A Dual-Attention Deep Discriminative Domain Generalization Model for Hyperspectral Image Classification
Abstract
:1. Introduction
- We propose a novel dual-attention deep discriminative domain generalization model for HSI classification, which considers the large intra-class variance, high interclass similarity, and heterogeneous spatial and spectral information present in HSIs.
- We develop a novel dual-attention module to effectively extract coarse-grained and fine-grained spatial texture features and important spectral features.
- We further design a deep discriminative feature learning module, incorporating feature discrimination learning and class discrimination learning. Firstly, to learn the discriminative features, contrastive regularization is implemented to separate the inter-class samples and compact intra-class samples as much as possible. Then, two independent classifiers are designed to further learn class discriminative features.
- Extensive experiments have been carried out on the three standard hyperspectral image classification datasets Houston, Pavia, and GID. Compared with the state-of-the-art methods, our model achieves optimal results.
2. Related Works
2.1. Domain Generalization
2.2. Attention Mechanism
2.3. Contrastive Learning
3. Methods
3.1. Dual-Attention Feature Learning
3.2. Deep Discriminative Feature Learning
3.3. Training Process
4. Experiments
4.1. Datasets and Evaluation Metrics
4.2. Implementation Details
4.3. Comparison with the State-of-the-Art Methods
4.4. Ablation Experiments
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DG | Domain Generalization |
DA | Domain Adaptation |
DAD3GM | Dual-Attention Deep Discriminative Domain Generalization Framework |
DAFL | Dual-Attention Feature Learning |
DDFL | Deep Discriminative Feature Learning |
CNN | Convolutional Neural Network |
MMD | Minimize Maximum Mean Discrepancy |
AdaIn | Adaptive Instance Normalization |
MHEA | Multi-Head External Attention |
MSSA | Multi-Scale Self-Attention |
MCD | Maximum Classifier Discrepancy |
UP | University of Pavia |
PC | Pavia Center |
KC | Kappa Coefficient |
OA | Overall Accuracy |
CA | Class-Specific Accuracy |
T-SNE | T-Distributed Stochastic Neighbor Embedding |
References
- Ahmad, M.; Shabbir, S.; Roy, S.K.; Hong, D.; Wu, X.; Yao, J.; Khan, A.M.; Mazzara, M.; Distefano, S.; Chanussot, J. Hyperspectral Image Classification—Traditional to Deep Models: A Survey for Future Prospects. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 968–999. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Yan, Y. Unlocking the Potential of Data Augmentation in Contrastive Learning for Hyperspectral Image Classification. Remote Sens. 2023, 15, 3123. [Google Scholar] [CrossRef]
- Guan, P.; Lam, E.Y. Cross-Domain Contrastive Learning for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5528913. [Google Scholar] [CrossRef]
- Chao, X.; Li, Y. Semisupervised Few-Shot Remote Sensing Image Classification Based on KNN Distance Entropy. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 8798–8805. [Google Scholar] [CrossRef]
- Chen, G.; Krzyzak, A.; Qian, S. Hyperspectral imagery classification with minimum noise fraction, 2D spatial filtering and SVM. Int. J. Wavelets Multiresolution Inf. Process. 2022, 20, 2250025. [Google Scholar] [CrossRef]
