A Multi-Level Auto-Adaptive Noise-Filtering Algorithm for Land ICESat-2 Photon-Counting Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas and Datasets
2.1.1. Forest
2.1.2. Desert
2.1.3. Grassland
2.1.4. City
2.2. Manually Annotated ICESat-2 Truth Reference Dataset
2.3. Methods
2.3.1. Overview
2.3.2. Coarse Denoising
2.3.3. Fine Denoising
2.4. Evaluation Indicators
3. Results
3.1. Coarse Denoising Results
3.2. Overall Denoising Result
3.2.1. Forest
3.2.2. Desert
3.2.3. Grassland
3.2.4. City
4. Discussion
4.1. The Discussion of Coarse denoising result
4.2. The Discussion of MLANF Denoising Result
- Forest: Three methods all have a lower precision in CF region. The DBSCAN algorithm misclassifies some noise photons as signal photons in CF. The DRAGANN algorithm of ATL08 fails to identify some signal photons in AF and has a lower recall in the forest region. The MLANF algorithm performs well in terms of precision and recall.
- Desert: The results of three algorithms in SD about three metrics are all greater than 99%. The DRAGANN algorithm of the ATL08 cannot identify the signal photons in the TD region, and the recall of it is only 53.43%. Therefore, the other denoising results of the two density-based methods perform well.
- Grassland: The grassland data all have lots of random noise photons, and their evaluation metrics are lower than those of the other land types. The HG data have a lower SNR than VG data, which seriously affects the accuracy of the three algorithms. As shown in Figure 26, the DBSCAN algorithm results have more errors of misclassification than the MLANF algorithm results. Compared with the other two methods, our method has the best data-denoising effect for the grassland-type data.
- City: In the SC study area, the precision of the MLANF algorithm is 98.22, which is better than that of the other two methods. And the DBSCAN algorithm has a higher recall rate, so its comprehensive evaluation index F-score is better than that of the other methods. Moreover, in the AC study area, the precision and recall value of our algorithm in this paper is high, so the comprehensive evaluation index F-score is the highest. In contrast, the DBSCAN algorithm and ATL08 have lower precision and recall values, so the quantitative evaluation results are lower than those of our method. Figure 27 shows the denoising results of the MLANF algorithm in the AC area, (b) and (c) show that the MLANF algorithm can accurately extract signal photons in areas with large terrain fluctuations. In conclusion, our method performs better in denoising selected city areas.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neumann, T.A.; Martino, A.J.; Markus, T.; Bae, S.; Bock, M.R.; Brenner, A.C.; Brunt, K.M.; Cavanaugh, J.; Fernandes, S.T.; Hancock, D.W.; et al. The Ice, Cloud, and Land Elevation Satellite—2 mission: A global geolocated photon product derived from the Advanced Topographic Laser Altimeter System. Remote Sens. Environ. 2019, 233, 1294–1307. [Google Scholar] [CrossRef] [PubMed]
- Herzfeld, U.C.; McDonald, B.W.; Wallin, B.F.; Neumann, T.A.; Markus, T.; Brenner, A.; Field, C. Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation for the ICESat-2 Mission. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2109–2125. [Google Scholar] [CrossRef]
