Assessment of Seven Atmospheric Correction Processors for the Sentinel-2 Multi-Spectral Imager over Lakes in Qinghai Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Image Data
2.2.2. In Situ Data
2.3. Method
2.3.1. Spectral Classification of 35 Water Bodies in Qinghai Province
2.3.2. Seven Atmospheric Correction Processors
2.3.3. Accuracy Evaluation Method for Atmospheric Correction Processors
- Square of the correlation coefficient (R2): R2 represents the consistency between the processor-estimated and in situ results. The higher the R2 value, the higher the correlation between the processor-estimated results and the in situ results.
- 2.
- Intercept (I) and slope (S): The closer the slope and intercept of the linear fit are to 1 and 0, respectively, the more suitable is the processor for estimating in situ data.
- 3.
- Bias (Bias): This Bias can be used to judge the degree of overestimation or underestimation of the processor-estimated results relative to the in situ data. A positive value indicates that the in situ data are overestimated compared with the processor-corrected result, whereas a negative value indicates an underestimation.
- 4.
- Root-mean-square error (RMSE) and mean relative error (MRE): RMSE can be used to measure the absolute deviation between the processor estimates and the in situ data, whereas MRE represents the relative difference of each processor estimate.
3. Results
3.1. Classification Results for 35 Water Bodies in Qinghai Province
3.2. Accuracy Evaluation of Seven Atmospheric Correction Processors for the Different Classifications of Water Bodies
3.3. Atmospheric Correction Results of 35 Water Bodies
4. Discussion
4.1. Suitability Analysis of Different Types of Water Body Atmospheric Correction Algorithms
4.2. Applicability Analysis of Different Atmospheric Correction Processors
5. Conclusions
- (1)
- The Sen2Cor, POLYMER, and ACOLITE processors exhibited a good performance for Dabusun Lake. For Qinghai Lake, the POLYMER, C2XC, and C2RCC processors exhibited a better performance, whereas for the Longyangxia Reservoir, C2XC, ACOLITE, C2RCC, and POLYMER exhibited a good performance.
- (2)
- The Sen2Cor processor performed best for turbid waters, such as the Dabusun Lake, and its performance was poor for clean water. Both the C2XC and C2RCC processors displayed a good performance for clean water bodies, such as the Qinghai Lake and Longyangxia Reservoir, but they were not suitable for turbid waters. The POLYMER processor demonstrated good accuracy for all lake types.
- (3)
- Based on the S3 OLCI image remote sensing reflectance waveform features, Rrs (665 nm) > 0.01 sr−1 are classified as class I lakes (Dabusun Lake is a typical representative), Rrs (665 nm) ≤ 0.01 sr−1 and Rrs (510 nm/560 nm) > 0.8 are classified as class II lakes (Qinghai Lake is a typical representative), and Rrs (665 nm) ≤ 0.01 sr−1 and Rrs (510 nm/560 nm) ≤ 0.8 are classified as class III lakes (Longyangxia Reservoir is a typical representative).
- (4)
- Compared with the Rrs values of the S3 OLCI images, the Rrs values estimated by the POLYMER processor for class II lakes showed a high consistency. The Sen2Cor processor overestimated the results for class I lakes. The C2XC processor slightly underestimated or overestimated the results for class III lakes.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Rrs | reflectance of remote sensing |
ρpath | the atmospheric path reflectance |