- Zhu, X.; Li, N.; Pan, Y. Optimization Performance Comparison of Three Different Group Intelligence Algorithms on a SVM for Hyperspectral Imagery Classification. Remote Sens. 2019, 11, 734. [Google Scholar] [CrossRef]
- Yu, C.; Wang, F.; Shao, Z.; Sun, T.; Wu, L.; Xu, Y. DSformer: A Double Sampling Transformer for Multivariate Time Series Long-term Prediction. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, CIKM 2023, Birmingham, UK, 21–25 October 2023; pp. 3062–3072. [Google Scholar]
- Dong, Y.; Liu, Q.; Du, B.; Zhang, L. Weighted Feature Fusion of Convolutional Neural Network and Graph Attention Network for Hyperspectral Image Classification. IEEE Trans. Image Process. 2022, 31, 1559–1572. [Google Scholar] [CrossRef]
- Bai, J.; Wen, Z.; Xiao, Z.; Ye, F.; Zhu, Y.; Alazab, M.; Jiao, L. Hyperspectral Image Classification Based on Multibranch Attention Transformer Networks. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5535317. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, W.; Sun, W.; Tao, R.; Du, Q. Single-Source Domain Expansion Network for Cross-Scene Hyperspectral Image Classification. IEEE Trans. Image Process. 2023, 32, 1498–1512. [Google Scholar] [CrossRef]
- Zhai, X.; Liu, J.; Sun, S. A Two-Branch Network Based on Pixel-Pair and Spatial Patch Model for Hyperspectral Image Classification. In Proceedings of the International Conference on Communication Technology, ICCT, Nanjing, China, 11–14 November 2022; pp. 1622–1626. [Google Scholar]
- Peng, Y.; Liu, Y.; Tu, B.; Zhang, Y. Convolutional Transformer-Based Few-Shot Learning for Cross-Domain Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 1335–1349. [Google Scholar] [CrossRef]
- Wang, W.; Liu, F.; Liu, J.; Xiao, L. Cross-Domain Few-Shot Hyperspectral Image Classification With Class-Wise Attention. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5502418. [Google Scholar] [CrossRef]
- Xu, Z.; Wei, W.; Zhang, L.; Nie, J. Source-Free Domain Adaptation for Cross-Scene Hyperspectral Image Classification. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 3576–3579. [Google Scholar]
- Chen, S.; Zhan, R.; Wang, W.; Zhang, J. Domain Adaptation for Semi-Supervised Ship Detection in SAR Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4507405. [Google Scholar] [CrossRef]
- Lasloum, T.; Alhichri, H.; Bazi, Y.; Alajlan, N. SSDAN: Multi-Source Semi-Supervised Domain Adaptation Network for Remote Sensing Scene Classification. Remote Sens. 2021, 13, 3861. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, Y.; Kong, Y.; Wang, X. Soft Instance-Level Domain Adaptation with Virtual Classifier for Unsupervised Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5509013. [Google Scholar] [CrossRef]
- Yu, C.; Liu, C.; Song, M.; Chang, C. Unsupervised Domain Adaptation with Content-Wise Alignment for Hyperspectral Imagery Classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 5511705. [Google Scholar] [CrossRef]
- Tang, X.; Li, C.; Peng, Y. Unsupervised Joint Adversarial Domain Adaptation for Cross-Scene Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5536415. [Google Scholar] [CrossRef]
- Zhou, K.; Liu, Z.; Qiao, Y.; Xiang, T.; Loy, C.C. Domain Generalization: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 4396–4415. [Google Scholar] [CrossRef]
- Wang, Z.; Loog, M.; van Gemert, J. Respecting Domain Relations: Hypothesis Invariance for Domain Generalization. In Proceedings of the 25th International Conference on Pattern Recognition, ICPR, Milan, Italy, 10–15 January 2020; pp. 9756–9763. [Google Scholar]
