Spatiotemporal Heterogeneity of Water Conservation Function and Its Driving Factors in the Upper Yangtze River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. The InVEST Water Yield Model
2.3.2. Calculation of WCF
2.3.3. Emerging Hot Spot Analysis (EHSA)
2.3.4. Geographical Detector Model (GDM)
3. Results
3.1. Simulation and Validation of the InVEST
3.2. Spatial Patterns of Multi-Year Average WCF
3.3. Inter-Annual Variation of WCF
3.4. Spatiotemporal Heterogeneity of WCF
3.5. Analysis of Driving Factors on WCF
4. Discussion
4.1. Spatiotemporal Heterogeneity of the WCF in the UYRB
4.2. Main Driving Factors of WCF Change
4.3. Limitations and Uncertainties
5. Conclusions
- (1)
- The inter-annual variation of the WCF in UYRB was significant. During the 1991–2020 period, the WCF of the study region showed a slight increase integrally, with a growth rate of 1.48 mm/a. The areas with the fastest growing rate were located in the JLJ and MR watersheds, reaching 3.99 mm/a and 3.15 mm/a, respectively. The JSJD watershed showed a decreasing trend at a rate of −0.85 mm/a, indicating that measures are needed for alleviation. The JSJU watershed had a significant improvement in WCF, with high slope and Cv values.
- (2)
- The WCF of UYRB exhibited significant spatial heterogeneity that gradually increased from the northwest to the southeast. Specifically, in the eastern region, the WCF was strong and belonged to the hot spots. On the contrary, the fragile area of the WCF was located in the western portion of the study region, including the JSJU watershed, the JSJD watershed, the headwaters of the MTJ watershed, and the JLJ watershed. The western region is a priority area for implementing WCF enhancement strategies.
- (3)
- Among all selected driving factors, PRE (q-value = 0.701) was the factor with the highest level of explanatory power affecting the spatial differentiation of WCF in the UYRB, followed by RHU (q-value = 0.527), DEM (q-value = 0.409), TMP (q-value = 0.387), and PET (q-value = 0.311). Moreover, the explanatory power of the factor’s interactions relative to the spatial heterogeneity of WCFs was higher than the single-factor results. The interactions of multiple driving factors should be considered in improving WCF.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Daily, G.C.; Matson, P.A. Ecosystem services: From theory to implementation. Proc. Natl. Acad. Sci. USA 2008, 105, 9455–9456. [Google Scholar] [CrossRef] [PubMed]
- Wallace, K.J. Classification of ecosystem services: Problems and solutions. Biol. Conserv. 2007, 139, 235–246. [Google Scholar] [CrossRef]
- Li, M.; Liang, D.; Xia, J.; Song, J.; Cheng, D.; Wu, J.; Cao, Y.; Sun, H.; Li, Q. Evaluation of water conservation function of Danjiang River Basin in Qinling Mountains, China based on InVEST model. J. Environ. Manag. 2021, 286, 112212. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ye, A.; Peng, D.; Miao, C.; Di, Z.; Gong, W. Spatiotemporal variations in water conservation function of the Tibetan Plateau under climate change based on InVEST model. J. Hydrol. Reg. Stud. 2022, 41, 101064. [Google Scholar] [CrossRef]
- Xu, H.-j.; Zhao, C.-y.; Wang, X.-p.; Chen, S.-y.; Shan, S.-y.; Chen, T.; Qi, X.-l. Spatial differentiation of determinants for water conservation dynamics in a dryland mountain. J. Clean. Prod. 2022, 362, 132574. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, L.; Wang, Y. On accurately defining and quantifying the water retention services of forests. Acta Ecol. Sin. 2023, 43, 9–25. (In Chinese) [Google Scholar] [CrossRef]
- Shugar, D.H.; Jacquemart, M.; Shean, D.; Bhushan, S.; Upadhyay, K.; Sattar, A.; Schwanghart, W.; McBride, S.; Van Wyk de Vries, M.; Mergili, M.; et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science 2021, 373, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, S.H.; Gan, T.Y. Impact of anthropogenic climate change and human activities on environment and ecosystem services in arid regions. Sci. Total Environ. 2018, 633, 1329–1344. [Google Scholar] [CrossRef]
- Cheng, H.; Hu, Y.; Zhao, J. Meeting China’s water shortage crisis: Current practices and challenges. Environ. Sci. Technol. 2009, 43, 240–244. [Google Scholar] [CrossRef]
