A Review of Root Zone Soil Moisture Estimation Methods Based on Remote Sensing
Abstract
:1. Introduction
2. Methods for Estimating Root Zone Soil Moisture
2.1. Empirical Methods
2.1.1. Statistical Regression
2.1.2. Cross-Correlation Analysis
2.1.3. Cumulative Distribution Function Matching
- (i)
- The time series data for SSM and RZSM were ranked based on the duration of the study.
- (ii)
- The difference () between the ranked SSM and RZSM was calculated as follows:
- (iii)
- Next, the relationship between and is expressed as a third-order polynomial in the following way:
- (iv)
- Finally, RZSM was calculated using CDF as follows:
2.2. Semi-Empirical Methods
2.2.1. Exponential Filter Method
2.2.2. SMAR Model
2.3. Physics-Based Methods
2.3.1. Data Assimilation Methods
2.3.2. Physical Model of Data Assimilation
2.4. Machine Learning Methods
Reference | Approach | Input Variables | Spatial and Temporal | Feature Selection Method | Metric | Study Area |
---|---|---|---|---|---|---|
[21] | ANN + Hydrus-1D | SSM, T, RH, SR, WS, ET, API, silt, clay, LAI | 10 cm, 20 cm, 50 cm | wrapper | R, RMSE | The Lower Great Lakes Basin |
[104] | SVM-EnKF | P, T, Rh, Rn, Ws, PET | 5 cm, 10 cm, 40 cm, 100 cm | filter | R, RMSE, ubRMSE, bias | The Xiang River Basin |
[105] | ANN | NDVI, T, ET, SWI, SSM | 30 cm, 40 cm, 50 cm | wrapper | R, RMSE | Global |
[106] | EnKF-GP | P, T, Rh, solar radiation | 5 cm, 10 cm, 20 cm, 50 cm, 100 cm | / | NSE, MARE, Bias | USA |
[22] | ANN | SH, P, S, AT, SR, WS, ET | 20 cm, 50 cm | wrapper | R, RMSE, ubRMSE | The United States |
[107] | Bay-ANNs | Red, green, blue, NIR, NDVI, EVI, VHI, field capacity | 15 cm, 30 cm | wrapper | R, R2, RMSE, MAE | The agricultural field located in Scipio, Millard County, in central Utah |
[108] | ANN | SSM | 30 cm, 60 cm | / | NSE | Global |
[99] | ANN | Climate, soil, topography, cropping pattern | 10 cm, 20 cm, 30 cm, 40 cm, 50 cm | wrapper | R2 | China |
[100] | AutoML | NTR, NDVI, text, BD, OC, θFC, θPWP, Ksat, φ | 2 cm, 10 cm, 50 cm | wrapper | NSE, RMSE, rRMSE, | The University of Arizona Maricopa Agricultural Center |
[101] | RF, Hydrus-1D | RG, Q, rd, SQ, TN, TX, UG, EV24, LAI, LAI_lag, RG_lag, Q_lag, rd_lag, SQ_lag, TN_lag, TX_lag, UG_lag, E24_lag, DOY, crop | 10 cm, 20 cm, 40 cm | wrapper | R2, RMSE, rRMSE, bias | Raam catchment |
[109] | XGB | P, LST, NDVI, EVI, GPP, sand, silt, clay, BD, elevation, SSM | 10 cm, 20 cm, 50 cm | filter, wrapper | R, ubRMSE, bias | The United States |
[110] | SVM-SWOA | T, RH, solar, P, sped, ST, growing degree days | 30 cm, 60 cm, 120 cm | filter | MAE, RMSE, MAPE, and MBE | Iowa, USA |
[102] | CatBoost | Meteorology, soil physical and chemical properties, DEM, lng, lat | 10 cm, 20 cm, 30 cm, 40 cm, 50 cm | wrapper, embedded | R2, RMSE, MAE, MSE, MAPE | The main maize production areas in China |
[97] | RF | Multispectral, thermal | 10 cm, 20 cm, 40 cm, 60 cm, 80 cm | wrapper | R2, RMSE, rRMSE | Beijing, China |
[95] | Hydrus-1D + ConvLSTM | P, T, soil BD, SOM content, ET, NDVI, LAI, and upper soil moisture | 10–40 cm | filter | R2: 0.31 | The Hailar river basin, China |
[111] | ANFIS-WOA, ANFIS-KHA, ANFIS-FA | T, RH, WS, ST | 20 cm, 30 cm | wrapper | RMSE, MAPE | The northwest of Turkey and the Strait of Istanbul |
[98] | MLR, RF, ANN | Ts × lnd, ET, PET, A, NDVI, BD, Ks, clay, sand, SOC | 0~5 m | filter, wrapper | R2, RMSE, MAPE | Loess Plateau |
[112] | PLSR, KNN, RF | RGB, multispectral, thermal | 10 cm, 20 cm | wrapper | R2, RMSE, rRMSE | Ordos, Inner Mongolia Autonomous Region, China |
[113] | RF, ANN, DBN, RNN, LSTM, attention-LSTM | P, LST, NDVI, sand, silt, clay, elevation, albedo | 10 cm, 20 cm, 40 cm | wrapper | R, RMSE, ubRMSE, MAE, bias | Tibetan |
[114] | RF, SVM, ELM | Vegetation indices | 10 cm, 20 cm, 30 cm, 40 cm, 60 cm | embedded | R2, rRMSE, RMSE, MAE, GPI | Wugong County, Xianyang City, Shaanxi Province, NW China |
3. Discussion
3.1. Comparison of RZSM Estimate Methods
3.1.1. Accuracy
3.1.2. Efficiency and Complexity
3.1.3. Depth
Reference | Method | Remote Sensing Data | Spatial Resolution | Time Scale | Depth | Accuracy | Study Area |
---|---|---|---|---|---|---|---|
[26] | Statistical regression | MODIS | 500 m | 2017 | 20 cm | R: 0.73; RMSE: 0.034; MAE: 0.025 | The Chinese Loess Plateau |
[27] | Statistical regression | MODIS | 500 m | 2013–2014 | 40 cm | R: 0.77 | Beijing |
[117] | Data assimilation | SMAP L4 | 9 km | 2015–present; daily | 100 cm | ubRMSD: 0.027 m3/m3 | Global |
[118] | Data assimilation | GLEAM 3.5b | 0.25° | 1980–present;1 day | 0–10, 10–100 cm | ubRMSE: 0.026 m3/m3 | Tibetan Plateau |
