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Abstract: SoilMERGE (SMERGE) is a root-zone soil moisture (RZSM) product that covers the entire
continental United States and spans 1978 to 2019. Machine learning techniques, Random Forest
(RF), eXtreme Gradient Boosting (XGBoost), and Gradient Boost (GBoost) downscaled SMERGE
to spatial resolutions straddling the field scale domain (100 to 3000 m). Study area was northern
Oklahoma and southern Kansas. The coarse resolution of SMERGE (0.125 degree) limits this product’s
utility. To validate downscaled results in situ data from four sources were used that included: United
States Department of Energy Atmospheric Radiation Measurement (ARM) observatory, United States
Climate Reference Network (USCRN), Soil Climate Analysis Network (SCAN), and Soil moisture
Sensing Controller and oPtimal Estimator (SoilSCAPE). In addition, RZSM retrievals from NASA’s
Airborne Microwave Observatory of Subcanopy and Surface (AirMOSS) campaign provided a nearly
spatially continuous comparison. Three periods were examined: era 1 (2016 to 2019), era 2 (2012 to
2015), and era 3 (2003 to 2007). During eras 1 and 2, RF outperformed XGBoost and GBoost, whereas
during era 3 no model dominated. Performance was better during eras 1 and 2 as opposed to the
pre-L band era 3. Improvements across all eras, regions, and models realized from downscaling
included an increase in correlation from 0.03 to 0.42 and a decrease in ubRMSE from −0.0005 to
−0.0118 m3/m3. This study demonstrates the feasibility of SMERGE downscaling opening the
prospect for the development of a long-term RZSM dataset at a more desirable field-scale resolution
with the potential to support diverse hydrometeorological and agricultural applications.

Keywords: rootzone soil moisture; random forest; downscaling

1. Introduction

Satellite-derived soil moisture products, such as Soil Moisture Active Passive (SMAP)
and Soil Moisture and Ocean Salinity (SMOS), have revolutionized hydrological and agri-
cultural studies by providing estimates of surface soil moisture (SM) worldwide [1,2].
However, their use is hindered by their coarse spatial resolution (0.25–0.50 degrees) and
their lack of ability to penetrate below the surface skin or the top 5 cm layer. While prod-
ucts like the European Space Agency Climate Change Initiative (ESA-CCI) have blended
satellite retrievals to enhance observation frequency [3], there remains a pressing need
for higher spatial resolution data to support hydrological and ecological applications [4]
and accurate drought monitoring [5]. To bridge this gap, advanced machine learning
(ML) techniques have emerged as promising tools for downscaling satellite-based soil
moisture data. ML offers advantages in handling large and noisy datasets from dynamic
and non-linear systems [6–10]. In recent years, studies have successfully employed ML
algorithms such as Random Forest (RF), gradient boost decision tree, and eXtreme Gradient
Boosting (XGBoost) to enhance spatial resolution and accuracy of surface soil moisture
estimates [11–16]. Notable improvements have included increased correlations and de-
creased unbiased root mean square error [11,14–16]. While surface soil moisture retrievals
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are valuable, the scientific community increasingly recognizes the importance of deeper
root-zone soil moisture (RZSM) data, as it directly influences agricultural productivity
and groundwater interactions. However, directly sensing RZSM remains a challenge. Ef-
forts like NASA’s SigNals of Opportunity: P-band Investigation (SNoOPI) plan to use the
penetrating P-band to retrieve RZSM, but at present, RZSM is often inferred from surface
measurements. Two common approaches used to estimate RZSM include the Ensemble
Kalman Filter [17] and Exponential Filter [18,19], which, while useful, are not as robust as
having direct retrievals of soil moisture.

In this context, the SoilMERGE (SMERGE) product stands as a notable endeavor, cov-
ering the continental United States and spanning multiple decades (1979 to 2019) [20]. Like
other products, SMERGE faces spatial resolution constraints (0.125 degrees) and is available
at a daily time step. SMERGE provides an overall estimate of RZSM between 0 to 40 cm and
is based on the fusion of NLDAS Noah-2 land surface model output with surface satellite
retrievals from the European Space Agency (ESA) Climate Change Initiative (CCI). In this
study, we address the following critical questions related to the downscaling of SMERGE:
(1) What is the most optimal ML technique and (2) what downscaling resolution provides
the most robust results? To answer these questions, we explore three ML approaches and
compare downscaled SMERGE with diverse datasets, including in situ measurements and
airborne radar estimates of RZSM from the Marena Oklahoma Soil Moisture Active Passive
In Situ Testbed (MOISST) site associated with NASA’s Airborne Microwave Observatory of
Subcanopy and Surface (AirMOSS) campaign [21]. The analysis spans three distinct eras
(2016 to 2019, 2012 to 2015, and 2003 to 2007) and aims to achieve finer spatial resolution for
SMERGE, thereby enabling more accurate RZSM estimation, which can be used to support
diverse applications.

2. Study Areas

Figure 1 provides an overview of this study’s focus areas within north-central Ok-
lahoma and south-central Kansas. This is a location where SMERGE exhibited robust
performance [20] making it an ideal candidate to explore downscaling. Rectangular areas
in Figure 1 reflect zones where SMERGE was downscaled. During era 1 (2016 to 2019),
two regions (in red) associated with the United States Department of Energy Atmospheric
Radiation Measurement (ARM) observatory were examined (ARM_1_1, ARM_1_2). The
naming convention specifies Network_Era_Region where ARM_1_1 represents ARM era 1,
region 1. Data from MOISST and Soil moisture Sensing Controller and oPtimal Estimator
(SoilSCAPE) comprise era 2 observations (2012 to 2015), which are indicated in blue. Exces-
sive missing data precluded the use of ARM during era 2. During era 3 (2003 to 2007; in
black), ARM was divided into four distinct zones (ARM_3_1, ARM_3_2, ARM_3_3, and
ARM_3_4). Table 1 indicates the ARM stations utilized in each region. The location of
United States Climate Reference Network (USCRN; Stillwater 2W, Stillwater 5WNW) and
Soil Climate Analysis Network (SCAN; Abrams) sensors are also indicated in Figure 1.

Table 1. United States Department of Energy Atmospheric Radiation Measurement (ARM) sites by
era/region.