- Tang, H.; Swatantran, A.; Barrett, T.; DeCola, P.; Dubayah, R. Voxel-based spatial filtering method for canopy height retrieval from airborne single-photon lidar. Remote Sens. 2016, 8, 771. [Google Scholar] [CrossRef]
- Smith, B.; Fricker, H.A.; Holschuh, N.; Gardner, A.S.; Adusumilli, S.; Brunt, K.M.; Csatho, B.; Harbeck, K.; Huth, A.; Neumann, T.; et al. Land ice height-retrieval algorithm for NASA’s ICESat-2 photon-counting laser altimeter. Remote Sens. Environ. 2019, 233, 111352. [Google Scholar] [CrossRef]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Kwok, R.; Cunningham, G.F.; Hoffmann, J.; Markus, T. Testing the ice-water discrimination and freeboard retrieval algorithms for the ICESat-2 mission. Remote Sens. Environ. 2016, 183, 13–25. [Google Scholar] [CrossRef]
- Liu, J.; Xie, H.; Guo, Y.; Tong, X.; Li, P. A Sea Ice Concentration Estimation Methodology Utilizing ICESat-2 Photon-Counting Laser Altimeter in the Arctic. Remote Sens. 2022, 14, 1130. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, N.; Liu, Z.; Yang, B.; Yang, F.; Wang, X.H.; Li, S. Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets. Remote Sens. Environ. 2020, 250, 112047. [Google Scholar] [CrossRef]
- Ranndal, H.; Christiansen, P.S.; Kliving, P.; Andersen, O.B.; Nielsen, K. Evaluation of a Statistical Approach for Extracting Shallow Water Bathymetry Signals from ICESat-2 ATL03 Photon Data. Remote Sens. 2021, 13, 3548. [Google Scholar] [CrossRef]
- Lefsky, M.A.; Harding, D.J.; Keller, M.; Cohen, W.B.; Carabajal, C.C.; Espirito-Santo, F.D.B.; Hunter, M.O.; de Oliveira, R. Estimates of forest canopy height and boveground biomass using ICESat. Geophys. Res. Lett. 2005, 32, L22S02. [Google Scholar] [CrossRef]
- Narine, L.L.; Popescu, S.; Neuenschwander, A.; Zhou, T.; Srinivasan, S.; Harbeck, K. Estimating aboveground biomass and forest canopy cover with simulated ICESat-2 data. Remote Sens. Environ. 2019, 224, 1–11. [Google Scholar] [CrossRef]
- Zhu, X.; Nie, S.; Wang, C.; Xi, X.; Hu, Z. A ground elevation and vegetation height retrieval algorithm using micro-pulse photon-counting lidar data. Remote Sens. 2018, 10, 1962. [Google Scholar] [CrossRef]
- Gwenzi, D.; Lefsky, M.A.; Suchdeo, V.P.; Harding, D.J. Prospects of the ICESat-2 laser altimetry mission for savanna ecosystem structural studies based on airborne simulation data. ISPRS J. Photogramm. Remote Sens. 2016, 118, 68–82. [Google Scholar] [CrossRef]
- Moussavi, M.S.; Abdalati, W.; Scambos, T.; Neuenschwander, A. Applicability of an automatic surface detection approach to micro-pulse photon-counting lidar altimetry data: Implications for canopy height retrieval from future ICESat-2 data. Int. J. Remote Sens. 2014, 35, 5263–5279. [Google Scholar] [CrossRef]
- Zhang, J.; Kerekes, J.; Csatho, B.; Schenk, T.; Wheelwright, R. A clustering approach for detection of ground in micropulse photon-counting LiDAR altimeter data. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 177–180. [Google Scholar]
- Chen, B.; Pang, Y.; Li, Z.; Lu, H.; North, P.; Rosette, J.; Yan, M. Forest signal detection for photon counting LiDAR using Random Forest. Remote Sens. Lett. 2020, 11, 37–46. [Google Scholar] [CrossRef]