GLDAS 2.2 | 0.25° | 2003–present;1 day | 0–10, 10–40, 40–100, 100–200 cm | ubRMSE: 0.021 m3/m3 | Tibetan Plateau | ||
ERA5 | 0.25 | 1979–present; 1 h | 0–7, 7–28, 28–100, 100–289 cm | ubRMSE: 0.015 m3/m3 | Tibetan Plateau | ||
[119] | ExpF | ESA CCI | 0.25° | 2015–2018, 2019–2021 | 0–100 cm | ubRMSE: 0.05 m3/m3 | Jiangsu province, China |
Data assimilation | SMAP-L4 | 9 km | ubRMSE: 0.01 m3/m3 | ||||
[120] | ExpF | SMOS-BEC SWI (TSMAP) | 1 km | 2015–2016; 1 daily | 100 cm | Coordinate root-mean-square deviation (cRMSD): 0.039 | The Soil Moisture Measurements Station Network of the University of Salamanca |
SMOS-BEC SWI (TSMOS) | cRMSD: 0.037 | ||||||
MODIS ATI SWI (TSMAP) | cRMSD: 0.022 | ||||||
MODIS ATI SWI (TSMOS) | cRMSD: 0.021 | ||||||
SMAP L4 RZSM | cRMSD: 0.020 | ||||||
SMOS-CESBIO L4 RZSM | cRMSD: 0.028 | ||||||
[88] | Data assimilation | SMOS | 1 km | 2010 | 0–30 cm; 30–60 cm; 60–90 cm | RMSE: 0.071; 0.058; 0.067 m3/m3 | The western plains of New South Wales, Australia |
[100] | Machine learning | UAS multispectral | 1280 × 960 pixels | 2017 | 2 cm, 10 cm, 50 cm | RMSE: 0.02 m3/m3; R: 0.9 | The University of Arizona Maricopa Agricultural Center |
3.2. Limitations of the Current Methods
3.2.1. Limitations of Remote Sensing Data
3.2.2. Uncertainty of In Situ Observation
3.2.3. Uncertainty of the RZSM Estimation Method
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Babaeian, E.; Sadeghi, M.; Jones, S.B.; Montzka, C.; Vereecken, H.; Tuller, M. Ground, Proximal, and Satellite Remote Sensing of Soil Moisture. Rev. Geophys. 2019, 57, 530–616. [Google Scholar] [CrossRef]
- Long, D.; Bai, L.; Yan, L.; Zhang, C.; Yang, W.; Lei, H.; Quan, J.; Meng, X.; Shi, C. Generation of Spatially Complete and Daily Continuous Surface Soil Moisture of High Spatial Resolution. Remote Sens. Environ. 2019, 233, 111364. [Google Scholar] [CrossRef]
- Baldwin, D.; Manfreda, S.; Keller, K.; Smithwick, E.A.H. Predicting Root Zone Soil Moisture with Soil Properties and Satellite Near-Surface Moisture Data across the Conterminous United States. J. Hydrol. 2017, 546, 393–404. [Google Scholar] [CrossRef]
- Noborio, K. Measurement of Soil Water Content and Electrical Conductivity by Time Domain Reflectometry: A Review. Comput. Electron. Agric. 2001, 31, 213–237. [Google Scholar] [CrossRef]
- Zreda, M.; Shuttleworth, W.J.; Zeng, X.; Zweck, C.; Desilets, D.; Franz, T.; Rosolem, R. COSMOS: The COsmic-Ray Soil Moisture Observing System. Hydrol. Earth Syst. Sci. 2012, 16, 4079–4099. [Google Scholar] [CrossRef]
- Heidbüchel, I.; Güntner, A.; Blume, T. Use of Cosmic-Ray Neutron Sensors for Soil Moisture Monitoring in Forests. Hydrol. Earth Syst. Sci. 2016, 20, 1269–1288. [Google Scholar] [CrossRef]
- Reynolds, S.G. The Gravimetric Method of Soil Moisture Determination Part I A Study of Equipment, and Methodological Problems. J. Hydrol. 1970, 11, 258–273. [Google Scholar] [CrossRef]
- Li, Z.-L.; Leng, P.; Zhou, C.; Chen, K.-S.; Zhou, F.-C.; Shang, G.-F. Soil Moisture Retrieval from Remote Sensing Measurements: Current Knowledge and Directions for the Future. Earth-Sci. Rev. 2021, 218, 103673. [Google Scholar] [CrossRef]
- Im, J.; Park, S.; Rhee, J.; Baik, J.; Choi, M. Downscaling of AMSR-E Soil Moisture with MODIS Products Using Machine Learning Approaches. Environ. Earth Sci. 2016, 75, 1120. [Google Scholar] [CrossRef]
- Sanchez, N.; Martinez-Fernandez, J.; Scaini, A.; Perez-Gutierrez, C. Validation of the SMOS L2 Soil Moisture Data in the REMEDHUS Network (Spain). IEEE Trans. Geosci. Remote Sens. 2012, 50, 1602–1611. [Google Scholar] [CrossRef]
- Colliander, A.; Yang, Z.; Mueller, R.; Sandborn, A.; Reichle, R.; Crow, W.; Entekhabi, D.; Yueh, S. Consistency between NASS Surveyed Soil Moisture Conditions and SMAP Soil Moisture Observations. Water Resour. Res. 2019, 55, 7682–7693. [Google Scholar] [CrossRef]
- Gruber, A.; De Lannoy, G.; Albergel, C.; Al-Yaari, A.; Brocca, L.; Calvet, J.-C.; Colliander, A.; Cosh, M.; Crow, W.; Dorigo, W.; et al. Validation Practices for Satellite Soil Moisture Retrievals: What Are (the) Errors? Remote Sens. Environ. 2020, 244, 111806. [Google Scholar] [CrossRef]
- Vergopolan, N.; Chaney, N.W.; Beck, H.E.; Pan, M.; Sheffield, J.; Chan, S.; Wood, E.F. Combining Hyper-Resolution Land Surface Modeling with SMAP Brightness Temperatures to Obtain 30-m Soil Moisture Estimates. Remote Sens. Environ. 2020, 242, 111740. [Google Scholar] [CrossRef]
- Fan, X.; Liu, Y.; Gan, G.; Wu, G. SMAP Underestimates Soil Moisture in Vegetation-Disturbed Areas Primarily as a Result of Biased Surface Temperature Data. Remote Sens. Environ. 2020, 247, 111914. [Google Scholar] [CrossRef]
