Machine Learning Downscaling of SoilMERGE in the United States Southern Great Plains
Abstract
:1. Introduction
2. Study Areas
3. Methodology
3.1. Data Gathering
3.2. Date Selection and Data Organization
3.3. Machine Learning Implementation
3.4. Model Evaluation
3.5. Comparisons within a Region/Era
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Model Type | Region | Spatial Resolution m | Default SMERGE r | Downscaled SMERGE r | Default SMERGE ubRMSE | Downscaled SMERGE ubRMSE |
---|---|---|---|---|---|---|
RF | 1 | 1400 | 0.5714 | 0.6907 | 0.0710 | 0.0678 |
RF | 1 | 1000 | 0.5714 | 0.6870 | 0.0710 | 0.0666 |
RF | 1 | 700 | 0.5714 | 0.7409 | 0.0710 | 0.0660 |
RF | 1 | 400 | 0.5714 | 0.7318 | 0.0710 | 0.0654 |
XGBoost | 1 | 1400 | 0.5714 | 0.6550 | 0.0710 | 0.0685 |
XGBoost | 1 | 1000 | 0.5714 | 0.5243 | 0.0710 | 0.0701 |
XGBoost | 1 | 700 | 0.5714 | 0.5249 | 0.0710 | 0.0724 |
XGBoost | 1 | 400 | 0.5714 | 0.6298 | 0.0710 | 0.0693 |
GBoost | 1 | 1400 | 0.5714 | 0.7100 | 0.0710 | 0.0650 |
GBoost | 1 | 1000 | 0.5714 | 0.4850 | 0.0710 | 0.0720 |
GBoost | 1 | 700 | 0.5714 | 0.4489 | 0.0710 | 0.0736 |
GBoost | 1 | 400 | 0.5714 | 0.6477 | 0.0710 | 0.0660 |
RF | 2 | 1400 | 0.6037 | 0.6554 | 0.0970 | 0.1049 |
RF | 2 | 1000 | 0.6044 | 0.6966 | 0.0970 | 0.1024 |
RF | 2 | 700 | 0.6034 | 0.7145 | 0.0970 | 0.1010 |
RF | 2 | 400 | 0.6017 | 0.6979 | 0.0972 | 0.1007 |
XGBoost | 2 | 1400 | 0.6037 | 0.6649 | 0.0970 | 0.0970 |
XGBoost | 2 | 1000 | 0.6044 | 0.7567 | 0.0970 | 0.0929 |
XGBoost | 2 | 700 | 0.6034 | 0.6128 | 0.0970 | 0.0965 |
XGBoost | 2 | 400 | 0.6017 | 0.7511 | 0.0972 | 0.0897 |
GBoost | 2 | 1400 | 0.6037 | 0.4444 | 0.0970 | 0.1071 |
GBoost | 2 | 1000 | 0.6044 | 0.6349 | 0.0970 | 0.0934 |
GBoost | 2 | 700 | 0.6034 | 0.6757 | 0.0970 | 0.0881 |
GBoost | 2 | 400 | 0.6017 | 0.6181 | 0.0972 | 0.0954 |
In Situ Comparison from USCRN Stillwater Sites | ||||||
RF | 2 | 1400 | 0.6324 | 0.3496 | 0.0712 | 0.0800 |
RF | 2 | 1000 | 0.7502 | 0.5777 | 0.0684 | 0.0757 |
RF | 2 | 700 | 0.6417 | 0.6756 | 0.0681 | 0.0673 |
XGBoost | 2 | 1400 | 0.6324 | 0.5975 | 0.0712 | 0.0724 |
XGBoost | 2 | 1000 | 0.7502 | 0.6692 | 0.0684 | 0.0681 |
XGBoost | 2 | 700 | 0.6417 | 0.4898 | 0.0681 | 0.0717 |
GBoost | 2 | 1400 | 0.6324 | 0.4663 | 0.0712 | 0.0752 |
GBoost | 2 | 1000 | 0.7502 | 0.6692 | 0.0684 | 0.0757 |
GBoost | 2 | 700 | 0.6417 | 0.4713 | 0.0681 | 0.0716 |
Model Type | Resolution m | Default SMERGE r | Downscaled SMERGE r | Default SMERGE ubRMSE | Downscaled SMERGE ubRMSE |
---|---|---|---|---|---|
RF | 3000 | 0.4806 | 0.8193 | 0.0572 | 0.0508 |
RF | 2000 | 0.4375 | 0.7608 | 0.0627 | 0.0568 |
RF | 1400 | 0.4330 | 0.7161 | 0.0656 | 0.0620 |
RF | 1000 | 0.4113 | 0.7099 | 0.0698 | 0.0648 |
RF | 700 | 0.3800 | 0.7304 | 0.0755 | 0.0704 |