ρTOA | the top-of-atmosphere reflectance |
Lu(λ) | the ratio of the upwelling radiance |
Es(λ) | the downwelling irradiance |
Lsky(λ) | the reflectance of the sun and sky glint |
AOT | the aerosol optical thickness |
ACOLITE | Atmospheric Correction for Operational Land Imager ‘lite’ |
iCOR | Image Correction for Atmospheric Effects |
Sen2Cor | Sentinel 2 Atmospheric Correction |
SeaDAS | the SeaWiFS Data Analysis System |
POLYMER | the polynomial-based algorithm applied to MERIS |
C2RCC | Case 2 Regional CoastColour |
C2XC | C2X-COMPLEX |
S2-MSI | Sentinel-2 Multi-Spectral Imager |
S3-OLCI | Sentinel-3 Ocean and Land Colour Instrument |
L2-WFR | Level-2 Water Full Resolution |
References
- Zhang, H.; Yao, X.; Xiao, J.; Wang, Y.; Sha, T.; Zhang, C. A Dataset of Boundaries of the Lakes (≥1.0 Km2) in Qinghai Province in 2020. Sci. Data Bank 2023, 2, 315–327. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, D.; Gong, F.; Xu, Y.; He, X.; Zhang, X.; Fu, D. Evaluating Atmospheric Correction Methods for Sentinel−2 in Low−to−High−Turbidity Chinese Coastal Waters. Remote Sens. 2023, 15, 2353. [Google Scholar] [CrossRef]
- Warren, M.A.; Simis, S.G.H.; Martinez-Vicente, V.; Poser, K.; Bresciani, M.; Alikas, K.; Spyrakos, E.; Giardino, C.; Ansper, A. Assessment of Atmospheric Correction Algorithms for the Sentinel-2A MultiSpectral Imager over Coastal and Inland Waters. Remote Sens. Environ. 2019, 225, 267–289. [Google Scholar] [CrossRef]
- Gordon, H.R. Calibration Requirements and Methodology for Remote Sensors Viewing the Ocean in the Visible. Remote Sens. Environ. 1987, 22, 103–126. [Google Scholar] [CrossRef]
- Gordon, H.R. Atmospheric Correction of Ocean Color Imagery in the Earth Observing System Era. J. Geophys. Res. Atmos. 1997, 102, 17081–17106. [Google Scholar] [CrossRef]
- Mobley, C.; Werdell, J.; Franz, B.; Ahmad, Z.; Bailey, S. Atmospheric Correction for Satellite Ocean Color Radiometry; NASA: Washington, DC, USA, 2016.
- Gordon, H.R.; Wang, M. Retrieval of Water-Leaving Radiance and Aerosol Optical Thickness over the Oceans with SeaWiFS: A Preliminary Algorithm. Appl. Opt. 1994, 33, 443. [Google Scholar] [CrossRef]
- Antoine, D.; Morel, A. A Multiple Scattering Algorithm for Atmospheric Correction of Remotely Sensed Ocean Colour (MERIS Instrument): Principle and Implementation for Atmospheres Carrying Various Aerosols Including Absorbing Ones. Int. J. Remote Sens. 1999, 20, 1875–1916. [Google Scholar] [CrossRef]
- Prieur, L.; Sathyendranath, S. An Optical Classification of Coastal and Oceanic Waters Based on the Specific Spectral Absorption Curves of Phytoplankton Pigments, Dissolved Organic Matter, and Other Particulate Materials1: Optical Classification. Limnol. Oceanogr. 1981, 26, 671–689. [Google Scholar] [CrossRef]
- Moore, G.F.; Aiken, J.; Lavender, S.J. The Atmospheric Correction of Water Colour and the Quantitative Retrieval of Suspended Particulate Matter in Case II Waters: Application to MERIS. Int. J. Remote Sens. 1999, 20, 1713–1733. [Google Scholar] [CrossRef]
- Ruddick, K.G.; Ovidio, F.; Rijkeboer, M. Atmospheric Correction of SeaWiFS Imagery for Turbid Coastal and Inland Waters. Appl. Opt. 2000, 39, 897–912. [Google Scholar] [CrossRef]
- Hu, C.; Carder, K.L.; Muller-Karger, F.E. Atmospheric Correction of SeaWiFS Imagery over Turbid Coastal Waters: A Practical Method. Remote Sens. Environ. 2000, 74, 195–206. [Google Scholar] [CrossRef]