- Kostov, K.G.; Jackson, T.J. Estimating Profile Soil Moisture from Surface-Layer Measurements: A Review; SPIE: Orlando, FL, USA, 1993; Volume 1941, pp. 125–136. [Google Scholar] [CrossRef]
- Entekhabi, D.; Nakamura, H.; Njoku, E.G. Solving the Inverse Problem for Soil Moisture and Temperature Profiles by Sequential Assimilation of Multifrequency Remotely Sensed Observations. IEEE Trans. Geosci. Remote Sens. 1994, 32, 438–448. [Google Scholar] [CrossRef]
- Houser, P.R.; Shuttleworth, W.J.; Famiglietti, J.S.; Gupta, H.V.; Syed, K.H.; Goodrich, D.C. Integration of Soil Moisture Remote Sensing and Hydrologic Modeling Using Data Assimilation. Water Resour. Res. 1998, 34, 3405–3420. [Google Scholar] [CrossRef]
- Vereecken, H.; Huisman, J.A.; Bogena, H.; Vanderborght, J.; Vrugt, J.A.; Hopmans, J.W. On the Value of Soil Moisture Measurements in Vadose Zone Hydrology: A Review. Water Resour. Res. 2008, 44, W00D06. [Google Scholar] [CrossRef]
- Khandan, R.; Wigneron, J.-P.; Bonafoni, S.; Biazar, A.P.; Gholamnia, M. Assimilation of Satellite-Derived Soil Moisture and Brightness Temperature in Land Surface Models: A Review. Remote Sens. 2022, 14, 770. [Google Scholar] [CrossRef]
- Wagner, W.; Lemoine, G.; Rott, H. A Method for Estimating Soil Moisture from ERS Scatterometer and Soil Data. Remote Sens. Environ. 1999, 70, 191–207. [Google Scholar] [CrossRef]
- Kornelsen, K.C.; Coulibaly, P. Root-Zone Soil Moisture Estimation Using Data-Driven Methods. Water Resour. Res. 2014, 50, 2946–2962. [Google Scholar] [CrossRef]
- Pan, X.; Kornelsen, K.C.; Coulibaly, P. Estimating Root Zone Soil Moisture at Continental Scale Using Neural Networks. J. Am. Water Resour. Assoc. 2017, 53, 220–237. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A Simple Interpretation of the Surface Temperature/Vegetation Index Space for Assessment of Surface Moisture Status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Wang, P.; Li, X.; Gong, J.; Song, C. Vegetation Temperature Condition Index and Its Application for Drought Monitoring. In Proceedings of the IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217), Sydney, NSW, Australia, 9–13 July 2001; Volume 1, pp. 141–143. [Google Scholar] [CrossRef]
- Holzman, M.E.; Rivas, R.; Piccolo, M.C. Estimating Soil Moisture and the Relationship with Crop Yield Using Surface Temperature and Vegetation Index. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 181–192. [Google Scholar] [CrossRef]
- Yuan, L.; Li, L.; Zhang, T.; Chen, L.; Zhao, J.; Hu, S.; Cheng, L.; Liu, W. Soil Moisture Estimation for the Chinese Loess Plateau Using MODIS-Derived ATI and TVDI. Remote Sens. 2020, 12, 3040. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, H.; Qin, D.; Wang, C. Large-Scale Monitoring of Soil Moisture Using Temperature Vegetation Quantitative Index (TVQI) and Exponential Filtering: A Case Study in Beijing. Agric. Water Manag. 2021, 252, 106896. [Google Scholar] [CrossRef]
- Patel, N.R.; Mukund, A.; Parida, B.R. Satellite-Derived Vegetation Temperature Condition Index to Infer Root Zone Soil Moisture in Semi-Arid Province of Rajasthan, India. Geocarto Int. 2022, 37, 179–195. [Google Scholar] [CrossRef]
- Akuraju, V.R.; Ryu, D.; George, B. Estimation of Root-Zone Soil Moisture Using Crop Water Stress Index (CWSI) in Agricultural Fields. GISci. Remote Sens. 2021, 58, 340–353. [Google Scholar] [CrossRef]
- Saeidi, R.; Zarrabi, M.M.; Sotoodehnia, A. Modeling the Amount of Soil Moisture Using Crop Water Stress Index (CWSI) in Maize Planting. Irrig. Water Eng. 2022, 12, 386–404. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J. A Physically Based, Variable Contributing Area Model of Basin Hydrology/Un Modèle à Base Physique de Zone d’appel Variable de l’hydrologie Du Bassin Versant. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef]
- Buchanan, B.P.; Fleming, M.; Schneider, R.L.; Richards, B.K.; Archibald, J.; Qiu, Z.; Walter, M.T. Evaluating Topographic Wetness Indices across Central New York Agricultural Landscapes. Hydrol. Earth Syst. Sci. 2014, 18, 3279–3299. [Google Scholar] [CrossRef]
- Raduła, M.W.; Szymura, T.H.; Szymura, M. Topographic Wetness Index Explains Soil Moisture Better than Bioindication with Ellenberg’s Indicator Values. Ecol. Indic. 2018, 85, 172–179. [Google Scholar] [CrossRef]
- Costa-Cabral, M.C.; Burges, S.J. Digital Elevation Model Networks (DEMON): A Model of Flow over Hillslopes for Computation of Contributing and Dispersal Areas. Water Resour. Res. 1994, 30, 1681–1692. [Google Scholar] [CrossRef]