- Magruder, L.A.; III, M.E.W.; Stout, K.D.; Neuenschwander, A.L. Noise filtering techniques for photon-counting ladar data. In Proceedings of the Laser Radar Technology and Applications XVII, Baltimore, MA, USA, 23–27 April 2012; Volume 8379, pp. 237–245. [Google Scholar]
- Popescu, S.C.; Zhou, T.; Nelson, R.; Neuenschwander, A.; Sheridan, R.; Narine, L.; Walsh, K.M. Photon counting LiDAR: An adaptive ground and canopy height retrieval algorithm for ICESat-2 data. Remote Sens. Environ. 2018, 208, 154–170. [Google Scholar] [CrossRef]
- Zhu, X.; Nie, S.; Wang, C.; Xi, X.; Wang, J.; Li, D.; Zhou, H. A Noise Removal Algorithm Based on OPTICS for Photon-Counting LiDAR Data. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1471–1475. [Google Scholar] [CrossRef]
- Huang, J.; Xing, Y.; You, H.; Qin, L.; Tian, J.; Ma, J. Particle Swarm Optimization-Based Noise Filtering Algorithm for Photon Cloud Data in Forest Area. Remote Sens. 2019, 11, 980. [Google Scholar] [CrossRef]
- Xie, H.; Ye, D.; Xu, Q.; Sun, Y.; Huang, P.; Tong, X.; Guo, Y.; Liu, X.; Liu, S. A Density-Based Adaptive Ground and Canopy Detecting Method for ICESat-2 Photon-Counting Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4411813. [Google Scholar] [CrossRef]
- Xie, H.; Sun, Y.; Xu, Q.; Li, B.; Guo, Y.; Liu, X.; Huang, P.; Tong, X. Converting along-track photons into a point-region quadtree to assist with ICESat-2-based canopy cover and ground photon detection. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102872. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X.; Ma, Y.; Xu, N.; Zhang, W.; Li, S. Signal Photon Extraction Method for Weak Beam Data of ICESat-2 Using Information Provided by Strong Beam Data in Mountainous Areas. Remote Sens. 2021, 13, 863. [Google Scholar] [CrossRef]
- Robbins, J.; Neumann, T.; Kurtz, N.; Brunt, K.; Bagnardi, M.; Hancock, D.; Lee, J. ICESat-2 Data Comparison User’s Guide for Rel005; Goddard Space Flight Center: Greenbelt, MA, USA, 2022. [Google Scholar]
- Neumann, T.A.; Brenner, D.; Hancock, J.; Robbins, J.; Saba, K.; Harbeck, A.; Gibbons, J.; Lee, S.B.; Luthcke, T.; Rebold, T. ATLAS/ICESat-2 L2A Global Geolocated Photon Data, Version 5. 2021. Available online: https://doi.org/10.5067/ATLAS/ATL03.005 (accessed on 27 August 2023).
- Neuenschwander, A.; Pitts, K. The ATL08 land and vegetation product for the ICESat-2 Mission. Remote Sens. Environ. 2019, 221, 247–259. [Google Scholar] [CrossRef]
- Neuenschwander, A.L.; Pitts, K.L.; Jelley, B.P.; Robbins, J.; Klotz, B.; Popescu, S.C.; Nelson, R.; Harding, D.; Pederson, D.; Sheridan, R. ATLAS/ICESat-2 L3A Land and Vegetation Height, Version 5. 2021. Available online: https://doi.org/10.5067/ATLAS/ATL08.005 (accessed on 27 August 2023).
- Xie, H.; Xu, Q.; Ye, D.; Jia, J.; Sun, Y.; Huang, P.; Li, M.; Liu, S.; Xie, F.; Hao, X.; et al. A Comparison and Review of Surface Detection Methods Using MBL, MABEL, and ICESat-2 Photon-Counting Laser Altimetry Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7604–7623. [Google Scholar] [CrossRef]
- Hripcsak, G.; Rothschild, A.S. Agreement, the f-measure, and reliability in information retrieval. J. Am. Med. Inform. Assoc. 2005, 12, 296–298. [Google Scholar] [CrossRef] [PubMed]
Site | Geographical Location | Time (s) | Noise Rate (%) | Acquisition Date and Season | Beam | Local Time |
---|---|---|---|---|---|---|
Congo Forest (CF) | 9°38′–9°50′N, | 150~153 | 33.42 | 9 May 2021, in summer | Strong | day |