- Shao, R.; Lan, X.; Li, J.; Yuen, P.C. Multi-Adversarial Discriminative Deep Domain Generalization for Face Presentation Attack Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 10023–10031. [Google Scholar]
- Wang, W.; Liu, P.; Zheng, H.; Ying, R.; Wen, F. Domain Generalization for Face Anti-Spoofing via Negative Data Augmentation. IEEE Trans. Inf. Forensics Secur. 2023, 18, 2333–2344. [Google Scholar] [CrossRef]
- Wang, M.; Yuan, J.; Qian, Q.; Wang, Z.; Li, H. Semantic Data Augmentation based Distance Metric Learning for Domain Generalization. In Proceedings of the 30th International Conference on Multimedia, (ACM), Lisbon, Portugal, 10–14 October 2022; pp. 3214–3223. [Google Scholar]
- Xu, Q.; Zhang, R.; Zhang, Y.; Wang, Y.; Tian, Q. A Fourier-Based Framework for Domain Generalization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 14383–14392. [Google Scholar]
- Chen, J.; Gao, Z.; Wu, X.; Luo, J. Meta-causal Learning for Single Domain Generalization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023. [Google Scholar]
- Chen, K.; Zhuang, D.; Chang, J.M. Discriminative adversarial domain generalization with meta-learning based cross-domain validation. Neurocomputing 2022, 467, 418–426. [Google Scholar] [CrossRef]
- Shu, Y.; Cao, Z.; Wang, C.; Wang, J.; Long, M. Open Domain Generalization with Domain-Augmented Meta-Learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 9624–9633. [Google Scholar]
- Mesbah, Y.; Ibrahim, Y.Y.; Khan, A.M. Domain Generalization Using Ensemble Learning. In Intelligent Systems and Applications: Proceedings of the 2021 Intelligent Systems Conference (IntelliSys), Virtual, 2–3 September 2011; Springer: Cham, Switzreland, 2021; Volume 294, pp. 236–247. [Google Scholar]
- Lee, K.; Kim, S.; Kwak, S. Cross-domain Ensemble Distillation for Domain Generalization. In Proceedings of the Computer Vision European Conference (ECCV), Tel Aviv, Israel, 23–27 October 2022; Volume 13685, pp. 1–20. [Google Scholar]
- Arpit, D.; Wang, H.; Zhou, Y.; Xiong, C. Ensemble of Averages: Improving Model Selection and Boosting Performance in Domain Generalization. Adv. Neural Inf. Proc. Syst. 2022, 35, 8265–8277. [Google Scholar]
- Wang, X.; Tan, K.; Pan, C.; Ding, J.; Liu, Z.; Han, B. Active Deep Feature Extraction for Hyperspectral Image Classification Based on Adversarial Learning. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6011505. [Google Scholar] [CrossRef]
- Gretton, A.; Borgwardt, K.M.; Rasch, M.J.; Schölkopf, B.; Smola, A.J. A Kernel Method for the Two-Sample-Problem. Adv. Neural Inf. Process. Syst. 2006, 35, 513–520. [Google Scholar]
- Guo, M.; Xu, T.; Liu, J.; Liu, Z.; Jiang, P.; Mu, T.; Zhang, S.; Martin, R.R.; Cheng, M.; Hu, S. Attention mechanisms in computer vision: A survey. Comput. Vis. Media 2022, 8, 331–368. [Google Scholar] [CrossRef]
- Qin, Z.; Zhang, P.; Wu, F.; Li, X. FcaNet: Frequency Channel Attention Networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 763–772. [Google Scholar]
- Ding, Y.; Zhang, Z.; Zhao, X.; Hong, D.; Cai, W.; Yang, N.; Wang, B. Multi-scale receptive fields: Graph attention neural network for hyperspectral image classification. Expert Syst. Appl. 2023, 223, 119858. [Google Scholar] [CrossRef]