- Zhu, Q.; Lin, H. Influences of Soil, Terrain, and Crop Growth on Soil Moisture Variation from Transect to Farm Scales. Geoderma 2011, 163, 45–54. [Google Scholar] [CrossRef]
- Moeslund, J.E.; Arge, L.; Bøcher, P.K.; Dalgaard, T.; Ejrnæs, R.; Odgaard, M.V.; Svenning, J.-C. Topographically Controlled Soil Moisture Drives Plant Diversity Patterns within Grasslands. Biodivers. Conserv. 2013, 22, 2151–2166. [Google Scholar] [CrossRef]
- Carranza, C.D.U.; van der Ploeg, M.J.; Torfs, P.J.J.F. Using Lagged Dependence to Identify (de)Coupled Surface and Subsurface Soil Moisture Values. Hydrol. Earth Syst. Sci. 2018, 22, 2255–2267. [Google Scholar] [CrossRef]
- Mahmood, R.; Littell, A.; Hubbard, K.G.; You, J. Observed Data-Based Assessment of Relationships among Soil Moisture at Various Depths, Precipitation, and Temperature. Appl. Geogr. 2012, 34, 255–264. [Google Scholar] [CrossRef]
- Ford, T.W.; Harris, E.; Quiring, S.M. Estimating Root Zone Soil Moisture Using Near-Surface Observations from SMOS. Hydrol. Earth Syst. Sci. 2014, 18, 139–154. [Google Scholar] [CrossRef]
- Gao, X.; Zhao, X.; Brocca, L.; Pan, D.; Wu, P. Testing of Observation Operators Designed to Estimate Profile Soil Moisture from Surface Measurements. Hydrol. Process. 2019, 33, 575–584. [Google Scholar] [CrossRef]
- Tian, J.; Han, Z.; Bogena, H.R.; Huisman, J.A.; Montzka, C.; Zhang, B.; He, C. Estimation of Subsurface Soil Moisture from Surface Soil Moisture in Cold Mountainous Areas. Hydrol. Earth Syst. Sci. 2020, 24, 4659–4674. [Google Scholar] [CrossRef]
- Xu, Z.; Man, X.; Duan, L.; Cai, T. Improved Subsurface Soil Moisture Prediction from Surface Soil Moisture through the Integration of the (de)Coupling Effect. J. Hydrol. 2022, 608, 127634. [Google Scholar] [CrossRef]
- Wilson, D.J.; Western, A.W.; Grayson, R.B. Identifying and Quantifying Sources of Variability in Temporal and Spatial Soil Moisture Observations. Water Resour. Res. 2004, 40, W02507. [Google Scholar] [CrossRef]
- Müller, M. (Ed.) Dynamic Time Warping Information Retrieval for Music and Motion; Springer: Berlin, Heidelberg, 2007; pp. 69–84. ISBN 978-3-540-74048-3. [Google Scholar]
- Herbert, C.; Pablos, M.; Vall-llossera, M.; Camps, A.; Martínez-Fernández, J. Analyzing Spatio-Temporal Factors to Estimate the Response Time between SMOS and In-Situ Soil Moisture at Different Depths. Remote Sens. 2020, 12, 2614. [Google Scholar] [CrossRef]
- Reichle, R.H.; Koster, R.D. Bias Reduction in Short Records of Satellite Soil Moisture. Geophys. Res. Lett. 2004, 31, L19501. [Google Scholar] [CrossRef]
- De Lannoy, G.J.M.; Houser, P.R.; Verhoest, N.E.C.; Pauwels, V.R.N.; Gish, T.J. Upscaling of Point Soil Moisture Measurements to Field Averages at the OPE3 Test Site. J. Hydrol. 2007, 343, 1–11. [Google Scholar] [CrossRef]
- Han, E.; Heathman, G.C.; Merwade, V.; Cosh, M.H. Application of Observation Operators for Field Scale Soil Moisture Averages and Variances in Agricultural Landscapes. J. Hydrol. 2012, 444–445, 34–50. [Google Scholar] [CrossRef]
- Brocca, L.; Hasenauer, S.; Lacava, T.; Melone, F.; Moramarco, T.; Wagner, W.; Dorigo, W.; Matgen, P.; Martínez-Fernández, J.; Llorens, P.; et al. Soil Moisture Estimation through ASCAT and AMSR-E Sensors: An Intercomparison and Validation Study across Europe. Remote Sens. Environ. 2011, 115, 3390–3408. [Google Scholar] [CrossRef]
- Albergel, C.; Rüdiger, C.; Pellarin, T.; Calvet, J.-C.; Fritz, N.; Froissard, F.; Suquia, D.; Petitpa, A.; Piguet, B.; Martin, E. From Near-Surface to Root-Zone Soil Moisture Using an Exponential Filter: An Assessment of the Method Based on in-Situ Observations and Model Simulations. Hydrol. Earth Syst. Sci. 2008, 12, 1323–1337. [Google Scholar] [CrossRef]
- de Lange, R.; Beck, R.; van de Giesen, N.; Friesen, J.; de Wit, A.; Wagner, W. Scatterometer-Derived Soil Moisture Calibrated for Soil Texture With a One-Dimensional Water-Flow Model. IEEE Trans. Geosci. Remote Sens. 2008, 46, 4041–4049. [Google Scholar] [CrossRef]
- Zohaib, M.; Kim, H.; Choi, M. Evaluating the Patterns of Spatiotemporal Trends of Root Zone Soil Moisture in Major Climate Regions in East Asia. J. Geophys. Res. Atmos. 2017, 122, 7705–7722. [Google Scholar] [CrossRef]
- Qiu, J.; Crow, W.T.; Nearing, G.S.; Mo, X.; Liu, S. The Impact of Vertical Measurement Depth on the Information Content of Soil Moisture Times Series Data: Impact on Soil Moisture Information. Geophys. Res. Lett. 2014, 41, 4997–5004. [Google Scholar] [CrossRef]