Era_Region In Situ Station

Era 1, Region 1 Anthony, Ashton, Bryon, Lamont-CF1, Maple City, Medford, Newkirk,
Pawhuska

Era 1, Region 2 Marshall, Morrison, Omega, Ringwood, Tyron, Waukomis
Era 3, Region 1 Hillsboro, Towanda
Era 3, Region 2 Ashton, Byron, Lamont-CF1
Era 3, Region 3 Elk Falls, Pawhuska, Tyro
Era 3, Region 4 El Reno, Meeker
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Figure 1. Locality map with era 1 sites in red, era 2 in blue, and era 3 in black. Upper-right inset map 
shows the study area location in Kansas and Oklahoma. Locations of ARM era 1 and era 3 in situ 
sites are indicated by red open circles and black circles, respectively. The Marena Oklahoma Soil 
Moisture Active Passive In Situ Testbed (MOISST) site is a solid blue rectangle and the Soil moisture 
Sensing Controller and oPtimal Estimator (SoilSCAPE) site is indicated by a blue triangle. Other in 
situ data from United States Climate Reference Network (USCRN) Stillwater sites are squares with 
a blue halo (eras 1 and 2) and the Soil Climate Analysis Network (SCAN) Abrams site with a red 
square (era 1). 

Table 1. United States Department of Energy Atmospheric Radiation Measurement (ARM) sites by 
era/region. 

Era_Region In Situ Station 
Era 1, Region 1 Anthony, Ashton, Bryon, Lamont-CF1, Maple City, Medford, Newkirk, Pawhuska 
Era 1, Region 2 Marshall, Morrison, Omega, Ringwood, Tyron, Waukomis 
Era 3, Region 1 Hillsboro, Towanda 
Era 3, Region 2 Ashton, Byron, Lamont-CF1 
Era 3, Region 3 Elk Falls, Pawhuska, Tyro 
Era 3, Region 4 El Reno, Meeker 

Table 2 provides an overview of the physical characteristics of these focus areas. Clay, 
silt, and sand values exhibit great variability in all areas. On average, all areas have a sim-
ilar soil texture with near-equal clay, silt, and sand values representing an overall loamy 

Figure 1. Locality map with era 1 sites in red, era 2 in blue, and era 3 in black. Upper-right inset map
shows the study area location in Kansas and Oklahoma. Locations of ARM era 1 and era 3 in situ sites
are indicated by red open circles and black circles, respectively. The Marena Oklahoma Soil Moisture
Active Passive In Situ Testbed (MOISST) site is a solid blue rectangle and the Soil moisture Sensing
Controller and oPtimal Estimator (SoilSCAPE) site is indicated by a blue triangle. Other in situ data
from United States Climate Reference Network (USCRN) Stillwater sites are squares with a blue halo
(eras 1 and 2) and the Soil Climate Analysis Network (SCAN) Abrams site with a red square (era 1).

Table 2 provides an overview of the physical characteristics of these focus areas. Clay,
silt, and sand values exhibit great variability in all areas. On average, all areas have a similar
soil texture with near-equal clay, silt, and sand values representing an overall loamy texture.
Elevations generally define a moderate relief within the regions. ARM_1_1, ARM_1_2,
ARM_3_3, and MOISST have average elevations of less than 400 m, whereas ARM_3_1,
ARM_3_2, ARM_3_4, and SoilSCAPE have higher elevations. In terms of land use and
land cover (LULC), herbaceous and cultivated crops dominate all examined areas except
for ARM_3_3 (Table 2), which, instead of cultivated crops, has significant hay/pasture and
deciduous forest.

Table 3 describes the meteorological conditions within the study areas. Values are
generally consistent. Lower spring and fall temperatures were recorded during era 2,
as represented by MOISST and SoilSCAPE, when compared against eras 1 and 3. A
pronounced drying trend from east to west is present in the study area. This is reflected by
the higher warm season (April to October) precipitation values present in ARM_3_3, which
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is further east than the other ARM era 3 regions. Additionally, during era 2, MOISST had
higher precipitation values than SoilSCAPE, which is located to the west.

Table 2. Physical characteristics of examined regions.

Network_Era
_Region Clay (%) Silt (%) Sand (%) Dominant Land

Cover Secondary Land Cover Elevation (m)

ARM_1_1 7–50 (30) 1–67 (46) 4–90 (24) Cultivated Crops Herbaceous 244–449 (347)
ARM_1_2 8–51 (27) 1–64 (37) 6–90 (36) Herbaceous Cultivated Crops 251–443 (332)
MOISST 5–42 (24) 4–65 (37) 13–90 (40) Herbaceous Cultivated Crops 267–377 (322)

SoilSCAPE 13–23 (19) 22–58 (45) 19–65 (35) Herbaceous None 520–535 (523)
ARM_3_1 3–48 (27) 2–64 (36) 3–95 (37) Cultivated Crops Herbaceous 371–694 (517)
ARM_3_2 1–54 (27) 1–67 (40) 7–98 (34) Herbaceous Cultivated Crops 280–677 (427)

ARM_3_3 17–57 (34) 18–63 (44) 3–62 (22) Herbaceous Hay/PastureDeciduous
Forest 202–475 (287)

ARM_3_4 7–50 (24) 1–65 (35) 6–90 (41) Herbaceous Cultivated Crops 247–666 (413)

Range of values for soil texture and elevation (%) by region are given with average values indicated in parentheses.

Table 3. Meteorological characteristics of study areas during warm season (April to October).

Network_Era_Region April Mean
Temp (◦C)

July Mean
Temp (◦C)

October Mean
Temp (◦C)

Warm Season
Precipitation (mm)

ARM_1_1 16.8 23.4 19.0 114.7
ARM_1_2 17.3 24.5 19.2 98.0
MOISST 12.9 26.3 15.3 94.6

SoilSCAPE 15.3 27.0 15.8 77.0
ARM_3_1 17.3 24.2 17.8 85.3
ARM_3_2 19.7 25.2 18.2 83.3
ARM_3_3 18.2 25.1 18.4 113.9
ARM_3_4 19.2 25.7 19.6 86.8

3. Methodology

This study’s methodologies were implemented in five steps that include: (1) Gathering
data; (2) selecting dates to use for validation; (3) executing machine learning downscaling;
(4) evaluation of each model run using objective metrics; and (5) performance comparison
between different models and spatial resolutions.

3.1. Data Gathering

RZSM data used in this study includes SMERGE version 2.0 (Table 4). The downscaling
approach described below incorporated independent variables (Table 4) that are both static
(soil texture, elevation, aspect, slope) and dynamic (Normalized Vegetation Difference
Index—NDVI, albedo, Leaf Area Index—LAI, surface temperature) following the approach
of [13]. Note that a one-month lag was used for NDVI and LAI, consistent with the approach
of [20]. The pre-processing of the above datasets was conducted in ArcGIS Pro, where
values were extracted into points with a 30 m resolution. The ArcGIS AggregatePoints
function was used to aggregate points into grid files at the different resolutions examined
in this study.