- Wang, M.; Shi, W. The NIR-SWIR Combined Atmospheric Correction Approach for MODIS Ocean Color Data Processing. Opt. Express 2007, 15, 15722–15733. [Google Scholar] [CrossRef]
- He, X.; Bai, Y.; Pan, D.; Tang, J.; Wang, D. Atmospheric Correction of Satellite Ocean Color Imagery Using the Ultraviolet Wavelength for Highly Turbid Waters. Opt. Express 2012, 20, 20754–20770. [Google Scholar] [CrossRef]
- Steinmetz, F.; Ramon, D. Sentinel-2 MSI and Sentinel-3 OLCI Consistent Ocean Colour Products Using POLYMER. In Proceedings of the Conference on Remote Sensing of the Open and Coastal Ocean and Inland Waters, Honolulu, HI, USA, 24–25 September 2018; Volume 10778, p. 107780E. [Google Scholar]
- Steinmetz, F.; Deschamps, P.-Y.; Ramon, D. Atmospheric Correction in Presence of Sun Glint: Application to MERIS. Opt. Express 2011, 19, 9783. [Google Scholar] [CrossRef] [PubMed]
- Schiller, H.; Doerffer, R. Neural Network for Emulation of an Inverse Model Operational Derivation of Case II Water Properties from MERIS Data. Int. J. Remote Sens. 1999, 20, 1735–1746. [Google Scholar] [CrossRef]
- Doerffer, R.; Goryl, P.; Brockmann, C.; Bourg, L. Algorithm Theoretical Basis Document (ATBD) for L2 Processing of MERIS Data of Case 2 Waters, 4th Reprocessing; Brockmann Consult: Hamburg, Germany, 2015. [Google Scholar]
- Callieco, F.; Dell’Acqua, F. A Comparison between Two Radiative Transfer Models for Atmospheric Correction over a Wide Range of Wavelengths. Int. J. Remote Sens. 2011, 32, 1357–1370. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Advantages of High Quality SWIR Bands for Ocean Colour Processing: Examples from Landsat-8. Remote Sens. Environ. 2015, 161, 89–106. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Turbid Wakes Associated with Offshore Wind Turbines Observed with Landsat 8. Remote Sens. Environ. 2014, 145, 105–115. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Atmospheric Correction of Metre-Scale Optical Satellite Data for Inland and Coastal Water Applications. Remote Sens. Environ. 2018, 216, 586–597. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Sensitivity Analysis of the Dark Spectrum Fitting Atmospheric Correction for Metre- and Decametre-Scale Satellite Imagery Using Autonomous Hyperspectral Radiometry. Opt. Express 2020, 28, 29948–29965. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Atmospheric Correction of Sentinel-3/OLCI Data for Mapping of Suspended Particulate Matter and Chlorophyll-a Concentration in Belgian Turbid Coastal Waters. Remote Sens. Environ. 2021, 256, 112284. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Adaptation of the Dark Spectrum Fitting Atmospheric Correction for Aquatic Applications of the Landsat and Sentinel-2 Archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- Sterckx, S.; Knaeps, E.; Ruddick, K. Detection and Correction of Adjacency Effects in Hyperspectral Airborne Data of Coastal and Inland Waters: The Use of the near Infrared Similarity Spectrum. Int. J. Remote Sens. 2011, 32, 6479–6505. [Google Scholar] [CrossRef]
- De Keukelaere, L.; Sterckx, S.; Adriaensen, S.; Knaeps, E.; Reusen, I.; Giardino, C.; Bresciani, M.; Hunter, P.; Neil, C.; Van der Zande, D.; et al. Atmospheric Correction of Landsat-8/OLI and Sentinel-2/MSI Data Using iCOR Algorithm: Validation for Coastal and Inland Waters. Eur. J. Remote Sens. 2018, 51, 525–542. [Google Scholar] [CrossRef]