- Zhao, J.; Hu, L.; Huang, L.; Wang, C.; Liang, D. MSRA-G: Combination of multi-scale residual attention network and generative adversarial networks for hyperspectral image classification. Eng. Appl. Artif. Intell. 2023, 121, 106017. [Google Scholar] [CrossRef]
- Paoletti, M.E.; Moreno-Álvarez, S.; Xue, Y.; Haut, J.M.; Plaza, A. AAtt-CNN: Automatic Attention-Based Convolutional Neural Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5511118. [Google Scholar] [CrossRef]
- Shi, C.; Sun, J.; Wang, T.; Wang, L. Hyperspectral Image Classification Based on a 3D Octave Convolution and 3D Multiscale Spatial Attention Network. Remote Sens. 2023, 15, 257. [Google Scholar] [CrossRef]
- Pan, H.; Zhao, X.; Ge, H.; Liu, M.; Shi, C. Hyperspectral Image Classification Based on Multiscale Hybrid Networks and Attention Mechanisms. Remote Sens. 2023, 15, 2720. [Google Scholar] [CrossRef]
- Albelwi, S. Survey on Self-Supervised Learning: Auxiliary Pretext Tasks and Contrastive Learning Methods in Imaging. Entropy 2022, 24, 551. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, F.; Chen, Z.; Wu, Y.; Hao, J.; Chen, G.; Heng, P. Contrastive-ACE: Domain Generalization through Alignment of Causal Mechanisms. IEEE Trans. Image Process. 2023, 32, 235–250. [Google Scholar] [CrossRef]
- Ou, X.; Liu, L.; Tan, S.; Zhang, G.; Li, W.; Tu, B. A Hyperspectral Image Change Detection Framework With Self-Supervised Contrastive Learning Pretrained Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 7724–7740. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, Z.; Wang, D.; Wang, Z.J. Cross-Domain Few-Shot Contrastive Learning for Hyperspectral Images Classification. IEEE Trans. Geosci. Remote Sens. 2022, 19, 5514505. [Google Scholar] [CrossRef]
- Jia, S.; Zhou, X.; Jiang, S.; He, R. Collaborative Contrastive Learning for Hyperspectral and LiDAR Classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5507714. [Google Scholar] [CrossRef]
- Hang, R.; Qian, X.; Liu, Q. Cross-Modality Contrastive Learning for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5532812. [Google Scholar] [CrossRef]
- Oh, Y.; Ye, J.C. CXR Segmentation by AdaIN-Based Domain Adaptation and Knowledge Distillation. In Proceedings of the Computer Vision European Conference, (ECCV), Tel Aviv, Israel, 23–27 October 2022; Springer: Cham, Switzerland, 2022; Volume 13681, pp. 627–643. [Google Scholar]
- Saito, K.; Watanabe, K.; Ushiku, Y.; Harada, T. Maximum Classifier Discrepancy for Unsupervised Domain Adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3723–3732. [Google Scholar]
- Yu, C.; Wang, J.; Chen, Y.; Huang, M. Transfer Learning with Dynamic Adversarial Adaptation Network. In Proceedings of the IEEE International Conference on Data Mining, ICDM, Beijing, China, 8–11 November 2019; pp. 778–786. [Google Scholar]
- Zhu, Y.; Zhuang, F.; Wang, J.; Chen, J.; Shi, Z.; Wu, W.; He, Q. Multi-representation adaptation network for cross-domain image classification. Neural Netw. 2019, 119, 214–221. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhuang, F.; Wang, J.; Ke, G.; Chen, J.; Bian, J.; Xiong, H.; He, Q. Deep Subdomain Adaptation Network for Image Classification. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Gao, K.; Cao, J.; Huang, Z.; Weng, Y.; Mi, X.; Yu, Z.; Li, X.; Xia, B. Progressive Domain Expansion Network for Single Domain Generalization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Nashville, TN, USA, 20–25 June 2021; pp. 224–233. [Google Scholar]