- Wen, X.; Theau, J. Spatiotemporal analysis of water-related ecosystem services under ecological restoration scenarios: A case study in northern Shaanxi, China. Sci. Total Environ. 2020, 720, 137477. [Google Scholar] [CrossRef]
- Yang, D.; Liu, W.; Tang, L.; Chen, L.; Li, X.; Xu, X. Estimation of water provision service for monsoon catchments of South China: Applicability of the InVEST model. Landsc. Urban Plan. 2019, 182, 133–143. [Google Scholar] [CrossRef]
- Lai, M.; Wu, S.; Dai, E.; Yin, Y.; Zhao, D. The Indirect Value of Ecosystem Services in the Three-River Headwaters Region. J. Nat. Resour. 2013, 28, 39–50. (In Chinese) [Google Scholar]
- Zhang, B.; Li, W.; Xie, G.; Xiao, Y. Water conservation of forest ecosystem in Beijing and its value. Ecol. Econ. 2010, 69, 1416–1426. [Google Scholar] [CrossRef]
- Abouabdillah, A.; White, M.; Arnold, J.G.; De Girolamo, A.M.; Oueslati, O.; Maataoui, A.; Lo Porto, A. Evaluation of soil and water conservation measures in a semi-arid river basin in Tunisia using SWAT. Soil Use Manag. 2014, 30, 539–549. [Google Scholar] [CrossRef]
- Wu, Q.; Song, J.; Sun, H.; Huang, P.; Jing, K.; Xu, W.; Wang, H.; Liang, D. Spatiotemporal variations of water conservation function based on EOF analysis at multi time scales under different ecosystems of Heihe River Basin. J. Environ. Manag. 2023, 325, 116532. [Google Scholar] [CrossRef]
- Nie, Y. A Study of the Water Conservation of Qilian Mountains based on surface energy and SCS model. Earth Sci. Front. 2010, 17, 269–275. (In Chinese) [Google Scholar]
- Jia, G.; Hu, W.; Zhang, B.; Li, G.; Shen, S.; Gao, Z.; Li, Y. Assessing impacts of the Ecological Retreat project on water conservation in the Yellow River Basin. Sci. Total Environ. 2022, 828, 154483. [Google Scholar] [CrossRef]
- Xue, J.; Li, Z.; Feng, Q.; Gui, J.; Zhang, B. Spatiotemporal variations of water conservation and its influencing factors in ecological barrier region, Qinghai-Tibet Plateau. J. Hydrol. Reg. Stud. 2022, 42, 101164. [Google Scholar] [CrossRef]
- Dennedy-Frank, P.J.; Muenich, R.L.; Chaubey, I.; Ziv, G. Comparing two tools for ecosystem service assessments regarding water resources decisions. J. Environ. Manag. 2016, 177, 331–340. [Google Scholar] [CrossRef]
- Daneshi, A.; Brouwer, R.; Najafinejad, A.; Panahi, M.; Zarandian, A.; Maghsood, F.F. Modelling the impacts of climate and land use change on water security in a semi-arid forested watershed using InVEST. J. Hydrol. 2021, 593, 125621. [Google Scholar] [CrossRef]
- Fan, P.Y.; Chun, K.P.; Mijic, A.; Tan, M.L.; Yetemen, O. Integrating the Budyko framework with the emerging hot spot analysis in local land use planning for regulating surface evapotranspiration ratio. J. Environ. Manag. 2022, 316, 115232. [Google Scholar] [CrossRef] [PubMed]
- Fan, P.Y.; Chun, K.P.; Mijic, A.; Tan, M.L.; He, Q.; Yetemen, O. Quantifying land use heterogeneity on drought conditions for mitigation strategies development in the Dongjiang River Basin, China. Ecol. Indic. 2021, 129, 107945. [Google Scholar] [CrossRef]
- Wan, C.; Roy, S.S. Geospatial characteristics of fire occurrences in southern hemispheric Africa and Madagascar during 2001–2020. J. For. Res. 2022, 34, 553–563. [Google Scholar] [CrossRef]
- Khan, S.D.; Gadea, O.C.A.; Tello Alvarado, A.; Tirmizi, O.A. Surface Deformation Analysis of the Houston Area Using Time Series Interferometry and Emerging Hot Spot Analysis. Remote Sens. 2022, 14, 3831. [Google Scholar] [CrossRef]
- Satalova, B.; Kenderessy, P. Assessment of water retention function as tool to improve integrated watershed management (case study of Poprad river basin, Slovakia). Sci. Total Environ. 2017, 599–600, 1082–1089. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, J.; Peng, J.; Zou, L.; Fan, Y.; Yang, F.; Hu, Z. Alp-valley and elevation effects on the reference evapotranspiration and the dominant climate controls in Red River Basin, China: Insights from geographical differentiation. J. Hydrol. 2023, 620, 129397. [Google Scholar] [CrossRef]