- Sterckx, S.; Knaeps, S.; Kratzer, S.; Ruddick, K. SIMilarity Environment Correction (SIMEC) Applied to MERIS Data over Inland and Coastal Waters. Remote Sens. Environ. 2015, 157, 96–110. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Sendra, C. Algorithm for Automatic Atmospheric Corrections to Visible and Near-IR Satellite Imagery. Int. J. Remote Sens. 1988, 9, 1357–1381. [Google Scholar] [CrossRef]
- Novoa, S.; Doxaran, D.; Ody, A.; Vanhellemont, Q.; Lafon, V.; Lubac, B.; Gernez, P. Atmospheric Corrections and Multi-Conditional Algorithm for Multi-Sensor Remote Sensing of Suspended Particulate Matter in Low-to-High Turbidity Levels Coastal Waters. Remote Sens. 2017, 9, 61. [Google Scholar] [CrossRef]
- Wang, M.; Bailey, S.W. Correction of Sun Glint Contamination on the SeaWiFS Ocean and Atmosphere Products. Appl. Opt. 2001, 40, 4790–4798. [Google Scholar] [CrossRef]
- Harmel, T.; Chami, M.; Tormos, T.; Reynaud, N.; Danis, P.-A. Sunglint Correction of the Multi-Spectral Instrument (MSI)-SENTINEL-2 Imagery over Inland and Sea Waters from SWIR Bands. Remote Sens. Environ. 2018, 204, 308–321. [Google Scholar] [CrossRef]
- Brockmann, C.; Doerffer, R.; Peters, M.; Kerstin, S.; Embacher, S.; Ruescas, A. Evolution of the C2RCC Neural Network for Sentinel 2 and 3 for the Retrieval of Ocean Colour Products in Normal and Extreme Optically Complex Waters. Living Planet Symp. 2016, 740, 54. [Google Scholar]
- Soriano-González, J.; Urrego, E.P.; Sòria-Perpinyà, X.; Angelats, E.; Alcaraz, C.; Delegido, J.; Ruíz-Verdú, A.; Tenjo, C.; Vicente, E.; Moreno, J. Towards the Combination of C2RCC Processors for Improving Water Quality Retrieval in Inland and Coastal Areas. Remote Sens. 2022, 14, 1124. [Google Scholar] [CrossRef]
- Pereira-Sandoval, M.; Ruescas, A.; Urrego, P.; Ruiz-Verdú, A.; Delegido, J.; Tenjo, C.; Soria-Perpinyà, X.; Vicente, E.; Soria, J.; Moreno, J. Evaluation of Atmospheric Correction Algorithms over Spanish Inland Waters for Sentinel-2 Multi Spectral Imagery Data. Remote Sens. 2019, 11, 1469. [Google Scholar] [CrossRef]
- Katlane, R.; Dupouy, C.; Kilani, B.E.; Berges, J.C. Estimation of Chlorophyll and Turbidity Using Sentinel 2A and EO1 Data in Kneiss Archipelago Gulf of Gabes, Tunisia. Int. J. Geosci. 2020, 11, 708–728. [Google Scholar] [CrossRef]
- Li, S.; Song, K.; Li, Y.; Liu, G.; Wen, Z.; Shang, Y.; Lyu, L.; Fang, C. Performances of Atmospheric Correction Processors for Sentinel-2 MSI Imagery Over Typical Lakes Across China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 2065–2078. [Google Scholar] [CrossRef]
- Shen, M.; Duan, H.; Cao, Z.; Xue, K.; Qi, T.; Ma, J.; Liu, D.; Song, K.; Huang, C.; Song, X. Sentinel-3 OLCI Observations of Water Clarity in Large Lakes in Eastern China: Implications for SDG 6.3.2 Evaluation. Remote Sens. Environ. 2020, 247, 111950. [Google Scholar] [CrossRef]
- Li, Q.; Jiang, L.; Chen, Y.; Wang, L.; Wang, L. Evaluation of Seven Atmospheric Correction Algorithms for OLCI Images over the Coastal Waters of Qinhuangdao in Bohai Sea. Reg. Stud. Mar. Sci. 2022, 56, 102711. [Google Scholar] [CrossRef]
- Sánchez-Zapero, J.; Camacho, F.; Martínez-Sánchez, E.; Gorroño, J.; León-Tavares, J.; Benhadj, I.; Toté, C.; Swinnen, E.; Muñoz-Sabater, J. Global Estimates of Surface Albedo from Sentinel-3 OLCI and SLSTR Data for Copernicus Climate Change Service: Algorithm and Preliminary Validation. Remote Sens. Environ. 2023, 287, 113460. [Google Scholar] [CrossRef]
