Surface Reflectance and Aerosol Retrieval from SPOT-VGT and PROBA-V in the Mission Exploitation Platform Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Archive
2.1.1. Description of the MEP Archive
2.1.2. Harmonization Method
2.1.3. Harmonization Results
2.2. Method: The CISAR Algorithm
2.2.1. Algorithm Features
2.2.2. Product Definition
2.2.3. Algorithm Performances Evaluation
- Accuracy (A):
- Precision (P):
- Uncertainty (U)
3. Results
3.1. Analysis of 20-Year Time Series over Key Areas
3.2. Global Processing at 5 km Resolution
- If the 80% of sub-pixels are cloud-free only cloud-free observations are aggregated and the cloud mask is set to 0.
- If the 80% of sub-pixels are cloudy only cloudy observations are aggregated and the cloud mask is set to 1.
- Otherwise, all pixels are aggregated and the cloud mask is a number between 0 and 1, indicating the percentage of cloudy pixels.
3.2.1. AOT: Evaluation against Ground Observation
3.2.2. AOT: Monthly Mean Evaluation
3.2.3. Case Study 1: Australian Fires
3.2.4. Case Study 2: Surface Albedo over North Africa
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Merchant, C.J.; Embury, O.; Rayner, N.A.; Berry, D.I.; Corlett, G.K.; Lean, K.; Veal, K.L.; Kent, E.C.; Llewellyn-Jones, D.T.; Remedios, J.J.; et al. A 20 Year Independent Record of Sea Surface Temperature for Climate from Along-Track Scanning Radiometers. J. Geophys. Res. Ocean. 2012, 117. Available online: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2012JC008400 (accessed on 22 October 2023). [CrossRef]
- Dierckx, W.; Sterckx, S.; Benhadj, I.; Livens, S.; Duhoux, G.; Van Achteren, T.; Francois, M.; Mellab, K.; Saint, G. PROBA-V mission for global vegetation monitoring: Standard products and image quality. Int. J. Remote Sens. 2014, 35, 2589–2614. [Google Scholar] [CrossRef]
- Goor, E.; Dries, J.; Daems, D.; Paepen, M.; Niro, F.; Goryl, P.; Mougnaud, P.; Della Vecchia, A. PROBA-V Mission Exploitation Platform. Remote Sens. 2016, 8, 564. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service (C3S). Available online: https://climate.copernicus.eu/ (accessed on 4 April 2023).
- Carrer, D.; Smets, B.; Ceamanos, X.; Roujean, J. Copernicus Global Land Operations: Vegetation and Energy. Algorithm Theoretical Basis Document. Surface Albedo 1 km. 2018. Available online: https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_ATBD_SA1km-V1_I2.11.pdf (accessed on 22 October 2023).
- Ramon, D.; Jolivet, D.; Elias, T.; Compiègne, M. Algorithm Theoretical Basis Document: Atmospheric Correction. 2021. Available online: https://proba-v.vgt.vito.be/sites/probavvgt/files/downloads/PROBA-V_C2_Atmospheric_Correction_ATBD.pdf (accessed on 22 October 2023).
- Wolters, E.; Luffarelli, M.; Govaerts, Y.; Swinnen, E. PV-LAC: D6-A2, Aerosol Optical Thickness and Surface Reflectance Validation Report V2. 2018. Available online: https://earth.esa.int/eogateway/documents/20142/37627/PV-LAC-ATMO-validation-report-v2.pdf (accessed on 22 October 2023).
- Luffarelli, M.; Govaerts, Y. Joint retrieval of surface reflectance and aerosol properties with continuous variation of the state variables in the solution space—Part 2: Application to geostationary and polar-orbiting satellite observations. Atmos. Meas. Tech. 2019, 12, 791–809. [Google Scholar] [CrossRef]
- Dierickx, F. Chapter 6 Climate Change Uncertainties|Copernicus Climate Change Programme: User Learning Service Content. 2019. Available online: https://bookdown.org/floriandierickx/bookdown-demo/climate-change-uncertainties.html (accessed on 22 October 2023).
- Mittaz, J.; Merchant, C.J.; Woolliams, E.R. Applying principles of metrology to historical Earth observations from satellites. Metrologia 2019, 56, 032002. [Google Scholar] [CrossRef]
- Giering, R.; Quast, R.; Mittaz, J.P.D.; Hunt, S.E.; Harris, P.M.; Woolliams, E.R.; Merchant, C.J. A Novel Framework to Harmonise Satellite Data Series for Climate Applications. Remote Sens. 2019, 11, 1002. [Google Scholar] [CrossRef]
- Wolters, E.; Swinnen, E.; Toté, C.; Sterckx, S. SPOT-VGT Collection 3 Products User Manual 2016. Available online: https://publications.vito.be/2016-1034-spotvgt-collection-3-products-user-manual-v10.pdf (accessed on 22 October 2023).