- Tobin, K.J.; Torres, R.; Crow, W.T.; Bennett, M.E. Multi-Decadal Analysis of Root-Zone Soil Moisture Applying the Exponential Filter across CONUS. Hydrol. Earth Syst. Sci. 2017, 21, 4403–4417. [Google Scholar] [CrossRef]
- Bouaziz, L.J.E.; Steele-Dunne, S.C.; Schellekens, J.; Weerts, A.H.; Stam, J.; Sprokkereef, E.; Winsemius, H.H.C.; Savenije, H.H.G.; Hrachowitz, M. Improved Understanding of the Link between Catchment-Scale Vegetation Accessible Storage and Satellite-Derived Soil Water Index. Water Resour. Res. 2020, 56, e2019WR026365. [Google Scholar] [CrossRef]
- Grillakis, M.G.; Koutroulis, A.G.; Alexakis, D.D.; Polykretis, C.; Daliakopoulos, I.N. Regionalizing Root-Zone Soil Moisture Estimates from ESA CCI Soil Water Index Using Machine Learning and Information on Soil, Vegetation, and Climate. Water Resour. Res. 2021, 57, e2020WR029249. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, Y.; Guo, J.; Zhang, X.; Ma, N.; Wei, H.; Tang, Z. Predicting Root Zone Soil Moisture Using Observations at 2121 Sites across China. Sci. Total Environ. 2022, 847, 157425. [Google Scholar] [CrossRef] [PubMed]
- Manfreda, S.; Brocca, L.; Moramarco, T.; Melone, F.; Sheffield, J. A Physically Based Approach for the Estimation of Root-Zone Soil Moisture from Surface Measurements. Hydrol. Earth Syst. Sci. 2014, 18, 1199–1212. [Google Scholar] [CrossRef]
- Faridani, F.; Farid, A.; Ansari, H.; Manfreda, S. A Modified Version of the SMAR Model for Estimating Root-Zone Soil Moisture from Time-Series of Surface Soil Moisture. Water SA 2017, 43, 492. [Google Scholar] [CrossRef]
- Baldwin, D.; Manfreda, S.; Lin, H.; Smithwick, E.A.H. Estimating Root Zone Soil Moisture across the Eastern United States with Passive Microwave Satellite Data and a Simple Hydrologic Model. Remote Sens. 2019, 11, 2013. [Google Scholar] [CrossRef]
- Lorenc, A.C. Analysis Methods for Numerical Weather Prediction. Q. J. R. Meteorol. Soc. 1986, 112, 1177–1194. [Google Scholar] [CrossRef]
- Courtier, P.; Thépaut, J.-N.; Hollingsworth, A. A Strategy for Operational Implementation of 4D-Var, Using an Incremental Approach. Q. J. R. Meteorol. Soc. 1994, 120, 1367–1387. [Google Scholar] [CrossRef]
- Jacobs, C.M.J.; Moors, E.J.; Maat, H.W.T.; Teuling, A.J.; Balsamo, G.; Bergaoui, K.; Ettema, J.; Lange, M.; Hurk, B.J.J.M.V.D.; Viterbo, P.; et al. Evaluation of European Land Data Assimilation System (ELDAS) Products Using in Situ Observations. Tellus A Dyn. Meteorol. Oceanogr. 2008, 60, 1023–1037. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Aboitiz, M.; Labadie, J.W.; Heermann, D.F. Stochastic Soil Moisture Estimation and Forecasting for Irrigated Fields. Water Resour. Res. 1986, 22, 180–190. [Google Scholar] [CrossRef]
- Evensen, G. Sequential Data Assimilation with a Nonlinear Quasi-Geostrophic Model Using Monte Carlo Methods to Forecast Error Statistics. J. Geophys. Res. Oceans 1994, 99, 10143–10162. [Google Scholar] [CrossRef]
- Zhou, H.; Geng, G.; Yang, J.; Hu, H.; Sheng, L.; Lou, W. Improving Soil Moisture Estimation via Assimilation of Remote Sensing Product into the DSSAT Crop Model and Its Effect on Agricultural Drought Monitoring. Remote Sens. 2022, 14, 3187. [Google Scholar] [CrossRef]
- Chen, W.; Huang, C.; Shen, H.; Li, X. Comparison of Ensemble-Based State and Parameter Estimation Methods for Soil Moisture Data Assimilation. Adv. Water Resour. 2015, 86, 425–438. [Google Scholar] [CrossRef]
- Seo, E.; Lee, M.-I.; Reichle, R.H. Assimilation of SMAP and ASCAT Soil Moisture Retrievals into the JULES Land Surface Model Using the Local Ensemble Transform Kalman Filter. Remote Sens. Environ. 2021, 253, 112222. [Google Scholar] [CrossRef]
- Rains, D.; Han, X.; Lievens, H.; Montzka, C.; Verhoest, N.E.C. SMOS Brightness Temperature Assimilation into the Community Land Model. Hydrol. Earth Syst. Sci. 2017, 21, 5929–5951. [Google Scholar] [CrossRef]
- Fu, X.; Yu, Z.; Ding, Y.; Qin, Y.; Luo, L.; Zhao, C.; Lü, H.; Jiang, X.; Ju, Q.; Yang, C. Unscented Weighted Ensemble Kalman Filter for Soil Moisture Assimilation. J. Hydrol. 2020, 580, 124352. [Google Scholar] [CrossRef]
- Fu, X.; Jiang, X.; Yu, Z.; Ding, Y.; Lü, H.; Zheng, D. Understanding the Key Factors That Influence Soil Moisture Estimation Using the Unscented Weighted Ensemble Kalman Filter. Agric. For. Meteorol. 2022, 313, 108745. [Google Scholar] [CrossRef]
- Li, Y.; Cong, Z.; Yang, D. Remotely Sensed Soil Moisture Assimilation in the Distributed Hydrological Model Based on the Error Subspace Transform Kalman Filter. Remote Sens. 2023, 15, 1852. [Google Scholar] [CrossRef]