- Long, T.; Jiao, W.; He, G.; Wang, G.; Zhang, Z. Digital orthophoto map products and automated generation algorithms of Chinese optical satellites. Natl. Remote Sens. Bulletin. 2023, 27, 635–650. [Google Scholar] [CrossRef]
- Tang, J.; Tian, G.; Wang, X.; Wang, X.; Song, Q. The Methods of Water Spectra Measurement and Analysis I: Above-Water Method. J. Remote Sens. 2004, 8, 37–44. [Google Scholar]
- Mobley, C.D. Estimation of the Remote-Sensing Reflectance from above-Surface Measurements. Appl. Opt. 1999, 38, 7442–7455. [Google Scholar] [CrossRef]
- Yue, Y.; Qing, S.; Diao, R.; Hao, Y. Remote Sensing of Suspended Particulate Matter in Optically Complex Estuarine and Inland Waters Based on Optical Classification. J. Coast. Res. 2020, 102, 303–317. [Google Scholar] [CrossRef]
- Morel, A.; Prieur, L. Analysis of Variations in Ocean Color1: Ocean Color Analysis. Limnol. Oceanogr. 1977, 22, 709–722. [Google Scholar] [CrossRef]
- Pahlevan, N.; Mangin, A.; Balasubramanian, S.V.; Smith, B.; Alikas, K.; Arai, K.; Barbosa, C.; Bélanger, S.; Binding, C.; Bresciani, M.; et al. ACIX-Aqua: A Global Assessment of Atmospheric Correction Methods for Landsat-8 and Sentinel-2 over Lakes, Rivers, and Coastal Waters. Remote Sens. Environ. 2021, 258, 112366. [Google Scholar] [CrossRef]
- Mayer, B.; Kylling, A. Technical Note: The libRadtran Software Package for Radiative Transfer Calculations—Description and Examples of Use. Atmos. Chem. Phys. 2005, 5, 1855–1877. [Google Scholar] [CrossRef]
- Müller, D.; Krasemann, H.; Brewin, R.J.W.; Brockmann, C.; Deschamps, P.-Y.; Doerffer, R.; Fomferra, N.; Franz, B.A.; Grant, M.G.; Groom, S.B.; et al. The Ocean Colour Climate Change Initiative: I. A Methodology for Assessing Atmospheric Correction Processors Based on in-Situ Measurements. Remote Sens. Environ. 2015, 162, 242–256. [Google Scholar] [CrossRef]
- Qin, P.; Simis, S.G.H.; Tilstone, G.H. Radiometric Validation of Atmospheric Correction for MERIS in the Baltic Sea Based on Continuous Observations from Ships and AERONET-OC. Remote Sens. Environ. 2017, 200, 263–280. [Google Scholar] [CrossRef]
- Li, H.; Kuang, R.; Song, Z. Evaluation of Atmospheric Correction Methods for Sentinel-2 Image—A Case Study of Poyang Lake. Spacecr. Recovery Remote Sens. 2021, 42, 108–119. [Google Scholar] [CrossRef]
Type of Lake | Lake Name | Acronym | Area/km2 | Centre Point Location | Image Date Y-M-R | |
---|---|---|---|---|---|---|
E | N | |||||
Freshwater lakes | Donggi Conag Lake | DGCN | 232.75 | 35.297 | 98.551 | 23 August 2022 |
Cuorendejia Lake | DEGC | 199.96 | 35.220 | 92.135 | 8 July 2022 | |
Eling Lake | EL | 650.90 | 34.902 | 97.696 | 23 August 2022 | |
Gurusank Lake | GRSK | 64.91 | 34.808 | 92.220 | 16 October 2022 | |
Keluke Lake | KLK | 54.20 | 37.287 | 96.892 | 5 September 2022 | |
Kuhai | KH | 50.01 | 35.304 | 99.176 | 23 August 2022 | |
Longyangxia Reservoir | LYX | 310.12 | 36.038 | 100.725 | 6 July 2022 | |
Taiyang Lake | TY | 102.18 | 35.925 | 90.628 | 23 July 2022 | |
Xuelian Lake | XL | 50.02 | 34.094 | 90.257 | 18 July 2022 | |
Yinma Lake | YM | 108.94 | 35.602 | 90.626 | 23 July 2022 | |
Zaling Lake | ZL | 536.62 | 34.934 | 97.264 | 10 September 2022 | |
Salt lakes | Dabusun Lake | DBX | 264.23 | 36.993 | 95.161 | 5 July 2022 |
East Taijinaier | ETJ | 186.30 | 37.495 | 93.940 | 28 September 2022 | |
Gas Hure Lake | GSH | 111.23 | 38.120 | 90.785 | 23 July 2022 | |
Lexiewudan Lake | LXWD | 261.18 | 35.751 | 90.194 | 23 July 2022 | |
Meikei Lake | MK | 104.13 | 35.064 | 90.560 | 8 July 2022 | |