- He, X.; Chen, Y.; Ghamisi, P. Heterogeneous Transfer Learning for Hyperspectral Image Classification Based on Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3246–3263. [Google Scholar] [CrossRef]
- Nam, H.; Lee, H.; Park, J.; Yoon, W.; Yoo, D. Reducing Domain Gap by Reducing Style Bias. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Nashville, TN, USA, 20–25 June 2021; pp. 8690–8699. [Google Scholar]
- Wang, Z.; Luo, Y.; Qiu, R.; Huang, Z.; Baktashmotlagh, M. Learning to Diversify for Single Domain Generalization. In Proceedings of the IEEE/CVF International Conference on Computer Vision, ICCV, Montreal, QC, Canada, 10–17 October 2021; pp. 814–823. [Google Scholar]
- Yokoya, N.; Ghamisi, P.; Xia, J.; Sukhanov, S.; Heremans, R.; Tankoyeu, I.; Bechtel, B.; Saux, B.L.; Moser, G.; Tuia, D. Open Data for Global Multimodal Land Use Classification: Outcome of the 2017 IEEE GRSS Data Fusion Contest. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1363–1377. [Google Scholar] [CrossRef]
- Tong, X.Y.; Xia, G.S.; Lu, Q.; Shen, H.; Li, S.; You, S.; Zhang, L. Land-Cover Classification with High-Resolution Remote Sensing Images Using Transferable Deep Models. Remote Sens. Environ. 2020, 237, 111322. [Google Scholar] [CrossRef]
- Warrens, M.J. Kappa coefficients for dichotomous-nominal classifications. Adv. Data Anal. Classif. 2021, 15, 193–208. [Google Scholar] [CrossRef]
- Fan, X.; Lu, Y.; Liu, Y.; Li, T.; Xun, S.; Zhao, X. Validation of Multiple Soil Moisture Products over an Intensive Agricultural Region: Overall Accuracy and Diverse Responses to Precipitation and Irrigation Events. Remote Sens. 2022, 14, 3339. [Google Scholar] [CrossRef]
- Rauber, P.E.; Falcão, A.X.; Telea, A.C. Visualizing Time-Dependent Data Using Dynamic t-SNE. In Proceedings of the 18th Eurographics Conference on Visualization, EuroVis 2016—Short Papers, Groningen, The Netherlands, 6–10 June 2016; pp. 73–77. [Google Scholar]
- Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; Devito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic differentiation in PyTorch. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
No. | Class | Houston13 | Houston18 |
---|---|---|---|
1 | grass healthy | 345 | 1353 |
2 | grass stressed | 365 | 4888 |
3 | trees | 365 | 2766 |
4 | water | 285 | 22 |
5 | residential buildings | 319 | 5347 |
6 | non-residential buildings | 408 | 32,459 |
7 | road | 443 | 6365 |
Total | 2530 | 53,200 |
No. | Class | UP | PC |
---|---|---|---|
1 | tree | 3064 | 7598 |
2 | asphalt | 6631 | 9248 |
3 | brick | 3682 | 2685 |
4 | bitumen | 1330 | 7287 |
5 | shadow | 947 | 2863 |
6 | meadow | 18,649 | 3090 |
7 | bare soil | 5029 | 6584 |
Total | 39,332 | 39,355 |
No. | Class | GID-nc | GID-wh |
---|---|---|---|
1 | rural residential | 5495 | 4729 |
2 | irrigate land | 3643 | 5643 |
3 | garden land | 6171 | 6216 |
4 | river | 2858 | 11,558 |
5 | lake | 5172 | 2666 |
Total | 23,339 | 30,812 |
Class | DANN | HTCNN | DSAN | MRAN | PDEN | SagNet | LDSDG | SDEnet | DAD3GM |
---|---|---|---|---|---|---|---|---|---|
1 | 68.29 | 11.83 | 62.31 | 41.02 | 46.49 | 25.79 | 10.13 | 24.69 | 42.02 |
2 | 77.80 | 70.11 | 77.50 | 76.94 | 77.60 | 62.79 | 62.97 | 84.98 | 76.90 |
3 | 67.50 | 54.99 | 74.55 | 65.91 | 59.73 | 48.66 | 60.81 | 59.65 | 63.52 |
4 | 100 | 54.55 | 100 | 100 | 100 | 81.82 | 81.82 | 100 | 100 |
5 | 47.69 | 55.60 | 73.39 | 36.90 | 49.62 | 59.57 | 45.65 | 62.33 | 53.79 |