RF | 400 | 0.3321 | 0.7497 | 0.0860 | 0.0805 |
XGBoost | 3000 | 0.4806 | 0.8092 | 0.0572 | 0.0542 |
XGBoost | 2000 | 0.4375 | 0.8082 | 0.0627 | 0.0579 |
XGBoost | 1400 | 0.4330 | 0.8337 | 0.0656 | 0.0612 |
XGBoost | 1000 | 0.4113 | 0.7745 | 0.0698 | 0.0671 |
XGBoost | 700 | 0.3800 | 0.7461 | 0.0755 | 0.0720 |
XGBoost | 400 | 0.3321 | 0.7239 | 0.0860 | 0.0847 |
GBoost | 3000 | 0.4806 | 0.8072 | 0.0572 | 0.0557 |
GBoost | 2000 | 0.4375 | 0.7997 | 0.0627 | 0.0571 |
GBoost | 1400 | 0.4330 | 0.8460 | 0.0656 | 0.0614 |
GBoost | 1000 | 0.4113 | 0.7865 | 0.0698 | 0.0670 |
GBoost | 700 | 0.3800 | 0.7552 | 0.0755 | 0.0739 |
GBoost | 400 | 0.3321 | 0.7314 | 0.0860 | 0.0856 |
In Situ Comparison from USCRN Stillwater 5WNW | |||||
RF | 700 | 0.5650 | 0.6189 | 0.0360 | 0.0347 |
XGBoost | 700 | 0.5650 | 0.2316 | 0.0360 | 0.0460 |
GBoost | 700 | 0.5650 | 0.5774 | 0.0360 | 0.0368 |
Model Type | Region | Resolution m | Default SMERGE r | Downscaled SMERGE r | Default SMERGE ubRMSE | Downscaled SMERGE ubRMSE |
---|---|---|---|---|---|---|
RF | 1 | 1400 | 0.6109 | 0.4994 | 0.0304 | 0.0207 |
RF | 1 | 1000 | 0.6087 | 0.5889 | 0.0312 | 0.0194 |
RF | 1 | 700 | 0.6235 | 0.5781 | 0.0293 | 0.0201 |
RF | 1 | 400 | 0.6463 | 0.6299 | 0.0288 | 0.0197 |
XGBoost | 1 | 1400 | 0.6109 | 0.6374 | 0.0304 | 0.0264 |
XGBoost | 1 | 1000 | 0.6087 | 0.5476 | 0.0312 | 0.0287 |
XGBoost | 1 | 700 | 0.6235 | 0.6406 | 0.0293 | 0.0251 |
XGBoost | 1 | 400 | 0.6463 | 0.6479 | 0.0288 | 0.0265 |
GBoost | 1 | 1400 | 0.6109 | 0.2918 | 0.0304 | 0.0381 |
GBoost | 1 | 1000 | 0.6087 | 0.5956 | 0.0312 | 0.0344 |
GBoost | 1 | 700 | 0.6235 | 0.6922 | 0.0293 | 0.0205 |
GBoost | 1 | 400 | 0.6463 | 0.7016 | 0.0288 | 0.0239 |
RF | 2 | 1400 | 0.7032 | 0.7255 | 0.0271 | 0.0274 |
RF | 2 | 1000 | 0.7115 | 0.6617 | 0.0265 | 0.0289 |
RF | 2 | 700 | 0.7076 | 0.4798 | 0.0277 | 0.0344 |
RF | 2 | 400 | 0.7097 | 0.5728 | 0.0266 | 0.0310 |
XGBoost | 2 | 1400 | 0.7032 | 0.8047 | 0.0271 | 0.0246 |
XGBoost | 2 | 1000 | 0.7115 | 0.7215 | 0.0265 | 0.0262 |
XGBoost | 2 | 700 | 0.7076 | 0.6519 | 0.0277 | 0.0299 |
XGBoost | 2 | 400 | 0.7097 | 0.7212 | 0.0266 | 0.0261 |
GBoost | 2 | 1400 | 0.7032 | 0.7180 | 0.0271 | 0.0270 |
GBoost | 2 | 1000 | 0.7115 | 0.4374 | 0.0265 | 0.0374 |
GBoost | 2 | 700 | 0.7076 | 0.6381 | 0.0277 | 0.0380 |
GBoost | 2 | 400 | 0.7097 | 0.2011 | 0.0266 | 0.0550 |
RF | 3 | 1400 | 0.4895 | 0.7029 | 0.0348 | 0.0255 |
RF | 3 | 1000 | 0.4895 | 0.7120 | 0.0348 | 0.0251 |
RF | 3 | 700 | 0.4880 | 0.6605 | 0.0350 | 0.0263 |
RF | 3 | 400 | 0.5302 | 0.4529 | 0.0346 | 0.0332 |
XGBoost | 3 | 1400 | 0.4895 | 0.4879 | 0.0348 | 0.0333 |
XGBoost | 3 | 1000 | 0.4895 | 0.5606 | 0.0348 | 0.0314 |
XGBoost | 3 | 700 | 0.4880 | 0.4467 | 0.0350 | 0.0349 |
XGBoost | 3 | 400 | 0.5302 | 0.2835 | 0.0346 | 0.0382 |