- Wen, X.-H.; Chen, W.H. Some Practical Issues on Real-Time Reservoir Model Updating Using Ensemble Kalman Filter. SPE J. 2007, 12, 156–166. [Google Scholar] [CrossRef]
- Myrseth, I.; Sætrom, J.; Omre, H. Resampling the Ensemble Kalman Filter. Comput. Geosci. 2013, 55, 44–53. [Google Scholar] [CrossRef]
- Wu, J.; Wang, J.-X.; Shadden, S.C. Improving the Convergence of the Iterative Ensemble Kalman Filter by Resampling. arXiv 2019, arXiv:1910.04247. [Google Scholar] [CrossRef]
- Nagarajan, K.; Judge, J.; Graham, W.D.; Monsivais-Huertero, A. Particle Filter-Based Assimilation Algorithms for Improved Estimation of Root-Zone Soil Moisture under Dynamic Vegetation Conditions. Adv. Water Resour. 2011, 34, 433–447. [Google Scholar] [CrossRef]
- Moradkhani, H.; DeChant, C.M.; Sorooshian, S. Evolution of Ensemble Data Assimilation for Uncertainty Quantification Using the Particle Filter-Markov Chain Monte Carlo Method. Water Resour. Res. 2012, 48, W12520. [Google Scholar] [CrossRef]
- Abbaszadeh, P.; Moradkhani, H.; Yan, H. Enhancing Hydrologic Data Assimilation by Evolutionary Particle Filter and Markov Chain Monte Carlo. Adv. Water Resour. 2018, 111, 192–204. [Google Scholar] [CrossRef]
- Lei, F.; Crow, W.T.; Kustas, W.P.; Dong, J.; Yang, Y.; Knipper, K.R.; Anderson, M.C.; Gao, F.; Notarnicola, C.; Greifeneder, F.; et al. Data Assimilation of High-Resolution Thermal and Radar Remote Sensing Retrievals for Soil Moisture Monitoring in a Drip-Irrigated Vineyard. Remote Sens. Environ. 2020, 239, 111622. [Google Scholar] [CrossRef]
- Xu, L.; Abbaszadeh, P.; Moradkhani, H.; Chen, N.; Zhang, X. Continental Drought Monitoring Using Satellite Soil Moisture, Data Assimilation and an Integrated Drought Index. Remote Sens. Environ. 2020, 250, 112028. [Google Scholar] [CrossRef]
- Draper, C.S.; Reichle, R.H.; De Lannoy, G.J.M.; Liu, Q. Assimilation of Passive and Active Microwave Soil Moisture Retrievals. Geophys. Res. Lett. 2012, 39, L04401. [Google Scholar] [CrossRef]
- Pal, M.; Maity, R. Assimilation of Remote Sensing Based Surface Soil Moisture to Develop a Spatially Varying Vertical Soil Moisture Profile Database for Entire Indian Mainland. J. Hydrol. 2021, 601, 126807. [Google Scholar] [CrossRef]
- Reichle, R.H.; Koster, R.D.; Liu, P.; Mahanama, S.P.P.; Njoku, E.G.; Owe, M. Comparison and Assimilation of Global Soil Moisture Retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and the Scanning Multichannel Microwave Radiometer (SMMR). J. Geophys. Res. Atmos. 2007, 112, D09108. [Google Scholar] [CrossRef]
- Martens, B.; Miralles, D.G.; Lievens, H.; van der Schalie, R.; de Jeu, R.A.M.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-Based Land Evaporation and Root-Zone Soil Moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef]
- Lievens, H.; Reichle, R.H.; Liu, Q.; De Lannoy, G.J.M.; Dunbar, R.S.; Kim, S.B.; Das, N.N.; Cosh, M.; Walker, J.P.; Wagner, W. Joint Sentinel-1 and SMAP Data Assimilation to Improve Soil Moisture Estimates. Geophys. Res. Lett. 2017, 44, 6145–6153. [Google Scholar] [CrossRef] [PubMed]
- Reichle, R.H.; Liu, Q.; Koster, R.D.; Crow, W.T.; De Lannoy, G.J.M.; Kimball, J.S.; Ardizzone, J.V.; Bosch, D.; Colliander, A.; Cosh, M.; et al. Version 4 of the SMAP Level-4 Soil Moisture Algorithm and Data Product. J. Adv. Model. Earth Syst. 2019, 11, 3106–3130. [Google Scholar] [CrossRef]
- Dumedah, G.; Walker, J.P.; Merlin, O. Root-Zone Soil Moisture Estimation from Assimilation of Downscaled Soil Moisture and Ocean Salinity Data. Adv. Water Resour. 2015, 84, 14–22. [Google Scholar] [CrossRef]
- Ahmadi, S.; Alizadeh, H.; Mojaradi, B. Land Surface Temperature Assimilation into a Soil Moisture-Temperature Model for Retrieving Farm-Scale Root Zone Soil Moisture. Geoderma 2022, 421, 115923. [Google Scholar] [CrossRef]
- Chen, F.; Lei, F.; Knipper, K.; Gao, F.; McKee, L.; del Mar Alsina, M.; Alfieri, J.; Anderson, M.; Bambach, N.; Castro, S.J.; et al. Application of the Vineyard Data Assimilation (VIDA) System to Vineyard Root-Zone Soil Moisture Monitoring in the California Central Valley. Irrig. Sci. 2022, 40, 779–799. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, Y.; Zhong, Q.; Lü, H.; Ding, Y.; Li, Z.; Yu, Z.; Jiang, X. Soil Moisture Estimation by Assimilating In-Situ and SMAP Surface Soil Moisture Using Unscented Weighted Ensemble Kalman Filter. Water Resour. Res. 2023, 59, e2023WR034506. [Google Scholar] [CrossRef]
- Rahman, A.; Maggioni, V.; Zhang, X.; Houser, P.; Sauer, T.; Mocko, D.M. The Joint Assimilation of Remotely Sensed Leaf Area Index and Surface Soil Moisture into a Land Surface Model. Remote Sens. 2022, 14, 437. [Google Scholar] [CrossRef]