6 | 79.49 | 92.85 | 86.84 | 82.68 | 84.98 | 89.28 | 89.22 | 90.54 | 93.01 |
7 | 45.12 | 46.47 | 46.33 | 56.43 | 64.21 | 34.99 | 44.15 | 57.45 | 52.70 |
OA (%) | 70.45 | 77.67 | 78.21 | 72.11 | 75.40 | 73.01 | 74.23 | 79.96 | 84.25 |
KC (k) | 53.86 | 60.18 | 64.10 | 55.03 | 55.87 | 55.29 | 55.42 | 65.15 | 68.07 |
Class | DANN | HTCNN | DSAN | MRAN | PDEN | SagNet | LDSDG | SDEnet | DAD3GM |
---|---|---|---|---|---|---|---|---|---|
1 | 71.98 | 96.06 | 93.93 | 59.16 | 85.93 | 98.35 | 91.09 | 89.93 | 81.82 |
2 | 78.98 | 57.70 | 79.80 | 85.15 | 88.56 | 59.76 | 73.51 | 81.22 | 85.19 |
3 | 19.37 | 2.76 | 53.97 | 46.18 | 61.34 | 5.40 | 2.23 | 72.77 | 87.00 |
4 | 58.67 | 93.25 | 75.75 | 69.58 | 85.49 | 87.03 | 71.72 | 82.54 | 86.76 |
5 | 70.87 | 89.94 | 99.44 | 64.58 | 87.95 | 93.19 | 71.04 | 84.81 | 86.20 |
6 | 83.07 | 70.97 | 74.43 | 89.22 | 79.26 | 49.81 | 57.12 | 75.11 | 80.29 |
7 | 55.59 | 42.28 | 67.31 | 60.10 | 64.75 | 57.94 | 78.13 | 78.74 | 78.52 |
OA (%) | 66.71 | 68.31 | 78.21 | 69.01 | 80.27 | 69.28 | 70.88 | 81.94 | 83.53 |
KC (k) | 59.76 | 62.17 | 74.10 | 63.04 | 76.81 | 63.04 | 64.06 | 78.33 | 80.29 |
Class | DANN | HTCNN | DSAN | MRAN | PDEN | SagNet | LDSDG | SDEnet | DAD3GM |
---|---|---|---|---|---|---|---|---|---|
1 | 93.93 | 27.00 | 94.99 | 36.79 | 79.47 | 37.64 | 22.71 | 91.06 | 92.66 |
2 | 87.67 | 100.00 | 91.33 | 78.93 | 93.64 | 98.60 | 76.93 | 35.18 | 100.00 |
3 | 11.13 | 0.00 | 11.89 | 74.39 | 2.48 | 1.87 | 99.29 | 78.39 | 85.45 |
4 | 77.85 | 92.63 | 90.21 | 69.06 | 81.91 | 89.40 | 88.13 | 95.10 | 86.76 |
5 | 71.01 | 0.00 | 71.08 | 74.83 | 82.52 | 45.01 | 67.25 | 88.41 | 68.30 |
OA (%) | 68.81 | 56.82 | 73.22 | 67.03 | 80.27 | 61.08 | 76.11 | 77.95 | 80.63 |
KC (k) | 58.04 | 42.73 | 64.99 | 57.37 | 76.81 | 48.11 | 68.31 | 72.91 | 75.73 |
Models | DAFL | DDFL | OA (%) | KC (k) |
---|---|---|---|---|
Baseline | - | - | 80.35 | 76.38 |
Model A | ✓ | - | 82.90 | 79.47 |
DAD3GM(ours) | ✓ | ✓ | 83.53 | 80.29 |
Class | d_se = 16 | d_se = 32 | d_se = 64 | d_se = 128 |
---|---|---|---|---|
1 | 86.30 | 84.43 | 81.82 | 91.22 |
2 | 83.10 | 87.47 | 85.19 | 85.87 |
3 | 74.15 | 42.94 | 87.00 | 75.01 |
4 | 84.51 | 83.44 | 86.76 | 85.00 |
5 | 85.54 | 81.31 | 86.20 | 86.06 |
6 | 76.86 | 76.54 | 80.29 | 73.69 |
7 | 75.29 | 89.47 | 78.52 | 74.16 |
OA (%) | 81.75 | 82.13 | 83.53 | 83.10 |
KC (k) | 78.09 | 78.42 | 80.29 | 79.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Wang, X.; Wang, B.; Wang, L.; Liu, W.; Li, S. A Dual-Attention Deep Discriminative Domain Generalization Model for Hyperspectral Image Classification. Remote Sens. 2023, 15, 5492. https://doi.org/10.3390/rs15235492
Zhao Q, Wang X, Wang B, Wang L, Liu W, Li S. A Dual-Attention Deep Discriminative Domain Generalization Model for Hyperspectral Image Classification. Remote Sensing. 2023; 15(23):5492. https://doi.org/10.3390/rs15235492
Chicago/Turabian StyleZhao, Qingjie, Xin Wang, Binglu Wang, Lei Wang, Wangwang Liu, and Shanshan Li. 2023. "A Dual-Attention Deep Discriminative Domain Generalization Model for Hyperspectral Image Classification" Remote Sensing 15, no. 23: 5492. https://doi.org/10.3390/rs15235492
APA StyleZhao, Q., Wang, X., Wang, B., Wang, L., Liu, W., & Li, S. (2023). A Dual-Attention Deep Discriminative Domain Generalization Model for Hyperspectral Image Classification. Remote Sensing, 15(23), 5492. https://doi.org/10.3390/rs15235492