GBoost | 3 | 1400 | 0.4895 | 0.5945 | 0.0348 | 0.0282 |
GBoost | 3 | 1000 | 0.4895 | 0.6025 | 0.0348 | 0.0315 |
GBoost | 3 | 700 | 0.4880 | 0.6069 | 0.0350 | 0.0317 |
GBoost | 3 | 400 | 0.5302 | 0.4645 | 0.0346 | 0.0357 |
References
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Maerinuzzi, J.M.; Font, J.; Berger, M. Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1729–1735. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Dorigo, W.A.; Parinussa, R.M.; de Jeu, R.A.M.; Wagner, W.; McCabe, M.F.; Evans, J.P.; van Dijk, A.I.J.M. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ. 2012, 123, 280–297. [Google Scholar] [CrossRef]
- O’donnell, M.S.; Manier, D.J. Spatial Estimates of Soil Moisture for Understanding Ecological Potential and Risk: A Case Study for Arid and Semi-Arid Ecosystems. Land 2022, 11, 1856. [Google Scholar] [CrossRef]
- Bhardwaj, J.; Kuleshov, Y.; Chua, Z.-W.; Watkins, A.B.; Choy, S.; Sun, Q. Evaluating Satellite Soil Moisture Datasets for Drought Monitoring in Australia and the South-West Pacific. Remote Sens. 2022, 14, 3971. [Google Scholar] [CrossRef]
- Peng, J.; Loew, A.; Merlin, O.; Verhoest, N.E.C. A review of spatial downscaling remotely sensed soil moisture: Downscale satellite-based soil moisture. Rev. Geophys. 2017, 55, 341–366. [Google Scholar] [CrossRef]
- Sabaghy, S.; Walker, J.P.; Renzullo, L.J.; Jackson, T.J. Spatially enhanced passive microwave derived soil moisture: Capabilities and opportunities. Remote Sens. Environ. 2018, 209, 551–580. [Google Scholar] [CrossRef]
- Srivastava, P.; Han, D.; Ramirez, M.R.; Islan, T. Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS land surface temperature for hydrologic applications. Water Resour. Manag. 2013, 27, 3127–3144. [Google Scholar] [CrossRef]
- Im, J.; Park, S.; Rhee, J.; Balk, J.; Choi, M. Downscaling of AMSR-E soil moisture with MODIS products using machine learning approaches. Environ. Earth Sci. 2016, 75, 1120. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Jing, W.; Yue, X. Comparison of different machine learning approaches for monthly satellite-based soil moisture downscaling over Northeast China. Remote Sens. 2018, 10, 31. [Google Scholar] [CrossRef]
- Zhang, L.; Zeng, Y.; Zhuang, R.; Szabó, B.; Manfreda, S.; Han, Q.; Su, Z. In Situ Observation-Constrained Global Surface Soil Moisture Using Random Forest Model. Remote Sens. 2022, 13, 4893. [Google Scholar] [CrossRef]
- Liu, Y.; Xia, X.; Yao, L.; Jing, W.; Zhou, C.; Huang, W.; Li, Y.; Yang, J. Downscaling satellite retrieved soil moisture using Regression tree-based machine learning algorithms over Southwest France. Earth Space Sci. 2020, 7, e2020EA001267. [Google Scholar] [CrossRef]
- Zappa, L.; Forkel, M.; Xaver, A.; Dorigo, W. Deriving field scale soil moisture from satellite observations and ground measurements in a hilly agricultural region. Remote Sens. 2019, 11, 2596. [Google Scholar] [CrossRef]