For evaluation, both in situ and AirMOSS data were used. In situ data from the
ARM, SCAN, SoilSCAPE, and USCRN networks were gathered from the International
Soil Moisture Network portal [22], and hourly results were converted into a daily overall
estimate of soil moisture, between 0 to 40 cm using a proportional weighting scheme. For
example, a common configuration at ARM was to have sensors at 5 cm, 15 cm, 25 cm, and
35 cm, resulting in a corresponding weight for each sensor of 18.75%, 31.25%, 25.00%, and
25.00%, respectively. AirMOSS L2/3 RZSM retrievals using the University of Southern
California algorithm were applied at MOISST as described by [21].
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Table 4. Data sources used for SoilMERGE (SMERGE) downscaling.

Data Source Description and Download URL (Accesssed on 30 June 2023)

Static Variables
Elevation USGS Elevation Products (3DEP), 1/3 arc-sec DEM: TNM Download v2 (nationalmap.gov)

Soil Texture
Gridded National Soil Survey Geographic Database (gNATSGO), the ratio of sand, silt, and clay (Spatial
Resolution = 30 m): https://www.nrcs.usda.gov/resources/data-and-reports/gridded-national-soil-
survey-geographic-database-gnatsgo

Dynamic Variables

SMERGE Smerge-Noah-CCI root zone soil moisture 0-40 cm L4 daily 0.125 × 0.125 degree V2.0
(SMERGE_RZSM0_40CM): https://www.tamiu.edu/cees/smerge/data.shtml

Albedo MCD15A3H v061 MODIS/Terra+Aqua Leaf Area Index/FPAR 4-Day L4 Global 500 m SIN Grid:
https://lpdaac.usgs.gov/products/mcd43a3v006/

LAI MCD15A3H v061 MODIS/Terra+Aqua Leaf Area Index/FPAR 4-Day L4 Global 500 m SIN Grid:
https://lpdaac.usgs.gov/products/mcd15a3hv061/

NDVI
Temporally Smoothed Weekly AQUA Collect 6 (C6) Moderate Resolution Imaging Spectroradiometer
(MODIS) Normalized Difference Vegetation Index (NDVI) at 250 m: Remote Sensing Phenology CONUS
250 m Smoothed NDVI (usgs.gov)

Temperature Daily mean temperature, calculated as (tmax + tmin)/2 (Spatial Resolution = 4 km):
https://ftp.prism.oregonstate.edu/daily/tmean/

3.2. Date Selection and Data Organization

This study followed the approach of [13], which indicated that spatial variation is more
important than temporal variation. With a focus on the warm season (April to October)
dates were selected that were separated from each other by at least seven days. In situ
data were also screened using the methods of [22], and dates with anomalous spikes and
plateaus were rejected. For all in situ datasets, if there were fewer than ten available dates
with valid measurements, then that site was not utilized. Also, if a site had multiple
sensors, the sensor with the highest correlation with baseline or default version of SMERGE
was used for analysis. In situ datasets with a correlation < 0.5 with default SMERGE
were rejected.

At ARM, era 1 (2016 to 2019) and era 3 (2003 to 2007) were examined. Era 1 was
divided into two regions, and era 3 consisted of four regions (Figure 1). At the ARM site,
a total of 47 and 52 dates were examined during eras 1 and 3, respectively (Table 5). At
the SoilSCAPE site, in situ estimates of RZSM were within a field scale cluster of sensors
or nodes that spanned from 2012 to 2015 (era 2). This study focused on a small site near
Canton, Oklahoma between latitude 36.000 to 36.003◦N and longitude 98.628 to 98.633◦W
(Figure 1). Daily soil moisture measurements were obtained at depths of 4 cm, 13 cm, and
30 or 40 cm. These values were weighted to determine an overall estimate of RZSM in the
top 40 cm. Seventy-nine dates were used for SMERGE downscaling (Table 5) at SoilSCAPE.
Note that in situ data are missing for some of the selected dates. This was performed
intentionally to provide more data to support ML analysis. Basically, the dataset used at
SoilSCAPE was inflated temporally to compensate for this site’s small spatial footprint.

The AirMOSS project (2012 to 2015; era 2) directly sensed RZSM estimates using the
P-band radar, which operates at a low frequency (420–440 MHz). RSZM is estimated up
to a depth of 40 cm. This study focuses on the MOISST site. This site is unique in that it
affords a continuous comparison with the downscaled SMERGE estimate. This is unlike the
discrete in situ measurements from ARM and SoilSCAPE. Observations focused on the 13
SMERGE grids that had greater than 75% coverage of AirMOSS retrievals [23] (Figure 2a)
and span latitude 36.000 to 36.250◦N and longitude 97.000 to 98.125◦W (Figure 1). The 22
dates with acceptable AirMOSS retrievals from MOISST are listed in Table 5.

https://www.nrcs.usda.gov/resources/data-and-reports/gridded-national-soil-survey-geographic-database-gnatsgo
https://www.nrcs.usda.gov/resources/data-and-reports/gridded-national-soil-survey-geographic-database-gnatsgo
https://www.tamiu.edu/cees/smerge/data.shtml
https://lpdaac.usgs.gov/products/mcd43a3v006/
https://lpdaac.usgs.gov/products/mcd15a3hv061/
https://ftp.prism.oregonstate.edu/daily/tmean/
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Table 5. Dates with acceptable values for comparison.