- Hu, W.; Li, G.; Li, Z. Spatial and temporal evolution characteristics of the water conservation function and its driving factors in regional lake wetlands—Two types of homogeneous lakes as examples. Ecol. Indic. 2021, 130, 108069. [Google Scholar] [CrossRef]
- Wu, J.; Sheng, Y.; Wu, Q.; Li, J.; Zhang, X. Discussion on possibilities of taking ground ice in permafrost as water sources on the Qinghai-Tibet Plateau during climate warming. Sci. Cold Arid. Reg. 2009, 1, 322–328. [Google Scholar]
- Hu, W.; Li, G.; Gao, Z.; Jia, G.; Wang, Z.; Li, Y. Assessment of the impact of the Poplar Ecological Retreat Project on water conservation in the Dongting Lake wetland region using the InVEST model. Sci. Total Environ. 2020, 733, 139423. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, M.; Qian, X.; Li, C.; Chen, S.; Wang, W. Using the geographical detector technique to explore the impact of socioeconomic factors on PM2.5 concentrations in China. J. Clean. Prod. 2019, 211, 1480–1490. [Google Scholar] [CrossRef]
- Xu, M.; Bao, C. Quantifying the spatiotemporal characteristics of China’s energy efficiency and its driving factors: A Super-RSBM and Geodetector analysis. J. Clean. Prod. 2022, 356, 131867. [Google Scholar] [CrossRef]
- Feng, R.; Wang, F.; Wang, K. Spatial-temporal patterns and influencing factors of ecological land degradation-restoration in Guangdong-Hong Kong-Macao Greater Bay Area. Sci. Total Environ. 2021, 794, 148671. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Wang, Y.; Zheng, H.; Xiao, Y.; Xu, W.; Zhang, L.; Xiao, Y.; Ouyang, Z. A method for evaluating ecological space and ecological conservation redlines in river basins: A case of Yangtze River Basin. Acta Ecol. Sin. 2019, 39, 835–843. (In Chinese) [Google Scholar] [CrossRef]
- Wang, A.; Yang, D.; Tang, L. Spatiotemporal variation in nitrogen loads and their impacts on river water quality in the upper Yangtze River basin. J. Hydrol. 2020, 590, 125487. [Google Scholar] [CrossRef]
- Wang, T.; Shi, R.; Yang, D.; Yang, S.; Fang, B. Future changes in annual runoff and hydroclimatic extremes in the upper Yangtze River Basin. J. Hydrol. 2022, 615, 128738. [Google Scholar] [CrossRef]
- Gupta, S.; Lehmann, P.; Bonetti, S.; Papritz, A.; Or, D. Global Prediction of Soil Saturated Hydraulic Conductivity Using Random Forest in a Covariate-Based GeoTransfer Function (CoGTF) Framework. J. Adv. Model. Earth Syst. 2021, 13, e2020MS002242. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, G.; Pan, J.; Feng, X. Distribution of available soil water capacity in China. J. Geogr. Sci. 2005, 15, 3–12. [Google Scholar] [CrossRef]
- Cong, W.; Sun, X.; Guo, H.; Shan, R. Comparison of the SWAT and InVEST models to determine hydrological ecosystem service spatial patterns, priorities and trade-offs in a complex basin. Ecol. Indic. 2020, 112, 106089. [Google Scholar] [CrossRef]
- Fu, B. On the calculation of the evaporation from land surface. Chin. J. Atmos. Sci. 1981, 1, 23–32. (In Chinese) [Google Scholar]
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.H.S.; Western, A.W.; Briggs, P.R. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Wen, Z.; Chen, Y.; Cao, Y.; Ren, J. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 2017, 233, 183–194. [Google Scholar] [CrossRef]
- Luo, K. Response of hydrological systems to the intensity of ecological engineering. J. Environ. Manag. 2021, 296, 113173. [Google Scholar] [CrossRef]
- Xiao, S.; Zou, L.; Xia, J.; Dong, Y.; Yang, Z.; Yao, T. Assessment of the urban waterlogging resilience and identification of its driving factors: A case study of Wuhan City, China. Sci. Total Environ. 2023, 866, 161321. [Google Scholar] [CrossRef] [PubMed]
- Harris, N.L.; Goldman, E.; Gabris, C.; Nordling, J.; Minnemeyer, S.; Ansari, S.; Lippmann, M.; Bennett, L.; Raad, M.; Hansen, M.; et al. Using spatial statistics to identify emerging hot spots of forest loss. Environ. Res. Lett. 2017, 12, 024012. [Google Scholar] [CrossRef]
- ESRI. How Emerging Spatiotemporal Hot Spot Analysis Works. Available online: https://desktop.arcgis.com/zh-cn/arcmap/10.3/tools/space-time-pattern-mining-toolbox/learnmoreemerging.htm (accessed on 22 October 2022).