- Abowarda, A.S.; Bai, L.; Zhang, C.; Long, D.; Li, X.; Huang, Q.; Sun, Z. Generating surface soil moisture at 30 m spatial resolution using both data fusion and machine learning toward better water resources management at the field scale. Remote Sens. Environ. 2021, 255, 112301. [Google Scholar] [CrossRef]
- Zhao, W.; Sánchez, N.; Lu, H.; Li, A. A spatial downscaling approach for the SMAP passive surface soil moisture product using random forest regression. J. Hydrol. 2018, 563, 1009–1024. [Google Scholar] [CrossRef]
- Cheng, F.; Zhang, Z.; Zhuang, H.; Han, J.; Luo, Y.; Cao, J.; Zhang, L.; Zhang, J.; Xu, J.; Tao, F. ChinaCropSM1 km: A fine 1 km daily soil moisture dataset for dryland wheat and maize across China during 1993–2018. Earth Syst. Sci. Data 2023, 15, 395–409. [Google Scholar] [CrossRef]
- Reichle, R.H.; Crow, W.T.; Koster, R.D.; Sharif, H.O.; Mahanama, S.P.P. Contribution of soil moisture retrievals to land data assimilation products. Geophys. Res. Lett. 2008, 35, L01404. [Google Scholar] [CrossRef]
- Wagner, W.; Lemoine, G.; Rott, H. A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens. Environ. 1999, 70, 191–207. [Google Scholar] [CrossRef]
- Albergel, C.; Ruediger, C.; Pellarin, T.; Calvet, J.-C.; Fritz, N.; Froissard, F.; Suquia, D.; Petitpa, A.; Piguet, B.; Martin, E. From near-surface to root-zone soil moisture using an exponential filter: An assessment of the method based on in-situ observations and model simulations. Hydrol. Earth Syst. Sci. 2008, 12, 1323–1337. [Google Scholar] [CrossRef]
- Tobin, K.J.; Crow, W.T.; Dong, J.; Bennett, M.E. Validation of a new soil moisture product Soil MERGE or SMERGE. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3351–3365. [Google Scholar] [CrossRef]
- Tabatabaeenejad, A.; Burgin, M.; Duan, X.; Moghaddam, M. P-Band radar retrieval of subsurface soil moisture profile as a second-order polynomial: First AirMOSS results. IEEE Trans. Geosci. Remote Sens. 2015, 53, 645–658. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Xavier, A.; Vreugdenhil, M.; Gruber, A.; Hegyiová, A.; Sanchis-Dufau, A.D.; Zamojski, D.; Cordes, C.; Wagner, W.; Drusch, M. Global automated quality control of in situ soil moisture data from the International Soil Moisture Network. Vadose Zone J. 2013, 12, 1–21. [Google Scholar] [CrossRef]
- Tobin, K.J.; Crow, W.T.; Bennett, M.E. Root zone soil moisture comparisons: AirMOSS, SMERGE, and SMAP. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Jing, W.; Zhang, P.; Zhao, X. Reconstructing monthly ECV global soil moisture with an improved spatial resolution. Water Resour. Manag. 2018, 32, 2523–2537. [Google Scholar] [CrossRef]