Network_Era Dates

ARM_1

20160401, 20160421, 20160505, 20160524, 20160715, 20160729, 20160812, 20160826, 20160909, 20160923, 20161007,
20161021, 20170401, 20170415, 20170429, 20170513, 20170527, 20170610, 20170624, 20170708, 20170722, 20170805,
20170819, 20170902, 20170916, 20170930, 20171014, 20171028, 20180401, 20180415, 20180429, 20180513, 20180527,
20180610, 20180624, 20180708,20180722, 20180805, 20180819, 20180902, 20180916, 20180930, 20181014,
20181028,20190401, 20190415, 20190429

ARM_3

20030401, 20030415, 20030429, 20030513, 20030527, 20030610, 20030624, 20030731, 20030814, 20030828, 20030910,
20031023, 20040401, 20040415, 20040430, 20040514, 20040528, 20040617, 20040701, 20040715, 20040729, 20040812,
20040826, 20040909, 20040923, 20041007, 20041021, 20050401, 20050415, 20050429, 20050513, 20050527, 20050610,
20050628, 20050713, 20050727,20050822, 20050905, 20050920, 20051004, 20051018,20060401, 20060415, 20060707,
20060806, 20060826, 20060909, 20060923, 20061007, 20061021, 20070620, 20070813

MOISST_2 20121024, 20121027, 20121030, 20130617, 20130716, 20130719, 20130723, 20130927, 20140416, 20140418, 20140424,
20140708, 20140711, 20140715, 20141014,20141017, 20141021, 20150416, 20150420, 20150807, 20150811, 20150814

SoilSCAPE_2

20120421, 20120601, 20120608, 20120615, 20120628, 20120705, 20120712, 20120719, 20120726, 20120802, 20120817,
20120824, 20120831, 20120907, 20120922, 20120929, 20121006, 20121013, 20121020, 20121030, 20121106,
20121113,20121120, 20121126, 20130407, 20130414, 2013042, 20130428, 20130505, 20130512, 20130519, 20130530,
20130606, 20130613, 20130626, 20130703, 20130710, 20130717, 20130724, 2013080,20130810, 20131006, 20131013,
20131020, 20131110, 20131117, 20131124, 20141027, 20150401, 20150408, 20150415, 20150422, 20150429, 20150506,
20150513, 20150520, 20150527, 20150603, 20150610, 20150617, 20150624, 20150701, 20150708, 20150715, 20150722,
20150729, 20150805, 20150812, 20150819, 20150826, 20150902, 20150909, 20150916, 20150923, 20150930, 20151007,
20151014, 20151021, 20151028Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 22 
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During eras 1 and 2, in situ data from the Stillwater 2W and 5 WNW stations from
USCRN and Abrams from SCAN were used for additional evaluation (Figure 1). Daily
soil moisture measurements were obtained at depths of 5 cm, 10 cm, 20 cm, and 50 cm and
were used to estimate RZSM between the surface and 40 cm depth using a proportional
weighting scheme.

3.3. Machine Learning Implementation

Random Forest (RF) served as our baseline machine learning algorithm, which has
been used to down-scale soil moisture estimates in many studies e.g., [12,13,24–27]. We
also executed eXtreme Gradient Boosting (XGBoost) [12] and Gradient Boost (GBoost) [12].
The dataset was randomly split (70% training and 30% testing) using the SKLearning
train_test_split function, and rows that corresponded to ARM and SoilSCAPE in situ data
sites were removed from the training set and inserted into the testing set for later data
verification purposes. Experimentation between 400 to 1400 m for ARM, 400 to 3000 m for
MOISST, and 30 to 100 m for SoilSCAPE was executed to determine the optimum spatial
resolution for each era/region. The average independent values within grids at varying
resolutions were obtained with zonal statistics in ArcGIS Pro. To implement the down-
scaling of SMERGE, we used TensorFlow Decision Forests’ Random Forest implantation,
Distributed (Deep) Machine Learning Community (DMLC)’s XGBoost, and Sklearing’s
Gradient Boost (GBoost); all of these were set to run as regressors. The hypertuning param-
eters/settings used for these ML models are specified in Table 6. Hypertuning for three
models was conducted via iteration method, where a range of tuning values were given
and ideal parameters were found over hundreds of runs. For the TensorFlow Random
Forest model, the tuner helper function was included in the iterations.

Table 6. Machine learning algorithm settings/hypertuning parameters.

Random Forest (RF)

• Tuner = forest.tuner.RandomSearch(num_trials =135, use_predefined_hps = True)
• Winner_take_all = True
• Categorical_algorithm = ‘CART’
• Honest = True
• Honest_fixed_separation = True
• Honest_ratio_leaf_examples = 0.75
• Bootstrap_size_ratio = 1.05
• Adapt_bootstrap_size_ratio_for_maximum_training_duration = True
• Keep_non_leaf_label_distribution = False
• Max_depth = 9

eXtreme Gradient Boosting (XGBoost)

• N_estimators = 500
• Max_depth = 10
• Tree_method = ‘hist’

Gradient Boost (GBoost)

• N_estimators = 175
• Max_depth = 10
• Min_samples_split = 4
• Learing_rate = 0.3
• Loss = squared_error

Independent variable sensitivity was examined with metrics customized for each
model, and the results of this analysis are summarized in Table 7. Two approaches were
used to gauge model sensitivity because of the different model structures. RF sensitivity was
gauged using TensorFlow’s Inverse Mean Minimum Depth (IMMD). The mean IMMD for
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each independent variable was calculated by tracking the depth of the first occurrence of a
feature in each tree in the forest. The depth was averaged for every feature, with the inverse
of it taken, resulting in higher IMMD values, reflecting greater sensitivity. For XGBoost and
GBoost, independent variable sensitivity was evaluated using the interpretability model
tool SHapley Additive exPlanations (SHAP). The reason we opted not to use SHAP for RF is
that this tool is not compatible with the TensorFlow Decision Forest library. SHAP explains
the individual variable contributions to the predictions made by the model. The higher the
SHAP value, the higher the importance of that feature towards the given prediction.

Table 7. Model sensitivity results.

Network_Era
_Region Model Type Date Albedo Clay Aspect Temp Elev NDVI Lai Sand Silt Slope

ARM_1_1 RF H H H M H M L M M L L
ARM_1_1 XGBoost H L M M H M L L H M M
ARM_1_1 GBoost H L M M H M L L H M M

ARM_1_2 RF H H M M H M L M L H L
ARM_1_2 XGBoost H L M M H M L L H H M
ARM_1_2 GBoost H L M M H M L L H H M

MOISST RF H H H M M L M L M M L
MOISST XGBoost H M H L H M L L M M M
MOISST GBoost H M H M H M L L M M L

SoilSCAPE RF H H L M M M H H L L M
SoilSCAPE XGBoost H H M M H M M H L L L
SoilSCAPE GBoost H H M M H M M H L L M

ARM_3_1 RF H H H M L H L M L M L
ARM_3_1 XGBoost H L M M M H L L M H L
ARM_3_1 GBoost H L M M M H L L M H M

ARM_3_2 RF H H H M L H M L M L L
ARM_3_2 XGBoost H L M M M H L L H H M
ARM_3_2 GBoost H L M M H H L L H M M

ARM_3_3 RF H H H M M H M M L L L
ARM_3_3 XGBoost H L H M H H L L M M M
ARM_3_3 GBoost H L M M H H L L M M M

H represents high sensitivity, M is medium sensitivity, and L is low sensitivity.