- Tangdamrongsub, N.; Han, S.-C.; Yeo, I.-Y.; Dong, J.; Steele-Dunne, S.C.; Willgoose, G.; Walker, J.P. Multivariate Data Assimilation of GRACE, SMOS, SMAP Measurements for Improved Regional Soil Moisture and Groundwater Storage Estimates. Adv. Water Resour. 2020, 135, 103477. [Google Scholar] [CrossRef]
- Zhu, P.; Shi, L.; Zhu, Y.; Zhang, Q.; Huang, K.; Williams, M. Data Assimilation of Soil Water Flow via Ensemble Kalman Filter: Infusing Soil Moisture Data at Different Scales. J. Hydrol. 2017, 555, 912–925. [Google Scholar] [CrossRef]
- Yinglan, A.; Wang, G.; Hu, P.; Lai, X.; Xue, B.; Fang, Q. Root-Zone Soil Moisture Estimation Based on Remote Sensing Data and Deep Learning. Environ. Res. 2022, 212, 113278. [Google Scholar] [CrossRef]
- Bertalan, L.; Holb, I.; Pataki, A.; Négyesi, G.; Szabó, G.; Kupásné Szalóki, A.; Szabó, S. UAV-Based Multispectral and Thermal Cameras to Predict Soil Water Content—A Machine Learning Approach. Comput. Electron. Agric. 2022, 200, 107262. [Google Scholar] [CrossRef]
- Cheng, M.; Li, B.; Jiao, X.; Huang, X.; Fan, H.; Lin, R.; Liu, K. Using Multimodal Remote Sensing Data to Estimate Regional-Scale Soil Moisture Content: A Case Study of Beijing, China. Agric. Water Manag. 2022, 260, 107298. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhao, C.; Jia, X.; Wang, J.; Shao, M. Prediction of Deep Soil Water Content (0–5 m) with in-Situ and Remote Sensing Data. Catena 2023, 222, 106852. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, D.; Mouatadid, S.; Lu, X.; Chen, M.; Cheng, Y.; Xie, Z.; Jia, B.; Wu, H.; Gentine, P. Development of a Daily Multilayer Cropland Soil Moisture Dataset for China Using Machine Learning and Application to Cropping Patterns. J. Hydrometeorol. 2021, 22, 445–461. [Google Scholar] [CrossRef]
- Babaeian, E.; Paheding, S.; Siddique, N.; Devabhaktuni, V.K.; Tuller, M. Estimation of Root Zone Soil Moisture from Ground and Remotely Sensed Soil Information with Multisensor Data Fusion and Automated Machine Learning. Remote Sens. Environ. 2021, 260, 112434. [Google Scholar] [CrossRef]
- Carranza, C.; Nolet, C.; Pezij, M.; van der Ploeg, M. Root Zone Soil Moisture Estimation with Random Forest. J. Hydrol. 2021, 593, 125840. [Google Scholar] [CrossRef]
- Yu, J.; Zheng, W.; Xu, L.; Meng, F.; Li, J.; Zhangzhong, L. TPE-CatBoost: An Adaptive Model for Soil Moisture Spatial Estimation in the Main Maize-Producing Areas of China with Multiple Environment Covariates. J. Hydrol. 2022, 613, 128465. [Google Scholar] [CrossRef]
- Zeng, L.; Hu, S.; Xiang, D.; Zhang, X.; Li, D.; Li, L.; Zhang, T. Multilayer Soil Moisture Mapping at a Regional Scale from Multisource Data via a Machine Learning Method. Remote Sens. 2019, 11, 284. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, Y.; Luo, Y. Improvement of Multi-Layer Soil Moisture Prediction Using Support Vector Machines and Ensemble Kalman Filter Coupled with Remote Sensing Soil Moisture Datasets over an Agriculture Dominant Basin in China. Hydrol. Process. 2021, 35, e14154. [Google Scholar] [CrossRef]
- Souissi, R.; Zribi, M.; Corbari, C.; Mancini, M.; Muddu, S.; Tomer, S.K.; Upadhyaya, D.B.; Al Bitar, A. Integrating Process-Related Information into an Artificial Neural Network for Root-Zone Soil Moisture Prediction. Hydrol. Earth Syst. Sci. 2022, 26, 3263–3297. [Google Scholar] [CrossRef]
- He, L.; Zhang, Q.; Shi, L.; Wang, Y.; Wang, L.; Hu, X.; Zha, Y.; Huang, K. Physics-Constrained Gaussian Process Regression for Soil Moisture Dynamics. J. Hydrol. 2023, 616, 128779. [Google Scholar] [CrossRef]
- Hassan-Esfahani, L.; Torres-Rua, A.; Jensen, A.; Mckee, M. Spatial Root Zone Soil Water Content Estimation in Agricultural Lands Using Bayesian-Based Artificial Neural Networks and High- Resolution Visual, NIR, and Thermal Imagery. Irrig. Drain. 2017, 66, 273–288. [Google Scholar] [CrossRef]
- Souissi, R.; Al Bitar, A.; Zribi, M. Accuracy and Transferability of Artificial Neural Networks in Predicting in Situ Root-Zone Soil Moisture for Various Regions across the Globe. Water 2020, 12, 3109. [Google Scholar] [CrossRef]
- Karthikeyan, L.; Mishra, A.K. Multi-Layer High-Resolution Soil Moisture Estimation Using Machine Learning over the United States. Remote Sens. Environ. 2021, 266, 112706. [Google Scholar] [CrossRef]
- He, B.; Jia, B.; Zhao, Y.; Wang, X.; Wei, M.; Dietzel, R. Estimate Soil Moisture of Maize by Combining Support Vector Machine and Chaotic Whale Optimization Algorithm. Agric. Water Manag. 2022, 267, 107618. [Google Scholar] [CrossRef]