South Horuson Lake | NHBX | 61.33 | 36.743 | 95.808 | 22 July 2022 | |
Xiaochaidan Lake | XCD | 90.64 | 37.494 | 95.506 | 28 September 2022 | |
Saltwater lakes | Porto Lake | PT | 61.21 | 34.012 | 89.954 | 8 July 2022 |
Chibuzhang Co | CBZC | 486.34 | 33.446 | 90.273 | 23 June 2022 | |
Cuodarima | CDRM | 70.55 | 35.327 | 91.855 | 16 October 2022 | |
Aha Lake | AH | 583.93 | 38.296 | 97.588 | 11 August 2022 | |
Zonag Lake | ZN | 159.31 | 35.556 | 91.933 | 11 September 2022 | |
Kekao Lake | KK | 67.35 | 35.698 | 91.363 | 11 September 2022 | |
the Hoh Xil Lake | HHXL | 309.52 | 35.586 | 91.144 | 11 September 2022 | |
Kusai Lake | KS | 314.60 | 35.725 | 92.874 | 11 September 2022 | |
Marjang Tsochin | MJTQ | 57.63 | 34.339 | 91.609 | 11 September 2022 | |
Qinghai Lake | QHH | 4252.58 | 36.885 | 100.201 | 13 August 2021 | |
Quemocuo | QMC | 81.40 | 33.886 | 91.195 | 11 September 2022 | |
Sugan Lake | SG | 111.82 | 38.869 | 93.887 | 4 August 2022 | |
Toso Lake | TS | 145.07 | 37.136 | 96.934 | 5 September 2022 | |
Ulan-Ula Lake | ULUL | 578.98 | 34.802 | 90.479 | 8 July 2022 | |
Xijirulan Lake | XJRL | 395.93 | 35.213 | 90.340 | 23 July 2022 | |
Salt Lake | SAL | 129.84 | 35.524 | 93.408 | 25 July 2022 | |
Yonghong Lake | YH | 74.54 | 35.249 | 89.963 | 23 July 2022 |
0 | 1 | 2 | |
---|---|---|---|
R2 | Under the lower limit of the mean 95% confidence interval | Within the mean 95% confidence interval | Exceeded the upper limit of the mean 95% confidence interval |
Bias | Neither within the mean 95% confidence interval NOR zero ± twice the mean standard deviation | Within the mean 95% confidence interval OR zero ± twice the mean standard deviation | Within the mean 95% confidence interval AND zero ± twice the mean standard deviation |
RMSE | Exceeded the upper limit of the mean 95% confidence interval | Within the mean 95% confidence interval | Under the lower limit of the mean 95% confidence interval |
MRE | |||
S | Neither within the mean 95% confidence interval NOR one ± the mean standard deviation | Within the mean 95% confidence interval OR one ± the mean standard deviation | Within the mean 95% confidence interval AND one ± the mean standard deviation |
I |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Huang, Y.; Shen, Q.; Yao, Y.; Xu, W.; Shi, J.; Zhou, Y.; Li, J.; Zhang, Y.; Gao, H. Assessment of Seven Atmospheric Correction Processors for the Sentinel-2 Multi-Spectral Imager over Lakes in Qinghai Province. Remote Sens. 2023, 15, 5370. https://doi.org/10.3390/rs15225370
Li W, Huang Y, Shen Q, Yao Y, Xu W, Shi J, Zhou Y, Li J, Zhang Y, Gao H. Assessment of Seven Atmospheric Correction Processors for the Sentinel-2 Multi-Spectral Imager over Lakes in Qinghai Province. Remote Sensing. 2023; 15(22):5370. https://doi.org/10.3390/rs15225370
Chicago/Turabian StyleLi, Wenxin, Yuancheng Huang, Qian Shen, Yue Yao, Wenting Xu, Jiarui Shi, Yuting Zhou, Jinzhi Li, Yuting Zhang, and Hangyu Gao. 2023. "Assessment of Seven Atmospheric Correction Processors for the Sentinel-2 Multi-Spectral Imager over Lakes in Qinghai Province" Remote Sensing 15, no. 22: 5370. https://doi.org/10.3390/rs15225370
APA StyleLi, W., Huang, Y., Shen, Q., Yao, Y., Xu, W., Shi, J., Zhou, Y., Li, J., Zhang, Y., & Gao, H. (2023). Assessment of Seven Atmospheric Correction Processors for the Sentinel-2 Multi-Spectral Imager over Lakes in Qinghai Province. Remote Sensing, 15(22), 5370. https://doi.org/10.3390/rs15225370