Because of the different tools used to evaluate sensitivity, a direct numerical compari-
son between IMMD and SHAP was not feasible. Therefore, sensitivity was based on relative
ranking. For a given model and spatial resolution, the most sensitive variable was assigned
1, and subsequent variables were assigned a number based on their relative ranking, with
the least sensitive variable being 11. Variables that ranked between 1 and 4 were deemed
highly sensitive. Rankings between 5 to 8 were designed as moderately sensitive, and those
variables ranked greater than 8 were considered to have a low sensitivity. Table 7 shows
the average rankings between different spatial resolutions ran for a given model with the
sensitivity indicated as high (H), medium (M), or low (L).

3.4. Model Evaluation

A comparison of default and downscaled SMERGE at different spatial resolutions
was made against in situ data from the ARM and SoilSCAPE sites and SCAN and USCRN
sensors. In addition, downscaled SMERGE was evaluated against AirMOSS data from
the MOISST site. Standard evaluation metrics (correlation, r; unbiased root-squared error,
ubRMSE [m3/m3]) were utilized in these comparisons. Delta r and Delta ubRMSE were used
to compare relative performance between default and downscaled versions of SMERGE
and are defined as follows:
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Delta r = Downscaled SMERGE r − Default SMERGE r (1)

Delta ubRMSE = Downscaled SMERGE ubRMSE − Default SMERGE ubRMSE (2)

where Downscaled SMERGE is the value obtained from ML and Default SMERGE is
the value obtained from the original 12.5 km resolution product. Delta values represent
a specific value from a model type and spatial resolution combination (e.g., RF, 400 m)
executed within a given network/era/region (e.g., ARM_1_1). Delta r and Delta ubRMSE
values provided insight into whether the downscaled model results exhibited improvement
(or degradation) compared with the Default SMERGE product. Improvement for r is
defined as having Downscaled SMERGE > Default SMERGE and for ubRMSE Default
SMERGE > Downscaled SMERGE.

3.5. Comparisons within a Region/Era

To facilitate comparison across the different models and spatial resolutions examined,
an objective metric was derived that combined correlation and ubRMSE metrics. The
objective metric varies between zero and one and is defined as indicated below:

If Delta r ≤ 0 Then a = 0 (3)

If Delta r > 0 Then a = [Delta r/Maximum Delta r] × 0.5 (4)

If Delta ubRMSE > 0 Then b = 0 (5)

If Delta ubRMSE < 0 Then b = [Delta ubRMSE/Minimum Delta ubRMSE] × 0.5 (6)

Objective Metric = a + b (7)

where maximum Delta r and minimum Delta ubRMSE are the maximum and minimum
values respectively obtained within an era/region, where a is the component of the objective
metric derived from Delta r, and b is the component of the objective metric derived from
Delta ubRMSE. The objective metric value ranges between zero and one. A value of one
indicates that a model type and spatial resolution combination had the best possible r
and ubRMSE values within an era/region. Zero indicates that downscaling yielded no
improvement based on both r and ubRMSE metrics. Models with an objective metric
between 0 to 0.8 were described as slightly improved. Objective metrics between 0.8 to
1.0 were designated as high performing. If a downscaled model had improvement in only
one metric, then this model was deemed as non-improved. This represents a model that
recorded improvement in r but not ubRMSE or vice versa.

4. Results

Model sensitivity results are summarized in Table 7. The date and aspect independent
variables generally have consistently high and moderate sensitivity, respectively. Elevation
mostly exhibits moderate sensitivity, except for ARM era 3, where this variable has a high
sensitivity. Albedo and NDVI have a higher sensitivity for RF compared to XGBoost and
GBoost models. For albedo, the exception is in SoilSCAPE, which has a high sensitivity for
all models. Also, during ARM era 1 and ARM_3_1, NDVI had a uniformly low sensitivity.
LAI also generally had a higher sensitivity for RF compared with XGBoost and GBoost
models. In SoilSCAPE, LAI sensitivity was uniformly high, and in MOISST and ARM_3_2,
low sensitivity was recorded for all models. Conversely, temperature exhibited a lower
sensitivity for RF models compared with XGBoost and GBoost, but during ARM era 1, a
uniformly high sensitivity was noted for all models. Within ARM, slope, sand, and silt
mostly had a higher sensitivity for XGBoost and GBoost models than that recorded by RF. In
MOISST and SoilSCAPE, slope had low to moderate sensitivity without a consistent pattern
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between downscaling models, whereas sand and silt had uniform moderate sensitivity
within MOISST and low sensitivity in SoilSCAPE. Finally, clay does not have a consistent
relationship among models and generally has a moderate to high sensitivity. Model
sensitivity was also examined as a function of spatial resolution. In general, sensitivity was
consistent as a function of spatial resolution. The exception is the RF model at the MOISST
site, where silt exhibited a marked increase in sensitivity at coarser spatial resolutions.

Figure 3 indicates the number of models with a specified performance from eras 1
and 2. A total of 12 models were executed from each ARM region (four using each ML
approach). At ARM, during era 1, 63% of the executed models resulted in improved
performance (Figure 3a,b). Of these, 17% were high performing and included all three
ML approaches. MOISST and SoilSCAPE (era 2) outperformed ARM (era 1), which had
a total of 18 and 6 models executed, respectively. For MOISST, 100% of the downscaling
attempts yielded improvements compared to Default SMERGE (Figure 3c). At MOISST,
44% of the models were high performing with a slight preference for RF over the other
model types. Figure 2b shows that the spatial distribution of Downscaled SMERGE is
similar to AirMOSS data (Figure 2c) from MOISST. At SoilSCAPE the same was true except
for a single attempt, resulting in an 83% improvement rate (Table 8). However, only one RF
model (17%) from SoilSCAPE was high performing. Figure 4 summarizes the results from
ARM era 3, with only 37% of downscaling attempts yielding improvements. In ARM_3_4
not a single model yielded an improvement, compared with Default SMERGE. ARM_3_1,
ARM_3_2, and ARM_3_3 had success rates of 42%, 50%, and 58%, respectively. Overall,
high performing models from ARM era 3 was only 10%.

Table 8. SoilSCAPE results.

