J.; Maxwell, J. National Land Cover Database. U.S. Geological Survey Communications and Publishing. 20 July 2021. Available online: https://www.usgs.gov/news/technical-announcement/new-land-cover-maps-capture-nearly-two-decades-change-across-us (accessed on 19 February 2023).
- Jersey, S.O.N. NJ Geographic Information Network. Available online: https://njgin.nj.gov/njgin/about/gin/#!/ (accessed on 4 September 2022).
- Alvarez, C.H.; Evans, C.R. Intersectional environmental justice and population health inequalities: A novel approach. Soc. Sci. Med. 2021, 269, 113559. [Google Scholar] [CrossRef] [PubMed]
- Bullard, R. Differential Vulnerabilities: Environmental and Economic Inequality and Government Response to Unnatural Disasters. Soc. Res. Int. Q. 2008, 75, 753–784. [Google Scholar] [CrossRef]
- Hwa Jung, K.; Pitkowsky, Z.; Argenio, K.; Quinn, J.W.; Bruzzese, J.-M.; Miller, R.L.; Chillrud, S.N.; Perzanowski, M.; Stingone, J.A.; Lovinsky-Desir, S. The effects of the historical practice of residential redlining in the United States on recent temporal trends of air pollution near New York City schools. Environ. Int. 2022, 169, 107551. [Google Scholar] [CrossRef]
- Certomà, C.; Martellozzo, F. Cultivating urban justice? A spatial exploration of urban gardening crossing spatial and environmental injustice conditions. Appl. Geogr. 2019, 106, 60–70. [Google Scholar] [CrossRef]
- Daneshvar, F.; Nejadhashemi, A.P.; Zhang, Z.; Herman, M.R.; Shortridge, A.; Marquart-Pyatt, S. Evaluating stream health based environmental justice model performance at different spatial scales. J. Hydrol. 2016, 538, 500–514. [Google Scholar] [CrossRef]
- Liu, W.; Shen, J.; Wei, Y.D.; Chen, W. Environmental justice perspective on the distribution and determinants of polluting enterprises in Guangdong, China. J. Clean. Prod. 2021, 317, 128334. [Google Scholar] [CrossRef]
- Giacalone, M.; Mattera, R.; Nissi, E. Well-being analysis of Italian provinces with spatial principal components. Socio-Econ. Plan. Sci. 2022, 84, 101377. [Google Scholar] [CrossRef]
- Elhorst, J.P. Spatial Econometrics: From Cross-Sectional Data to Spatial Panels; Springer: New York, NY, USA, 2014. [Google Scholar]
- Zimmer, R. NJ Forest Fire: Wildfire Smoke no Longer a Danger to Sensitive Groups; Asbury Park Press: Neptune, NJ, USA, 2019. [Google Scholar]
- Kachmar, K. NJ Forest Fire: 11,600 Acres Have Burned. What’s the Impact? Asbury Park Press: Neptune, NJ, USA, 2019. [Google Scholar]
- Bichao, S. Thousand Acres Burning in Burlington County—Highway Closed. New Jersey 101.5. 30 March 2019. Available online: https://nj1015.com/thousand-acres-burning-in-burlington-county-highway-closed/ (accessed on 28 June 2023).