- Yan, R.; Bai, R. A new approach for soil moisture downscaling in the presence of seasonal difference. Remote Sens. 2020, 12, 2818. [Google Scholar] [CrossRef]
- Kovačević, J.; Cvijetinović, Ž.; Stančić, N.; Brodić, N.; Mihajlović, D. New downscaling approach using ESA CCI SM products for obtaining high resolution surface soil moisture. Remote Sens. 2020, 12, 1119. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, L.; Ma, Z.; Li, B.; Bartels, R.; Liu, C.; Zhang, X.; Dong, J. Spatially explicit model for statistical downscaling of satellite passive microwave soil moisture. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1182–1191. [Google Scholar] [CrossRef]
- Reichle, R.H.; De Lannoy, G.J.M.; Liu, Q.; Ardizzone, J.V.; Colliander, A.; Conaty, A.; Crow, W.; Jackson, T.J.; Jones, L.A.; Kimball, J.S.; et al. Assessment of the SMAP Level-4 surface and root-zone soil moisture product using in situ measurements. J. Hydrometeorol. 2017, 18, 2621–2645. [Google Scholar] [CrossRef]
- Crow, W.T.; Berg, A.A.; Cosh, M.H.; Loew, A.; Mohanty, B.P.; Panciera, R.; de Rosnay, P.; Ryu, D.; Walker, J.P. Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys. 2012, 50, RG2002. [Google Scholar] [CrossRef]
Era_Region | In Situ Station |
---|---|
Era 1, Region 1 | Anthony, Ashton, Bryon, Lamont-CF1, Maple City, Medford, Newkirk, Pawhuska |
Era 1, Region 2 | Marshall, Morrison, Omega, Ringwood, Tyron, Waukomis |
Era 3, Region 1 | Hillsboro, Towanda |
Era 3, Region 2 | Ashton, Byron, Lamont-CF1 |
Era 3, Region 3 | Elk Falls, Pawhuska, Tyro |
Era 3, Region 4 | El Reno, Meeker |
Network_Era_Region | Clay (%) | Silt (%) | Sand (%) | Dominant Land Cover | Secondary Land Cover | Elevation (m) |
---|---|---|---|---|---|---|
ARM_1_1 | 7–50 (30) | 1–67 (46) | 4–90 (24) | Cultivated Crops | Herbaceous | 244–449 (347) |
ARM_1_2 | 8–51 (27) | 1–64 (37) | 6–90 (36) | Herbaceous | Cultivated Crops | 251–443 (332) |
MOISST | 5–42 (24) | 4–65 (37) | 13–90 (40) | Herbaceous | Cultivated Crops | 267–377 (322) |
SoilSCAPE | 13–23 (19) | 22–58 (45) | 19–65 (35) | Herbaceous | None | 520–535 (523) |
ARM_3_1 | 3–48 (27) | 2–64 (36) | 3–95 (37) | Cultivated Crops | Herbaceous | 371–694 (517) |
ARM_3_2 | 1–54 (27) | 1–67 (40) | 7–98 (34) | Herbaceous | Cultivated Crops | 280–677 (427) |
ARM_3_3 | 17–57 (34) | 18–63 (44) | 3–62 (22) | Herbaceous | Hay/PastureDeciduous Forest | 202–475 (287) |
ARM_3_4 | 7–50 (24) | 1–65 (35) | 6–90 (41) | Herbaceous | Cultivated Crops | 247–666 (413) |
Network_Era_Region | April Mean Temp (°C) | July Mean Temp (°C) | October Mean Temp (°C) | Warm Season Precipitation (mm) |
---|---|---|---|---|
ARM_1_1 | 16.8 | 23.4 | 19.0 | 114.7 |
ARM_1_2 | 17.3 | 24.5 | 19.2 | 98.0 |
MOISST | 12.9 | 26.3 | 15.3 | 94.6 |
SoilSCAPE | 15.3 | 27.0 | 15.8 | 77.0 |