Model Type Resolution
m

Default
SMERGE

r

Downscaled
SMERGE

r

Default
SMERGE
ubRMSE

Downscaled
SMERGE
ubRMSE

Objective
Metric

RF 100 0.4805 0.5217 0.1127 0.1122 0.9061
RF 30 0.4662 0.5169 0.1210 0.1207 0.7738

XGBoost 100 0.4805 0.4837 0.1127 0.1126 0.1200
XGBoost 30 0.4662 0.4665 0.1210 0.1210 0.0188
GBoost 100 0.4805 0.4809 0.1127 0.1127 0.0137
GBoost 30 0.4662 0.4662 0.1210 0.1210 0

Best model results are indicated in bold.

Figure 5 and Table A1 illustrates ARM era 1 results as a function of spatial resolution.
In ARM_1_1, RF outperformed the other ML approaches. Optimal performance for RF was
recorded at 400 m with declining objective metrics obtained at coarser spatial resolutions.
XGBoost and GBoost yielded inconsistent results, and these approaches recorded non-
improvement at 700 and 1000 m. When compared against the SCAN Abrams site, none
of the models yielded an improvement. Conversely, all RF models were non-improved in
ARM_1_2. XGBoost and GBoost exhibited erratic behavior as a function of spatial resolution
with best results obtained by XGBoost at a 400m resolution. Interestingly, comparison
with USCRN data from the Stillwater sites within ARM_1_2 yielded the opposite with
improvement realized with only RF and not XGBoost and GBoost models.

Figure 6 and Table A2 depict the results from MOISST (Era 2). RF recorded the highest
objective metric at a 400 m spatial resolution. Examination of an in situ sensor from the
USCRN Stillwater 5 WNW site also had RF outperforming the other methods. RF exhibited
a different trend in terms of performance as a function spatial resolution compared against
XGBoost and GBoost. Maximum objective metrics for RF were noted at 400 and 3000 m
with lessened performance at the resolutions between 700 to 2000 m. Conversely, XGBoost
and GBoost had maximum objective metrics around 1400 to 2000 m with lower values at
other resolutions. SoilSCAPE (Table 8), also from era 2, recorded a similar preference for RF.
It is noteworthy to indicate that the optimal spatial resolution for all era 1 and 2 regions
was ≤700 m.
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Remote Sens. 2023, 15, 5120 12 of 20Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 22 
 

 

 
Figure 4. Model performance in era 3 regions examined with (a) ARM_3_1, (b) ARM_3_2, and (c) 
ARM_3_3. RF is blue, XGBoost is red, and GBoost is green. 

Figure 4. Model performance in era 3 regions examined with (a) ARM_3_1, (b) ARM_3_2, and
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as a star. Only objective metrics for improved models were plotted. Blue indicates RF, red indicates
XGBoost, and green indicates GBoost (also see legend).
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During ARM era 3, improvements in downscaled results were noted in ARM_3_1,
ARM_3_2, and ARM_3_3 (Figure 7; Table A3) and the model that yielded the highest
objective metric varied. In ARM_3_1, GBoost had the highest objective metric at a spatial
resolution of 700 m and in ARM_3_2 XGBoost, at a 1400 m resolution, yielded the best
results. Note that ARM_3_1 and ARM_3_2 had only one high performing model per region
(Figure 4). ARM_3_3 differed in that RF yielded three high performing models, with the
highest objective metric at 1000 m. For ARM_3_4, no downscaling results yielded an
improvement over Default SMERGE. In general, for era 3 the optimal spatial resolution
was ≥700 m. Also, in all three regions the general trend was for the objective metric to
increase as spatial resolutions becomes coarser.
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5. Discussion

Overall, improvement in downscaled SMERGE across all eras, regions, and models
ranged from 0.03 to 0.42 for Delta r and −0.0005 to −0.0118 m3/m3 for Delta ubRMSE
(Tables 8 and A1, Tables A2 and A3). These results are comparable to results from previous
ML downscaling efforts. Ref. [15] downscaled SMAP on the Iberian Peninsula using RF,
yielding an increase in correlation of 0.31 and a decrease in ubRMSE of 0.026 m3/m3

compared to SMAP at its native resolution. Reference [14], from a study in China, yielded
an increase of 0.1 to 0.2 for correlation and a decrease of 0.01 m3/m3 for ubRMSE compared
with original land surface model data. Reference [11] also noted an improvement in
correlation by 0.1 for RF generated soil moisture, compared with the default ESA-CCI
product. [16] used RF to develop the 1 km resolution ChinaCropSM estimate of soil moisture
that had a correlation value of 0.93 compared to a 0.35 for ESA-CCI. ubRMSE also recorded
a dramatic improvement, from 0.093 to 0.033 m3/m3 in this product.

There are clear differences in performance between eras facilitated by comparison
of ARM data between eras 1 and 3. During era 1, more than half (15 out of 24) of the
downscaling models yielded improvements (Figure 3a,b). Conversely, during era 3 only



Remote Sens. 2023, 15, 5120 15 of 20

slightly more than a third of the models (16 out of 48) were improved (Figure 4). A similar
trend was noted for high-performing models. For era 1, 17% of downscaled models were
high performing compared with the only 10% high performing models for era 3. During
era 1, deeper penetrating L-band retrievals, with increased accuracy, were available from
the SMOS [2] and SMAP [28] missions and included in the ESA-CCI product that forms
the backbone of SMERGE. Another consideration is the completeness of the independent
variables and validation datasets. Missing albedo and LAI data is present during era 3
(Table 9). Note that spatial averaging minimized the impact of these missing datasets
at coarser resolutions (1000 to 1400 m). Also, albedo and LAI, have a higher sensitivity
within RF models compared with XGBoost and GBoost (Table 7). This could explain the
relative underperformance of RF during ARM era 3 compared with other models. RF had a
success rate of 19% during era 3. XGBoost and GBoost had higher success rates of 44% and
50%, respectively. Another dimension to examine is the increasing interpolation within
the SMERGE product during the earlier eras (Table 9). The ESA-CCI product had some
missing daily data in the product that was estimated by interpolation within SMERGE,
see [17]. During eras 1 and 2 the degree of interpolation is relatively low (1 to 17%) unlike
era 3 (24 to 36%). Interpolation can produce uncertainties within SMERGE estimates that
get propagated to the downscaled version, possibly contributing to the poor performance
of SMERGE downscaling during era 3. Finally, the spatial representativeness of the in situ
data is different between eras 1 and 3 within the ARM regions (Figure 1). The coverage of
in situ stations with acceptable data (correlation with Default SMERGE > 0.5) is greater in
era 1. Interestingly, the region with the best in situ coverage is the small region ARM_3_3,
which recorded the best performance of all ARM regions during era 3.