- Moazenzadeh, R.; Mohammadi, B.; Safari, M.J.S.; Chau, K. Soil Moisture Estimation Using Novel Bio-Inspired Soft Computing Approaches. Eng. Appl. Comput. Fluid Mech. 2022, 16, 826–840. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, W.; Zhang, H.; Niu, X.; Shao, G. Evaluating Soil Moisture Content under Maize Coverage Using UAV Multimodal Data by Machine Learning Algorithms. J. Hydrol. 2023, 617, 129086. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, X.; Wang, C.; Chen, N. Two-Step Fusion Method for Generating 1 Km Seamless Multi-Layer Soil Moisture with High Accuracy in the Qinghai-Tibet Plateau. ISPRS J. Photogramm. Remote Sens. 2023, 197, 346–363. [Google Scholar] [CrossRef]
- Zhu, S.; Cui, N.; Zhou, J.; Xue, J.; Wang, Z.; Wu, Z.; Wang, M.; Deng, Q. Digital Mapping of Root-Zone Soil Moisture Using UAV-Based Multispectral Data in a Kiwifruit Orchard of Northwest China. Remote Sens. 2023, 15, 646. [Google Scholar] [CrossRef]
- Yang, Y.; Bao, Z.; Wu, H.; Wang, G.; Liu, C.; Wang, J.; Zhang, J. An Exponential Filter Model-Based Root-Zone Soil Moisture Estimation Methodology from Multiple Datasets. Remote Sens. 2022, 14, 1785. [Google Scholar] [CrossRef]
- Zhang, N.; Quiring, S.; Ochsner, T.; Ford, T. Comparison of Three Methods for Vertical Extrapolation of Soil Moisture in Oklahoma. Vadose Zone J. 2017, 16, vzj2017.04.0085. [Google Scholar] [CrossRef]
- Colliander, A.; Reichle, R.H.; Crow, W.T.; Cosh, M.H.; Chen, F.; Chan, S.; Das, N.N.; Bindlish, R.; Chaubell, J.; Kim, S.; et al. Validation of Soil Moisture Data Products From the NASA SMAP Mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 364–392. [Google Scholar] [CrossRef]
- Yang, S.; Zeng, J.; Fan, W.; Cui, Y. Evaluating Root-Zone Soil Moisture Products from GLEAM, GLDAS, and ERA5 Based on In Situ Observations and Triple Collocation Method over the Tibetan Plateau. J. Hydrometeorol. 2022, 23, 1861–1878. [Google Scholar] [CrossRef]
- Fan, L.; Xing, Z.; Lannoy, G.D.; Frappart, F.; Peng, J.; Zeng, J.; Li, X.; Yang, K.; Zhao, T.; Shi, J.; et al. Evaluation of Satellite and Reanalysis Estimates of Surface and Root-Zone Soil Moisture in Croplands of Jiangsu Province, China. Remote Sens. Environ. 2022, 282, 113283. [Google Scholar] [CrossRef]
- Pablos, M.; González-Zamora, Á.; Sánchez, N.; Martínez-Fernández, J. Assessment of Root Zone Soil Moisture Estimations from SMAP, SMOS and MODIS Observations. Remote Sens. 2018, 10, 981. [Google Scholar] [CrossRef]
- Buizza, C.; Quilodrán Casas, C.; Nadler, P.; Mack, J.; Marrone, S.; Titus, Z.; Le Cornec, C.; Heylen, E.; Dur, T.; Baca Ruiz, L.; et al. Data Learning: Integrating Data Assimilation and Machine Learning. J. Comput. Sci. 2022, 58, 101525. [Google Scholar] [CrossRef]
- Liu, D.; Mishra, A.K.; Yu, Z. Evaluating Uncertainties in Multi-Layer Soil Moisture Estimation with Support Vector Machines and Ensemble Kalman Filtering. J. Hydrol. 2016, 538, 243–255. [Google Scholar] [CrossRef]
- Tian, J.; Qin, J.; Yang, K.; Zhao, L.; Chen, Y.; Lu, H.; Li, X.; Shi, J. Improving Surface Soil Moisture Retrievals through a Novel Assimilation Algorithm to Estimate Both Model and Observation Errors. Remote Sens. Environ. 2021, 269, 112802. [Google Scholar] [CrossRef]
- Gelas, C.; Villard, L.; Ferro-Famil, L.; Polidori, L.; Koleck, T.; Daniel, S. Multi-Temporal Speckle Filtering of Polarimetric P-Band SAR Data over Dense Tropical Forests: Study Case in French Guiana for the BIOMASS Mission. Remote Sens. 2021, 13, 142. [Google Scholar] [CrossRef]
- Garrison, J.L.; Shah, R.; Kim, S.; Piepmeier, J.; Vega, M.A.; Spencer, D.A.; Banting, R.; Raymond, J.C.; Nold, B.; Larsen, K.; et al. Analyses Supporting Snoopi: A P-Band Reflectometry Demonstration. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September 26–2 October 2020; pp. 3349–3352. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Sun, H.; Zhao, R. A Review of Root Zone Soil Moisture Estimation Methods Based on Remote Sensing. Remote Sens. 2023, 15, 5361. https://doi.org/10.3390/rs15225361
Li M, Sun H, Zhao R. A Review of Root Zone Soil Moisture Estimation Methods Based on Remote Sensing. Remote Sensing. 2023; 15(22):5361. https://doi.org/10.3390/rs15225361
Chicago/Turabian StyleLi, Ming, Hongquan Sun, and Ruxin Zhao. 2023. "A Review of Root Zone Soil Moisture Estimation Methods Based on Remote Sensing" Remote Sensing 15, no. 22: 5361. https://doi.org/10.3390/rs15225361
APA StyleLi, M., Sun, H., & Zhao, R. (2023). A Review of Root Zone Soil Moisture Estimation Methods Based on Remote Sensing. Remote Sensing, 15(22), 5361. https://doi.org/10.3390/rs15225361