ARM_3_1 | 17.3 | 24.2 | 17.8 | 85.3 |
ARM_3_2 | 19.7 | 25.2 | 18.2 | 83.3 |
ARM_3_3 | 18.2 | 25.1 | 18.4 | 113.9 |
ARM_3_4 | 19.2 | 25.7 | 19.6 | 86.8 |
Data Source | Description and Download URL (Accesssed on 30 June 2023) |
---|---|
Static Variables | |
Elevation | USGS Elevation Products (3DEP), 1/3 arc-sec DEM: TNM Download v2 (nationalmap.gov) |
Soil Texture | Gridded National Soil Survey Geographic Database (gNATSGO), the ratio of sand, silt, and clay (Spatial Resolution = 30 m): https://www.nrcs.usda.gov/resources/data-and-reports/gridded-national-soil-survey-geographic-database-gnatsgo |
Dynamic Variables | |
SMERGE | Smerge-Noah-CCI root zone soil moisture 0-40 cm L4 daily 0.125 × 0.125 degree V2.0 (SMERGE_RZSM0_40CM): https://www.tamiu.edu/cees/smerge/data.shtml |
Albedo | MCD15A3H v061 MODIS/Terra+Aqua Leaf Area Index/FPAR 4-Day L4 Global 500 m SIN Grid: https://lpdaac.usgs.gov/products/mcd43a3v006/ |
LAI | MCD15A3H v061 MODIS/Terra+Aqua Leaf Area Index/FPAR 4-Day L4 Global 500 m SIN Grid: https://lpdaac.usgs.gov/products/mcd15a3hv061/ |
NDVI | Temporally Smoothed Weekly AQUA Collect 6 (C6) Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) at 250 m: Remote Sensing Phenology CONUS 250 m Smoothed NDVI (usgs.gov) |
Temperature | Daily mean temperature, calculated as (tmax + tmin)/2 (Spatial Resolution = 4 km): https://ftp.prism.oregonstate.edu/daily/tmean/ |
Network_Era | Dates |
---|---|
ARM_1 | 20160401, 20160421, 20160505, 20160524, 20160715, 20160729, 20160812, 20160826, 20160909, 20160923, 20161007, 20161021, 20170401, 20170415, 20170429, 20170513, 20170527, 20170610, 20170624, 20170708, 20170722, 20170805, 20170819, 20170902, 20170916, 20170930, 20171014, 20171028, 20180401, 20180415, 20180429, 20180513, 20180527, 20180610, 20180624, 20180708,20180722, 20180805, 20180819, 20180902, 20180916, 20180930, 20181014, 20181028,20190401, 20190415, 20190429 |
ARM_3 | 20030401, 20030415, 20030429, 20030513, 20030527, 20030610, 20030624, 20030731, 20030814, 20030828, 20030910, 20031023, 20040401, 20040415, 20040430, 20040514, 20040528, 20040617, 20040701, 20040715, 20040729, 20040812, 20040826, 20040909, 20040923, 20041007, 20041021, 20050401, 20050415, 20050429, 20050513, 20050527, 20050610, 20050628, 20050713, 20050727,20050822, 20050905, 20050920, 20051004, 20051018,20060401, 20060415, 20060707, 20060806, 20060826, 20060909, 20060923, 20061007, 20061021, 20070620, 20070813 |
MOISST_2 | 20121024, 20121027, 20121030, 20130617, 20130716, 20130719, 20130723, 20130927, 20140416, 20140418, 20140424, 20140708, 20140711, 20140715, 20141014,20141017, 20141021, 20150416, 20150420, 20150807, 20150811, 20150814 |