- Dzhambov, A.M.; Lercher, P.; Browning, M.H.E.M.; Stoyanov, D.; Petrova, N.; Novakov, S.; Dimitrova, D.D. Does greenery experienced indoors and outdoors provide an escape and support mental health during the COVID-19 quarantine? Environ. Res. 2021, 196, 110420. [Google Scholar] [CrossRef]
- Jian, I.Y.; Chan, E.H.W.; Xu, Y.; Owusu, E.K. Inclusive public open space for all: Spatial justice with health considerations. Habitat Int. 2021, 118, 102457. [Google Scholar] [CrossRef]
- Choi, D.A.; Park, K.; Rigolon, A. From XS to XL Urban Nature: Examining Access to Different Types of Green Space Using a ‘Just Sustainabilities’ Framework. Sustainability 2020, 12, 998. [Google Scholar] [CrossRef]
- Hoover, F.A.; Lim, T.C. Examining privilege and power in US urban parks and open space during the double crises of antiblack racism and COVID-19. Socio-Ecol. Pract. Res. 2021, 3, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, K.; Berland, A.; Herrmann, D.L. Green, but not just? Rethinking environmental justice indicators in shrinking cities. Sustain. Cities Soc. 2018, 41, 816–821. [Google Scholar] [CrossRef]
- Buyantuyev, A.; Wu, J. Urbanization alters spatiotemporal patterns of ecosystem primary production: A case study of the Phoenix metropolitan region, USA. J. Arid. Environ. 2009, 73, 512–520. [Google Scholar] [CrossRef]
- Buyantuyev, A.; Wu, J.G. Urbanization diversifies land surface phenology in arid environments: Interactions among vegetation, climatic variation, and land use pattern in the Phoenix metropolitan region, USA. Landsc. Urban Plan. 2012, 105, 149–159. [Google Scholar] [CrossRef]
- Muriithi, F.K.; Yu, D.L.; Robila, S. Vegetation response to intensive commercial horticulture and environmental changes within watersheds in central highlands, Kenya, using AVHRR NDVI data. Giscience Remote Sens. 2016, 53, 1–21. [Google Scholar] [CrossRef]
- Fedschun, T. ‘Major’ New Jersey Forest Fire Closes Roads; Smoke from Blaze Reported in New York City. Fox News. 31 March 2019. Available online: https://www.foxnews.com/us/new-jersey-forest-fire-closes-roads-sends-billowing-smoke-as-far-as-new-york-city (accessed on 19 June 2023).
- Xu, J.; Chi, C.S.F.; Zhu, K. Concern or apathy: The attitude of the public toward urban air pollution. J. Risk Res. 2017, 20, 482–498. [Google Scholar] [CrossRef]
- Jansson, J.; Marell, A.; Nordlund, A. Exploring consumer adoption of a high involvement eco-innovation using value-belief-norm theory. J. Consum. Behav. 2011, 10, 51–60. [Google Scholar] [CrossRef]
- Morelli, X.; Gabet, S.; Rieux, C.; Bouscasse, H.; Mathy, S.; Slama, R. Which decreases in air pollution should be targeted to bring health and economic benefits and improve environmental justice? Environ. Int. 2019, 129, 538–550. [Google Scholar] [CrossRef]
- Blumenberg, E.; Shiki, K. How welfare recipients travel on public transit, and their accessibility to employment outside large urban centers. Transp. Q. 2003, 57, 25–37. [Google Scholar]
- Hess, D.B. Access to employment for adults in poverty in the Buffalo-Niagara region. Urban Stud. 2005, 42, 1177–1200. [Google Scholar] [CrossRef]
- McKenzie, B.S. Neighborhood Access to Transit by Race, Ethnicity, and Poverty in Portland, OR. City Community 2013, 12, 134–155. [Google Scholar] [CrossRef]
- Silva, B.N.; Khan, M.; Han, K. Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities. Sustain. Cities Soc. 2018, 38, 697–713. [Google Scholar] [CrossRef]
- Osman, A.M.S. A novel big data analytics framework for smart cities. Futur. Gener. Comp. Syst. 2019, 91, 620–633. [Google Scholar] [CrossRef]
- Yang, J. Big data and the future of urban ecology: From the concept to results. Sci. China-Earth Sci. 2020, 63, 1443–1456. [Google Scholar] [CrossRef]
- Dixon, S. Distribution of Twitter Users Worldwide as of April 2021, by Age Group. Statista. 29 March 2022. Available online: https://www.statista.com/statistics/283119/age-distribution-of-global-twitter-users/ (accessed on 18 June 2023).