As notable as the above ARM comparisons are, they are still based on sparse in
situ data, which [29] indicated can be problematic when providing validation for coarse-
resolution satellite-based soil moisture products. The spatial variability within a grid, even
for a downscaled product, may not be represented by a point in situ measurement. A
spatial mismatch exists between a grid mean and sparse in situ sampling that can increase
uncertainty and produce spurious errors within the downscaled product. This sampling
issue is negated for the era 2 sites where MOISST RZSM retrievals were collected over a
continuous extent during the AirMOSS campaign. Additionally, SoilSCAPE is a small site,
less than a square kilometer, with a cluster of 21 sensors. As such, the validation at these
sites can be considered a best-case scenario as reflected by an improvement rate of 100%
and 83% for MOISST and SoilSCAPE, respectively. Of particular note are the improvements
seen at the 100 m resolution at SoilSCAPE, suggesting that under ideal circumstances
downscaling to field scale resolutions is feasible.

Spatial resolution trends are different between eras and models. RF at ARM_1_1 and
MOISST had a maximum objective metric at 400 m with declining performance at coarser
spatial resolutions out to 1400 m (Figures 5 and 6). Conversely, the highest objective metric
for XGBoost and GBoost models at MOISST was at 1400 to 2000 m (Figure 6). During
ARM era 3, all models recorded increasing performance with coarser spatial resolutions
(Figure 7). During this era, incomplete albedo and LAI likely hampered model execution at
finer spatial resolutions (400 to 700 m).

This study has provided valuable insights for the future development of a regional
downscaled version of SMERGE. This has implications in that SMERGE is a long duration
RZSM product that provides a retrospective estimate of this variable unlike SMOS and
SMAP that are limited temporally (post-2010). Therefore, this work lays the groundwork for
the development of a long-term field-scale estimate that can support diverse user commu-
nities. The new downscaled product will focus on the United States Southern Great Plains
where the Default SMERGE performance was the best [20]. This work is not intended to
provide a comprehensive validation. Instead, its goal was to determine possible temporal
coverage, spatial resolution, and ML model to be used to develop the downscaled prod-
uct. Additional ranked correlation analyses will be applied to fully validate downscaled
SMERGE. Inclusion of these techniques here is beyond this work’s scope.
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Table 9. Reasons for incompleteness in datasets.

Network_Era_Region or
Site

Resolution
m

Percent
Complete

Data Used
for Training

Incomplete
MOISST/In

Situ Data

Missing
Albedo/LAI

Percentage
SMERGE

Interpolated

ARM_1_1 1400 100% - 0% 0% 10%
ARM_1_1 1000 100% - 0% 0% 11%
ARM_1_1 700 100% - 0% 0% 16%
ARM_1_1 400 100% - 0% 0% 17%

SCAN_1_Abrams 1000 34% 66% 0% 0% -
SCAN_1_Abrams 700 32% 68% 0% 0% -

ARM_1_2 1400 100% - 0% 0% 9%
ARM_1_2 1000 100% - 0% 0% 9%
ARM_1_2 700 100% - 0% 0% 11%
ARM_1_2 400 100% - 0% 0% 14%

USCRN_1_Stillwater
Sites 1400 29% 71% 0% 0% -

USCRN_1_Stillwater
Sites 1000 25% 75% 0% 0% -

USCRN_1_Stillwater
Sites 700 31% 69% 0% 0% -

AirMOSS_2_MOISST 3000 82% - 18% 0% 1%
AirMOSS_2_MOISST 2000 84% - 16% 0% 1%
AirMOSS_2_MOISST 1400 83% - 17% 0% 1%
AirMOSS_2_MOISST 1000 82% - 18% 0% 1%
AirMOSS_2_MOISST 700 83% - 17% 0% 1%
AirMOSS_2_MOISST 400 81% - 19% 0% 1%
USCRN_2_Stillwater

5WNW 700 46% 54% 0% 0% -

SoilSCAPE_2 100 65% - 0% 0% 10%
SoilSCAPE_2 30 72% - 0% 0% 10%

ARM_3_1 1400 100% - 0% 0% 24%
ARM_3_1 1000 93% - 0% 7% 24%
ARM_3_1 700 75% - 0% 25% 25%
ARM_3_1 400 63% - 0% 37% 25%
ARM_3_2 1400 100% - 0% 0% 29%
ARM_3_2 1000 92% - 0% 8% 29%
ARM_3_2 700 77% - 0% 23% 29%
ARM_3_2 400 77% - 0% 23% 29%
ARM_3_3 1400 92% - 7% 1% 36%
ARM_3_3 1000 92% - 7% 1% 36%
ARM_3_3 700 91% - 7% 2% 36%
ARM_3_3 400 77% - 6% 17% 36%

6. Conclusions

This study successfully downscaled SMERGE, focusing on the warm season (April
to October) in the Southern Great Plains (Oklahoma and Kansas). More robust SMERGE
downscaling results were yielded during eras 1 (2016 to 2019) and 2 (2012 to 2015), where
RF produced optimal results at ≤700 m. Improvements in the downscaled SMERGE at
the 100 m resolution at SoilSCAPE were particularly noteworthy. These results suggest
that SMERGE can be successfully downscaled to the field scale with the advent of L-band
microwave retrievals after 2010. However, some caution regarding this conclusion is
warranted, given the small area of the SoilSCAPE site. During era 3, downscaling efforts
were less successful for several reasons. Optimum model and spatial resolution were less
consistent across the ARM era 3 regions, but in general, they exceeded 700 m. Results from
this study straddles existing (Sentinel 1 & 2) and planned NASA ISRO Synthetic Aperture
Radar (NISAR) mission’s capabilities. In addition, downscaled RZSM from long duration
products like SMERGE can support more robust hydrologic and ecologic modeling and
drought monitoring than surface satellite SM estimates.
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Appendix A

Table A1. ARM Era 1 results.