SoilSCAPE_2 | 20120421, 20120601, 20120608, 20120615, 20120628, 20120705, 20120712, 20120719, 20120726, 20120802, 20120817, 20120824, 20120831, 20120907, 20120922, 20120929, 20121006, 20121013, 20121020, 20121030, 20121106, 20121113,20121120, 20121126, 20130407, 20130414, 2013042, 20130428, 20130505, 20130512, 20130519, 20130530, 20130606, 20130613, 20130626, 20130703, 20130710, 20130717, 20130724, 2013080,20130810, 20131006, 20131013, 20131020, 20131110, 20131117, 20131124, 20141027, 20150401, 20150408, 20150415, 20150422, 20150429, 20150506, 20150513, 20150520, 20150527, 20150603, 20150610, 20150617, 20150624, 20150701, 20150708, 20150715, 20150722, 20150729, 20150805, 20150812, 20150819, 20150826, 20150902, 20150909, 20150916, 20150923, 20150930, 20151007, 20151014, 20151021, 20151028 |
Random Forest (RF) |
|
eXtreme Gradient Boosting (XGBoost) |
|
Gradient Boost (GBoost) |
|
Network_Era_Region | Model Type | Date | Albedo | Clay | Aspect | Temp | Elev | NDVI | Lai | Sand | Silt | Slope |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ARM_1_1 | RF | H | H | H | M | H | M | L | M | M | L | L |
ARM_1_1 | XGBoost | H | L | M | M | H | M | L | L | H | M | M |
ARM_1_1 | GBoost | H | L | M | M | H | M | L | L | H | M | M |
ARM_1_2 | RF | H | H | M | M | H | M | L | M | L | H | L |
ARM_1_2 | XGBoost | H | L | M | M | H | M | L | L | H | H | M |
ARM_1_2 | GBoost | H | L | M | M | H | M | L | L | H | H | M |
MOISST | RF | H | H | H | M | M | L | M | L | M | M | L |
MOISST | XGBoost | H | M | H | L | H | M | L | L | M | M | M |
MOISST | GBoost | H | M | H | M | H | M | L | L | M | M | L |
SoilSCAPE | RF | H | H | L | M | M | M | H | H | L | L | M |
SoilSCAPE | XGBoost | H | H | M | M | H | M | M | H | L | L | L |
SoilSCAPE | GBoost | H | H | M | M | H | M | M | H | L | L | M |
ARM_3_1 | RF | H | H | H | M | L | H | L | M | L | M | L |
ARM_3_1 | XGBoost | H | L | M | M | M | H | L | L | M | H | L |
ARM_3_1 | GBoost | H | L | M | M | M | H | L | L | M | H | M |
ARM_3_2 | RF | H | H | H | M | L | H | M | L | M | L | L |
ARM_3_2 | XGBoost | H | L | M | M | M | H | L | L | H | H | M |
ARM_3_2 | GBoost | H | L | M | M | H | H | L | L | H | M | M |
ARM_3_3 | RF | H | H | H | M | M | H | M | M | L | L | L |
ARM_3_3 | XGBoost | H | L | H | M | H | H | L | L | M | M | M |
ARM_3_3 | GBoost | H | L | M | M | H | H | L | L | M | M | M |
Model Type | Resolution m | Default SMERGE r | Downscaled SMERGE r | Default SMERGE ubRMSE | Downscaled SMERGE ubRMSE | Objective Metric |
---|---|---|---|---|---|---|
RF | 100 | 0.4805 | 0.5217 | 0.1127 | 0.1122 | 0.9061 |
RF | 30 | 0.4662 | 0.5169 | 0.1210 | 0.1207 | 0.7738 |
XGBoost | 100 | 0.4805 | 0.4837 | 0.1127 | 0.1126 | 0.1200 |
XGBoost | 30 | 0.4662 | 0.4665 | 0.1210 | 0.1210 | 0.0188 |
GBoost | 100 | 0.4805 | 0.4809 | 0.1127 | 0.1127 | 0.0137 |
GBoost | 30 | 0.4662 | 0.4662 | 0.1210 | 0.1210 | 0 |