- Wang, J.-F.; Zhang, T.-L.; Fu, B.-J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and Prospective. Acta Geogr. Sin. 2017, 72, 116–134. (In Chinese) [Google Scholar] [CrossRef]
- Wu, D.; Shao, Q.; Liu, J.; Cao, W. Assessment of Water Regulation Service of Forest and Grassland Ecosystem in Three-River Headwaters Region. Bull. Soil Water Conserv. 2016, 36, 207–210. (In Chinese) [Google Scholar] [CrossRef]
- Yi, L.; Sun, Y.; Yin, S.; Wei, X.; Ouyang, X. Spatial-temporal variations of vegetation coverage and its driving factors in the Yangtze River Basin from 2000 to 2019. Acta Ecol. Sin. 2023, 43, 798–811. [Google Scholar] [CrossRef]
- Zagyvai-Kiss, K.A.; Kalicz, P.; Szilágyi, J.; Gribovszki, Z. On the specific water holding capacity of litter for three forest ecosystems in the eastern foothills of the Alps. Agric. For. Meteorol. 2019, 278, 107656. [Google Scholar] [CrossRef]
- Wosten, J.H.M.; Pachepsky, Y.A.; Rawls, W.J. Pedptransfer functions: Bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol. 2001, 251, 123–150. [Google Scholar] [CrossRef]
- Jiang, Y.; Du, W.; Huang, J.; Zhao, H.; Wang, C. Analysis of vegetation changes in the Qilian Mountains during 2000–2015. J. Glaciol. Geocryol. 2017, 39, 1130–1136. (In Chinese) [Google Scholar] [CrossRef]
- Jiang, Y.; Li, S.; Shen, D.; Chen, W. Climate Change and Its Impact on the Regional Environment in the Source Regions of the Yangtze, Yellow and Lantsang Rivers in Qinghai-Tibetan Plateau during 1971–2008. J. Mt. Sci. 2012, 30, 461–469. (In Chinese) [Google Scholar] [CrossRef]
- Gong, j.; Zhang, Y.; Wang, Q.; Zhu, S.; Guo, S.; He, Y. Analysis on Artificial Precipitation Enhancement Potential of Aerial Cloud Water Resources and lts lmpact on the Ecological Environment in Sanjiangyuan. J. Qinghai Environ. 2020, 30, 82–90. (In Chinese) [Google Scholar]
- Yao, X.; Xie, Q.; Huang, Y. Advances and prospects on the study of precipitation in the Three-River-Source Region in China. Trans. Atmos. Sci. 2022, 45, 688–699. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, M.; Liu, S.; Jones, J.; Sun, G.; Wei, X.; Ellison, D.; Archer, E.; McNulty, S.; Asbjornsen, H.; Zhang, Z.; et al. Managing the forest-water nexus for climate change adaptation. For. Ecol. Manag. 2022, 525, 120545. [Google Scholar] [CrossRef]
- Mina, M.; Bugmann, H.; Cordonnier, T.; Irauschek, F.; Klopcic, M.; Pardos, M.; Cailleret, M.; Brando, P. Future ecosystem services from European mountain forests under climate change. J. Appl. Ecol. 2017, 54, 389–401. [Google Scholar] [CrossRef]
- Maurya, S.; Srivastava, P.K.; Gupta, M.; Islam, T.; Han, D. Integrating Soil Hydraulic Parameter and Microwave Precipitation with Morphometric Analysis for Watershed Prioritization. Water Resour. Manag. 2016, 30, 5385–5405. [Google Scholar] [CrossRef]
- Or, D.; Lehmann, P. Surface Evaporative Capacitance: How Soil Type and Rainfall Characteristics Affect Global-Scale Surface Evaporation. Water Resour. Res. 2019, 55, 519–539. [Google Scholar] [CrossRef]
- Wang, J.; Rich, P.M.; Price, K.P. Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. Int. J. Remote Sens. 2010, 24, 2345–2364. [Google Scholar] [CrossRef]