- Dixon, S. Distribution of Twitter Users in the United States as of January 2023, by Gender. Statista. 1 March 2023. Available online: https://www.statista.com/statistics/678794/united-states-twitter-gender-distribution/ (accessed on 18 June 2023).
- Twitter. Filtering Tweets by Location. Available online: https://developer.twitter.com/en/docs/tutorials/filtering-tweets-by-location (accessed on 18 June 2023).
- Saegner, T.; Austys, D. Forecasting and Surveillance of COVID-19 Spread Using Google Trends: Literature Review. Int. J. Environ. Res. Public Health 2022, 19, 12394. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kim, Y. Global regionalization of heat environment quality perception based on K-means clustering and Google trends data. Sustain. Cities Soc. 2023, 96, 104710. [Google Scholar] [CrossRef]
- Dabbous, A.; Horn, M.; Croutzet, A. Measuring environmental awareness: An analysis using google search data. J. Environ. Manag. 2023, 346, 118984. [Google Scholar] [CrossRef]
- Mavragani, A.; Ochoa, G.; Tsagarakis, K.P. Assessing the Methods, Tools, and Statistical Approaches in Google Trends Research: Systematic Review. J. Med. Internet Res. 2018, 20, e270. [Google Scholar] [CrossRef]
List of Environmental Justice Terms | |||||
---|---|---|---|---|---|
access | eatlocalgrown | groups | lakecommunity | pollution | underwater |
air | economic | hardwork | land | prework | urban |
climate | energy | health | local | public | veganfood |
community | environment | healthier | locally | quality | water |
communityoutreach | environmental | healthy | localmusic | risk | waterfall |
communityservice | food | healthyfood | management | seafood | waterfront |
development | foodie | healthymeals | mgfoodsafety | shoplocal | waterside |
difference | foodphotography | human | njfood | social | work |
different | foodsafetyisaboutpeople | impact | njfoodie | socialize | worker |
differentandable | foodsofinstagram | impactinglives | nofarmsnofood | stillwater | working |
differently | gatedcommunity | issue | people | superfoods | workingdjs |
dowork | global | issues | poetrycommunity | sustainability | writingcommunity |
drinklocal | green | justice | policy | system |
Variable | Measure Used for Each Block Group or Tract |
---|---|
Contaminated Sites | Distance to Nearest |
Flood Zones | Percentage of Total Area |
PM2.5 | Mean Annual Concentration (μg/m3 LC) |
Green Space | Mean Value |
Blue Space | Mean Value |
Urban Level (LULC) | Percentage of Total Area |
Transit Stations | Count within 0.5 Miles |
AFV Fueling Stations | Distance to Nearest |
Variable | Population from which Data was Drawn |
---|---|
Black or African American | General Population |
Hispanic or Latino | General Population |
With Individual(s) 65 and Over | Households |
Education Below High School Graduate | Population 25 Years and Older |
Median Income | Households |
With a Disability | Population 20 to 64 Years Old |
Coefficient | Estimate | Std. Error | t-Value | p-Value |
---|---|---|---|---|
Intercept | 2.3500 | 1.28200 | 1.833 | 0.06716. |
Black or African American | −0.5229 | 0.18260 | −2.864 | 0.00428 ** |
Hispanic or Latino | −0.5267 | 0.26660 | −1.976 | 0.04851 * |