Network_Era_Region or Site | Resolution m | Percent Complete | Data Used for Training | Incomplete MOISST/In Situ Data | Missing Albedo/LAI | Percentage SMERGE Interpolated |
---|---|---|---|---|---|---|
ARM_1_1 | 1400 | 100% | - | 0% | 0% | 10% |
ARM_1_1 | 1000 | 100% | - | 0% | 0% | 11% |
ARM_1_1 | 700 | 100% | - | 0% | 0% | 16% |
ARM_1_1 | 400 | 100% | - | 0% | 0% | 17% |
SCAN_1_Abrams | 1000 | 34% | 66% | 0% | 0% | - |
SCAN_1_Abrams | 700 | 32% | 68% | 0% | 0% | - |
ARM_1_2 | 1400 | 100% | - | 0% | 0% | 9% |
ARM_1_2 | 1000 | 100% | - | 0% | 0% | 9% |
ARM_1_2 | 700 | 100% | - | 0% | 0% | 11% |
ARM_1_2 | 400 | 100% | - | 0% | 0% | 14% |
USCRN_1_Stillwater Sites | 1400 | 29% | 71% | 0% | 0% | - |
USCRN_1_Stillwater Sites | 1000 | 25% | 75% | 0% | 0% | - |
USCRN_1_Stillwater Sites | 700 | 31% | 69% | 0% | 0% | - |
AirMOSS_2_MOISST | 3000 | 82% | - | 18% | 0% | 1% |
AirMOSS_2_MOISST | 2000 | 84% | - | 16% | 0% | 1% |
AirMOSS_2_MOISST | 1400 | 83% | - | 17% | 0% | 1% |
AirMOSS_2_MOISST | 1000 | 82% | - | 18% | 0% | 1% |
AirMOSS_2_MOISST | 700 | 83% | - | 17% | 0% | 1% |
AirMOSS_2_MOISST | 400 | 81% | - | 19% | 0% | 1% |
USCRN_2_Stillwater 5WNW | 700 | 46% | 54% | 0% | 0% | - |
SoilSCAPE_2 | 100 | 65% | - | 0% | 0% | 10% |
SoilSCAPE_2 | 30 | 72% | - | 0% | 0% | 10% |
ARM_3_1 | 1400 | 100% | - | 0% | 0% | 24% |
ARM_3_1 | 1000 | 93% | - | 0% | 7% | 24% |
ARM_3_1 | 700 | 75% | - | 0% | 25% | 25% |
ARM_3_1 | 400 | 63% | - | 0% | 37% | 25% |
ARM_3_2 | 1400 | 100% | - | 0% | 0% | 29% |
ARM_3_2 | 1000 | 92% | - | 0% | 8% | 29% |
ARM_3_2 | 700 | 77% | - | 0% | 23% | 29% |
ARM_3_2 | 400 | 77% | - | 0% | 23% | 29% |
ARM_3_3 | 1400 | 92% | - | 7% | 1% | 36% |
ARM_3_3 | 1000 | 92% | - | 7% | 1% | 36% |
ARM_3_3 | 700 | 91% | - | 7% | 2% | 36% |
ARM_3_3 | 400 | 77% | - | 6% | 17% | 36% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tobin, K.; Sanchez, A.; Esparza, D.; Garcia, M.; Ganta, D.; Bennett, M. Machine Learning Downscaling of SoilMERGE in the United States Southern Great Plains. Remote Sens. 2023, 15, 5120. https://doi.org/10.3390/rs15215120
Tobin K, Sanchez A, Esparza D, Garcia M, Ganta D, Bennett M. Machine Learning Downscaling of SoilMERGE in the United States Southern Great Plains. Remote Sensing. 2023; 15(21):5120. https://doi.org/10.3390/rs15215120
Chicago/Turabian StyleTobin, Kenneth, Aaron Sanchez, Daniela Esparza, Miguel Garcia, Deepak Ganta, and Marvin Bennett. 2023. "Machine Learning Downscaling of SoilMERGE in the United States Southern Great Plains" Remote Sensing 15, no. 21: 5120. https://doi.org/10.3390/rs15215120
APA StyleTobin, K., Sanchez, A., Esparza, D., Garcia, M., Ganta, D., & Bennett, M. (2023). Machine Learning Downscaling of SoilMERGE in the United States Southern Great Plains. Remote Sensing, 15(21), 5120. https://doi.org/10.3390/rs15215120