Model
Type Region

Spatial
Resolution

m

Default
SMERGE

r

Downscaled
SMERGE

r

Default
SMERGE
ubRMSE

Downscaled
SMERGE
ubRMSE

RF 1 1400 0.5714 0.6907 0.0710 0.0678
RF 1 1000 0.5714 0.6870 0.0710 0.0666
RF 1 700 0.5714 0.7409 0.0710 0.0660
RF 1 400 0.5714 0.7318 0.0710 0.0654

XGBoost 1 1400 0.5714 0.6550 0.0710 0.0685
XGBoost 1 1000 0.5714 0.5243 0.0710 0.0701
XGBoost 1 700 0.5714 0.5249 0.0710 0.0724
XGBoost 1 400 0.5714 0.6298 0.0710 0.0693
GBoost 1 1400 0.5714 0.7100 0.0710 0.0650
GBoost 1 1000 0.5714 0.4850 0.0710 0.0720
GBoost 1 700 0.5714 0.4489 0.0710 0.0736
GBoost 1 400 0.5714 0.6477 0.0710 0.0660

RF 2 1400 0.6037 0.6554 0.0970 0.1049
RF 2 1000 0.6044 0.6966 0.0970 0.1024
RF 2 700 0.6034 0.7145 0.0970 0.1010
RF 2 400 0.6017 0.6979 0.0972 0.1007

XGBoost 2 1400 0.6037 0.6649 0.0970 0.0970
XGBoost 2 1000 0.6044 0.7567 0.0970 0.0929
XGBoost 2 700 0.6034 0.6128 0.0970 0.0965
XGBoost 2 400 0.6017 0.7511 0.0972 0.0897
GBoost 2 1400 0.6037 0.4444 0.0970 0.1071
GBoost 2 1000 0.6044 0.6349 0.0970 0.0934
GBoost 2 700 0.6034 0.6757 0.0970 0.0881
GBoost 2 400 0.6017 0.6181 0.0972 0.0954

In Situ Comparison from USCRN Stillwater Sites
RF 2 1400 0.6324 0.3496 0.0712 0.0800
RF 2 1000 0.7502 0.5777 0.0684 0.0757
RF 2 700 0.6417 0.6756 0.0681 0.0673

XGBoost 2 1400 0.6324 0.5975 0.0712 0.0724
XGBoost 2 1000 0.7502 0.6692 0.0684 0.0681
XGBoost 2 700 0.6417 0.4898 0.0681 0.0717
GBoost 2 1400 0.6324 0.4663 0.0712 0.0752
GBoost 2 1000 0.7502 0.6692 0.0684 0.0757
GBoost 2 700 0.6417 0.4713 0.0681 0.0716

Best model results are indicated in bold.
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Table A2. MOISST results.

Model Type Resolution
m

Default
SMERGE

r

Downscaled
SMERGE

r

Default
SMERGE
ubRMSE

Downscaled
SMERGE
ubRMSE

RF 3000 0.4806 0.8193 0.0572 0.0508
RF 2000 0.4375 0.7608 0.0627 0.0568
RF 1400 0.4330 0.7161 0.0656 0.0620
RF 1000 0.4113 0.7099 0.0698 0.0648
RF 700 0.3800 0.7304 0.0755 0.0704
RF 400 0.3321 0.7497 0.0860 0.0805

XGBoost 3000 0.4806 0.8092 0.0572 0.0542
XGBoost 2000 0.4375 0.8082 0.0627 0.0579
XGBoost 1400 0.4330 0.8337 0.0656 0.0612
XGBoost 1000 0.4113 0.7745 0.0698 0.0671
XGBoost 700 0.3800 0.7461 0.0755 0.0720
XGBoost 400 0.3321 0.7239 0.0860 0.0847
GBoost 3000 0.4806 0.8072 0.0572 0.0557
GBoost 2000 0.4375 0.7997 0.0627 0.0571
GBoost 1400 0.4330 0.8460 0.0656 0.0614
GBoost 1000 0.4113 0.7865 0.0698 0.0670
GBoost 700 0.3800 0.7552 0.0755 0.0739
GBoost 400 0.3321 0.7314 0.0860 0.0856

In Situ Comparison from USCRN Stillwater 5WNW

RF 700 0.5650 0.6189 0.0360 0.0347
XGBoost 700 0.5650 0.2316 0.0360 0.0460
GBoost 700 0.5650 0.5774 0.0360 0.0368

Best model results are indicated in bold.

Table A3. ARM Era 3 results.

Model
Type Region Resolution

m
Default

SMERGE
r

Downscaled
SMERGE

r

Default
SMERGE
ubRMSE

Downscaled
SMERGE
ubRMSE

RF 1 1400 0.6109 0.4994 0.0304 0.0207
RF 1 1000 0.6087 0.5889 0.0312 0.0194
RF 1 700 0.6235 0.5781 0.0293 0.0201
RF 1 400 0.6463 0.6299 0.0288 0.0197

XGBoost 1 1400 0.6109 0.6374 0.0304 0.0264
XGBoost 1 1000 0.6087 0.5476 0.0312 0.0287
XGBoost 1 700 0.6235 0.6406 0.0293 0.0251
XGBoost 1 400 0.6463 0.6479 0.0288 0.0265
GBoost 1 1400 0.6109 0.2918 0.0304 0.0381
GBoost 1 1000 0.6087 0.5956 0.0312 0.0344
GBoost 1 700 0.6235 0.6922 0.0293 0.0205
GBoost 1 400 0.6463 0.7016 0.0288 0.0239

RF 2 1400 0.7032 0.7255 0.0271 0.0274
RF 2 1000 0.7115 0.6617 0.0265 0.0289
RF 2 700 0.7076 0.4798 0.0277 0.0344
RF 2 400 0.7097 0.5728 0.0266 0.0310

XGBoost 2 1400 0.7032 0.8047 0.0271 0.0246
XGBoost 2 1000 0.7115 0.7215 0.0265 0.0262
XGBoost 2 700 0.7076 0.6519 0.0277 0.0299
XGBoost 2 400 0.7097 0.7212 0.0266 0.0261
GBoost 2 1400 0.7032 0.7180 0.0271 0.0270
GBoost 2 1000 0.7115 0.4374 0.0265 0.0374
GBoost 2 700 0.7076 0.6381 0.0277 0.0380
GBoost 2 400 0.7097 0.2011 0.0266 0.0550

RF 3 1400 0.4895 0.7029 0.0348 0.0255
RF 3 1000 0.4895 0.7120 0.0348 0.0251
RF 3 700 0.4880 0.6605 0.0350 0.0263
RF 3 400 0.5302 0.4529 0.0346 0.0332

XGBoost 3 1400 0.4895 0.4879 0.0348 0.0333
XGBoost 3 1000 0.4895 0.5606 0.0348 0.0314
XGBoost 3 700 0.4880 0.4467 0.0350 0.0349
XGBoost 3 400 0.5302 0.2835 0.0346 0.0382
GBoost 3 1400 0.4895 0.5945 0.0348 0.0282
GBoost 3 1000 0.4895 0.6025 0.0348 0.0315
GBoost 3 700 0.4880 0.6069 0.0350 0.0317
GBoost 3 400 0.5302 0.4645 0.0346 0.0357

Best model results are indicated in bold.
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