22°38′–22°42′E | ||||||
Amazon Rainforest (AF) | 4°57′–5°12′N, | 78~81 | 0.62 | 23 October 2021, in autumn | Strong | night |
62°39′–62°33′E | ||||||
Sahara Desert (SD) | 22°51′–22°58′N, | 63~65 | 0.99 | 15 July 2021, in summer | Strong | night |
6°55′–6°57′E | ||||||
Taklimakan Desert (TD) | 40°21′–40°30′N, | 282~284 | 0.53 | 31 July 2021, in summer | Weak | night |
82°22′–82°26′E | ||||||
Hulunbuir grassland (HG) | 9°38′–9°50′N, | 349~351 | 62.39 | 19 September 2021, in summer | Weak | day |
22°38′–22°42′E | ||||||
Venezuela grassland (VG) | 7°58′–8°12′N, | 125~128 | 17.22 | 22 May 2021, in summer | Strong | day |
68°14′–68°18′E | ||||||
Shanghai, China (SC) | 30°48′–30°56′N, | 449~451 | 5.74 | 5 December 2021, in winter | Strong | night |
121°22′–121°26′E | ||||||
Atlantic coastal urban area, USA (AC) | 53°22′–53°30′N, | 206~208 | 55.06 | 13 May 2021, in summer | Weak | night |
75°10′–75°18′E |
Data Name | Signal Photon Ratio | Noise Photon Ratio | Signal Photon Ratio (after Coarse Denoising) | Noise Photon Ratio (after Coarse Denoising) | Outlier Photon Ratio |
---|---|---|---|---|---|
CF | 66.58% | 33.42% | 66.58% | 6.84% | 26.58% |
AF | 99.38% | 0.62% | 99.32% | 0.00% | 0.68% |
SD | 99.01% | 0.99% | 99.01% | 0.46% | 0.53% |
TD | 99.47% | 0.53% | 99.47% | 0.03% | 0.50% |
HG | 37.61% | 62.39% | 37.61% | 2.47% | 59.93% |
VG | 82.78% | 17.22% | 82.78% | 13.86% | 3.35% |
SC | 94.26% | 5.74% | 91.72% | 0.00% | 8.28% |
AC | 44.94% | 55.06% | 44.94% | 8.45% | 46.62% |
Data Name | Precision (%) | Recall (%) | F-score (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
DBSCAN | MLANF | ATL08 | DBSCAN | MLANF | ATL08 | DBSCAN | MLANF | ATL08 | |
CF | 94.54 | 95.01 | 96.42 | 97.57 | 99.17 | 99.10 | 96.03 | 97.04 | 97.74 |
AF | 99.95 | 99.94 | 99.39 | 92.37 | 98.19 | 70.31 | 96.02 | 99.06 | 82.36 |
SD | 99.97 | 99.98 | 99.98 | 99.93 | 99.94 | 99.98 | 99.95 | 99.96 | 99.98 |
TD | 99.98 | 99.96 | 99.96 | 99.92 | 99.95 | 53.43 | 99.95 | 99.95 | 69.63 |
HG | 75.77 | 94.01 | 97.96 | 98.09 | 99.83 | 99.03 | 85.50 | 96.83 | 98.49 |
VG | 89.06 | 96.30 | 95.40 | 99.02 | 94.23 | 77.53 | 93.78 | 95.25 | 85.54 |
SC | 95.39 | 98.22 | 96.70 | 98.24 | 93.19 | 86.36 | 96.80 | 95.64 | 91.24 |
AC | 90.83 | 96.40 | 93.19 | 96.18 | 99.16 | 99.29 | 93.43 | 97.76 | 96.14 |
Average | 93.19 | 97.48 | 97.38 | 97.67 | 97.96 | 85.63 | 95.18 | 97.69 | 90.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Liu, J.; Xie, H.; Ye, D.; Li, P. A Multi-Level Auto-Adaptive Noise-Filtering Algorithm for Land ICESat-2 Photon-Counting Data. Remote Sens. 2023, 15, 5176. https://doi.org/10.3390/rs15215176
Liu J, Liu J, Xie H, Ye D, Li P. A Multi-Level Auto-Adaptive Noise-Filtering Algorithm for Land ICESat-2 Photon-Counting Data. Remote Sensing. 2023; 15(21):5176. https://doi.org/10.3390/rs15215176
Chicago/Turabian StyleLiu, Jun, Jingyun Liu, Huan Xie, Dan Ye, and Peinan Li. 2023. "A Multi-Level Auto-Adaptive Noise-Filtering Algorithm for Land ICESat-2 Photon-Counting Data" Remote Sensing 15, no. 21: 5176. https://doi.org/10.3390/rs15215176
APA StyleLiu, J., Liu, J., Xie, H., Ye, D., & Li, P. (2023). A Multi-Level Auto-Adaptive Noise-Filtering Algorithm for Land ICESat-2 Photon-Counting Data. Remote Sensing, 15(21), 5176. https://doi.org/10.3390/rs15215176