- Ren, Z.; Tian, Z.; Wei, H.; Liu, Y.; Yu, Y. Spatiotemporal evolution and driving mechanisms of vegetation in the Yellow River Basin, China during 2000–2020. Ecol. Indic. 2022, 138, 108832. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Y.; Zhang, Y.; Ding, Y. Estimation of glacier runoff and future trends in the Yangtze River source region, China. J. Glaciol. 2017, 55, 353–362. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, J.; Guo, L.; Sheng, Z.; Wu, J.; Zhang, J. Water Conservation Estimation Based on Time Series NDVI in the Yellow River Basin. Remote Sens. 2021, 13, 1105. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, L.; Gong, W.; Yang, X.; Kang, Y. Evaluation of the Water Conservation Function of Different Forest Types in Northeastern China. Sustainability 2019, 11, 4075. [Google Scholar] [CrossRef]
- Das, N.N.; Entekhabi, D.; Dunbar, R.S.; Chaubell, M.J.; Colliander, A.; Yueh, S.; Jagdhuber, T.; Chen, F.; Crow, W.; O’Neill, P.E.; et al. The SMAP and Copernicus Sentinel 1A/B microwave active-passive high resolution surface soil moisture product. Remote Sens. Environ. 2019, 233, 111380. [Google Scholar] [CrossRef]
- Balenzano, A.; Mattia, F.; Satalino, G.; Lovergine, F.P.; Palmisano, D.; Peng, J.; Marzahn, P.; Wegmüller, U.; Cartus, O.; Dąbrowska-Zielińska, K.; et al. Sentinel-1 soil moisture at 1 km resolution: A validation study. Remote Sens. Environ. 2021, 263, 112554. [Google Scholar] [CrossRef]
- Muhuri, A.; Goïta, K.; Magagi, R.; Wang, H. Soil Moisture Retrieval During Crop Growth Cycle Using Satellite SAR Time Series. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 9517–9534. [Google Scholar] [CrossRef]
- Qiu, J.; Huang, T.; Yu, D. Evaluation and optimization of ecosystem services under different land use scenarios in a semiarid landscape mosaic. Ecol. Indic. 2022, 135, 108516. [Google Scholar] [CrossRef]
- Al-Khafaji, M.; Saeed, F.H.; Al-Ansari, N. The Interactive Impact of Land Cover and DEM Resolution on the Accuracy of Computed Streamflow Using the SWAT Model. Water Air Soil Pollut. 2020, 231, 416. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, Q.; Wei, P.; Zhao, H.; Zhang, X.; Pang, C. Explore the Mitigation Mechanism of Urban Thermal Environment by Integrating Geographic Detector and Standard Deviation Ellipse (SDE). Remote Sens. 2022, 14, 3411. [Google Scholar] [CrossRef]
- Han, J.; Wang, J.; Chen, L.; Xiang, J.; Ling, Z.; Li, Q.; Wang, E. Driving factors of desertification in Qaidam Basin, China: An 18-year analysis using the geographic detector model. Ecol. Indic. 2021, 124, 107404. [Google Scholar] [CrossRef]
Type | Date | Description | Processing and Sources |
---|---|---|---|
meteorological | precipitation | 1 km (1991–2020) | bilinear interpolation, clipping, http://www.geodata.cn/, accessed on 29 July 2022. |
temperature | 1 km (1991–2020) | bilinear interpolation, clipping, http://www.geodata.cn/, accessed on 31 July 2022. | |
potential evapotranspiration | 1 km (1991–2020) | calculated by the modified Hargreaves equation, clipping, http://www.geodata.cn/, accessed on 28 July 2022. | |