With Individual(s) 65 and Over | −4.2780 | 1.39800 | −3.061 | 0.00227 ** |
Quadratic—With Individual(s) 65 and Over | 5.3940 | 2.23300 | 2.416 | 0.01589 * |
Education Below High School Graduate | −1.0250 | 0.59560 | −1.720 | 0.08577 † |
With a Disability | −2.4510 | 1.56800 | −1.563 | 0.11837 |
Quadratic—With a Disability | 9.6370 | 5.12700 | 1.880 | 0.06048 † |
Median Income | −1.43 × 10−6 | 1.175 × 10−6 | −1.218 | 0.22349 |
Contaminated Sites | 1.89 × 10−5 | 1.535 × 10−5 | 1.230 | 0.219 |
Flood Zones | −0.1567 | 0.19920 | −0.786 | 0.43193 |
PM2.5 | −0.1020 | 0.17120 | −0.596 | 0.55153 |
Green Space (NDMI) | −9.9120 | 2.07700 | −4.772 | 0.00000213 *** |
Transit Stations | 0.0020 | 0.00107 | 1.892 | 0.05887 † |
Urban Level (LULC) | 0.2848 | 0.17300 | 1.647 | 0.10001 |
Blue Space (MNDWI) | −1.6010 | 1.76700 | −0.906 | 0.36516 |
AFV Fueling Stations | −9.93 × 10−5 | 2.020 × 10−5 | −4.915 | 0.00000105 *** |
Coefficient | Estimate | Std. Error | t-Value | p-Value |
---|---|---|---|---|
Intercept | 2.1371 | 1.60720 | 1.3297 | 0.1836151 |
Black or African American | −0.6967 | 0.20554 | −3.3896 | 0.0006999 *** |
Hispanic or Latino | −0.7503 | 0.28379 | −2.6438 | 0.0081972 ** |
With Individual(s) 65 and Over | −2.7615 | 1.40550 | −1.9647 | 0.0494483 * |
Quadratic—With Individual(s) 65 and Over | 3.3028 | 2.21300 | 1.4924 | 0.1355912 |
Education Below High School Graduate | −0.9161 | 0.61025 | −1.5011 | 0.1333302 |
With a Disability | −2.6050 | 1.56700 | −1.6624 | 0.0964372. |
Quadratic—With a Disability | 9.7751 | 4.98610 | 1.9605 | 0.0499424 * |
Median Income | −2.72 × 10−6 | 1.2129 × 10−6 | −2.2391 | 0.0251519 * |
Contaminated Sites | 2.00 × 10−5 | 1.8002 × 10−5 | 1.1127 | 0.2658403 |
Flood Zones | −0.1600 | 0.21251 | −0.7527 | 0.4516273 |
PM2.5 | −0.0731 | 0.21568 | −0.3391 | 0.7345236 |
Green Space (NDMI) | −11.3270 | 2.20140 | −5.1456 | 0.0000002667 *** |
Transit Stations | 0.0027 | 0.00118 | 2.2763 | 0.0228305 * |
Urban Level (LULC) | 0.1850 | 0.19290 | 0.9589 | 0.3376311 |
Blue Space (MNDWI) | −2.3341 | 1.89260 | −1.2333 | 0.217457 |
AFV Fueling Stations | −9.55 × 10−5 | 2.2798 × 10−5 | −4.1876 | 0.00002819 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knoble, C.; Yu, D. Bridging the Gap: Analyzing the Relationship between Environmental Justice Awareness on Twitter and Socio-Environmental Factors Using Remote Sensing and Big Data. Remote Sens. 2023, 15, 5510. https://doi.org/10.3390/rs15235510
Knoble C, Yu D. Bridging the Gap: Analyzing the Relationship between Environmental Justice Awareness on Twitter and Socio-Environmental Factors Using Remote Sensing and Big Data. Remote Sensing. 2023; 15(23):5510. https://doi.org/10.3390/rs15235510
Chicago/Turabian StyleKnoble, Charles, and Danlin Yu. 2023. "Bridging the Gap: Analyzing the Relationship between Environmental Justice Awareness on Twitter and Socio-Environmental Factors Using Remote Sensing and Big Data" Remote Sensing 15, no. 23: 5510. https://doi.org/10.3390/rs15235510
APA StyleKnoble, C., & Yu, D. (2023). Bridging the Gap: Analyzing the Relationship between Environmental Justice Awareness on Twitter and Socio-Environmental Factors Using Remote Sensing and Big Data. Remote Sensing, 15(23), 5510. https://doi.org/10.3390/rs15235510