relative humidity | 1 km (1991–2020) | statistical and spatial interpolation (thin plate spline), clipping, http://www.geodata.cn/, accessed on 20 July 2022. | |
hydrological | runoff observations | Yichang station (1991–2009) | hydrological yearbook |
remote sensing | DEM | digital elevation model, 1 km | clipping, https://www.resdc.cn/, accessed on 1 August 2022. |
land use/land cover | 1 km (1990, 1995, 2000, 2005, 2010, 2015, 2020) | clipping, https://www.resdc.cn/, accessed on 7 August 2022. | |
NDVI | 5 km (1991–2020) | clipping, http://www.geodata.cn/, accessed on 27 July 2022. | |
soil | soil data | 1 km | Clipping, http://vdb3.soil.csdb.cn/, including soil depth (SD) and soil texture (sand%, silt%, clay%, organic%), accessed on 3 August 2022. |
saturated soil hydraulic conductivity (Ksat) | 1 km | Clipping, https://doi.org/10.5281/znodo.3934853 [37], accessed on 5 August 2022. | |
plant available water capacity | 1 km | PAWC = 54.509 – 0.132sand% – 0.003(sand%)2 –0.055silt% – 0.006(silt%)2 – 0.738(clay%)2 +0.007(clay%)2 – 2.688OM% + 0.501(OM%)2 [38] |
Description | Lucode | Usle_c | Usle_p | Load_p | Eff_p | Crit_len_p | Root_depth | Kc | LULC_veg |
---|---|---|---|---|---|---|---|---|---|
Farmland | 1 | 0.412 | 1 | 3.57 | 0.48 | 15 | 1000 | 0.650 | 1 |
Woodland | 2 | 0.025 | 1 | 1.36 | 0.67 | 20 | 3500 | 1.008 | 1 |
Grassland | 3 | 0.034 | 1 | 0.93 | 0.60 | 30 | 2000 | 0.860 | 1 |
Water | 4 | 0.000 | 1 | 0.00 | 0.40 | 15 | 1 | 1.000 | 0 |
Residential area | 5 | 0.990 | 1 | 2.10 | 0.26 | 15 | 1 | 0.300 | 0 |
Unused land | 6 | 1.000 | 1 | 0.79 | 0.26 | 15 | 200 | 0.500 | 1 |
No data | 0 | 0.000 | 0 | 0.00 | 0.00 | 0 | 0 | 0.000 | 0 |
Judgment Basis | Interaction |
---|---|
q(X1∩X2) < Min(q(X1), q(X2)) | Nonlinear attenuation; bivariate |
Min(q(X1), q(X2)) < q(X1∩X2) < Max(q(X1), q(X2)) | Nonlinear attenuation; univariate |
q(X1∩X2) > Max(q(X1), q(X2)) | Bilinear enhancement; bivariate |
q(X1∩X2) = q(X1) + q(X2) | Independent |
q(X1∩X2) > q(X1) + q(X2) | Nonlinear enhancement; bivariate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Zou, L.; Xia, J.; Chen, X.; Zuo, L.; Yu, J. Spatiotemporal Heterogeneity of Water Conservation Function and Its Driving Factors in the Upper Yangtze River Basin. Remote Sens. 2023, 15, 5246. https://doi.org/10.3390/rs15215246
Liu C, Zou L, Xia J, Chen X, Zuo L, Yu J. Spatiotemporal Heterogeneity of Water Conservation Function and Its Driving Factors in the Upper Yangtze River Basin. Remote Sensing. 2023; 15(21):5246. https://doi.org/10.3390/rs15215246
Chicago/Turabian StyleLiu, Chengjian, Lei Zou, Jun Xia, Xinchi Chen, Lingfeng Zuo, and Jiarui Yu. 2023. "Spatiotemporal Heterogeneity of Water Conservation Function and Its Driving Factors in the Upper Yangtze River Basin" Remote Sensing 15, no. 21: 5246. https://doi.org/10.3390/rs15215246
APA StyleLiu, C., Zou, L., Xia, J., Chen, X., Zuo, L., & Yu, J. (2023). Spatiotemporal Heterogeneity of Water Conservation Function and Its Driving Factors in the Upper Yangtze River Basin. Remote Sensing, 15(21), 5246. https://doi.org/10.3390/rs15215246