- Wolters, E.; Dierckx, W.; Iordache, M.D.; Swinnen, E. PROBA-V Collection 1 User Manual 2023. Available online: https://proba-v.vgt.vito.be/sites/probavvgt/files/Products_User_Manual.pdf (accessed on 22 October 2023).
- Sterckx, S.; Adriaensen, S.; Dierckx, W.; Bouvet, M. In-Orbit Radiometric Calibration and Stability Monitoring of the PROBA-V Instrument. Remote Sens. 2016, 8, 546. [Google Scholar] [CrossRef]
- Merchant, C.J.; Paul, F.; Popp, T.; Ablain, M.; Bontemps, S.; Defourny, P.; Hollmann, R.; Lavergne, T.; Laeng, A.; de Leeuw, G.; et al. Uncertainty information in climate data records from Earth observation. Earth Syst. Sci. Data 2017, 9, 511–527. [Google Scholar] [CrossRef]
- Govaerts, Y.M. Sand Dune Ridge Alignment Effects on Surface BRF over the Libya-4 CEOS Calibration Site. Sensors 2015, 15, 3453–3470. [Google Scholar] [CrossRef]
- Govaerts, Y.; Sterckx, S.; Adriaensen, S. Use of simulated reflectances over bright desert target as an absolute calibration reference. Remote Sens. Lett. 2013, 4, 523–531. [Google Scholar] [CrossRef]
- Inness, A.; Ades, M.; Agustí-Panareda, A.; Barré, J.; Benedictow, A.; Blechschmidt, A.M.; Dominguez, J.J.; Engelen, R.; Eskes, H.; Flemming, J.; et al. The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys. 2019, 19, 3515–3556. [Google Scholar] [CrossRef]
- Govaerts, Y.; Nollet, Y.; Leroy, V. Radiative Transfer Model Comparison with Satellite Observations over CEOS Calibration Site Libya-4. Atmosphere 2022, 13, 1759. [Google Scholar] [CrossRef]
- Emde, C.; Buras-Schnell, R.; Kylling, A.; Mayer, B.; Gasteiger, J.; Hamann, U.; Kylling, J.; Richter, B.; Pause, C.; Dowling, T.; et al. The libRadtran software package for radiative transfer calculations (version 2.0.1). Geosci. Model Dev. 2016, 9, 1647–1672. [Google Scholar] [CrossRef]
- Luffarelli, M.; Govaerts, Y.; Franceschini, L. Aerosol Optical Thickness Retrieval in Presence of Cloud: Application to S3A/SLSTR Observations. Atmosphere 2022, 13, 691. [Google Scholar] [CrossRef]
- Rahman, H.; Pinty, B.; Verstraete, M.M. Coupled surface-atmosphere reflectance (CSAR) model. 2. Semiempirical surface model usable with NOAA Advanced Very High Resolution Radiometer Data. J. Geophys. Res. 1993, 98, 20791–20801. [Google Scholar] [CrossRef]
- Cox, C.; Munk, W. Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter. J. Opt. Soc. Am. 1954, 44, 838–850. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Korkin, S.; Huang, D. MODIS Collection 6 MAIAC Algorithm. Atmos. Meas. Tech. 2018, 11, 5741–5765. [Google Scholar] [CrossRef]
- Bevan, S.; North, P.; Los, S.; Grey, W. A global dataset of atmospheric aerosol optical depth and surface reflectance from AATSR. Remote Sens. Environ. 2012, 116, 199–210. [Google Scholar] [CrossRef]
- Claverie, M.; Vermote, E.F.; Franch, B.; Masek, J.G. Evaluation of the Landsat-5 TM and Landsat-7 ETM+ surface reflectance products. Remote Sens. Environ. 2015, 169, 390–403. [Google Scholar] [CrossRef]
- Giles, D.M.; Holben, B.N.; Eck, T.F.; Smirnov, A.; Sinyuk, A.; Schafer, J.; Sorokin, M.G.; Slutsker, I. Aerosol Robotic Network (AERONET) Version 3 Aerosol Optical Depth and Inversion Products. In Proceedings of the AGU Fall Meeting Abstracts, New Orleans, Louisiana, 11–15 December 2017; Volume 2017, p. A11O-01. [Google Scholar]
- Swinnen, E. PROBA-V Collection 2 Algorithm Change Document 2023. Available online: https://proba-v.vgt.vito.be/sites/probavvgt/files/downloads/PROBA-V_C2_Algorithm_Change_Document.pdf (accessed on 22 October 2023).
- Fensholt, R.; Nielsen, T.T.; Stigsen, S. Evaluation of AVHRR PAL and GIMMS 10-day composite NDVI time series products using SPOT-4 vegetation data for the African continent. Int. J. Remote Sens. 2006, 27, 2719–2733. [Google Scholar] [CrossRef]
- Swinnen, E.; Veroustraete, F. Extending the SPOT-VEGETATION NDVI Time Series (1998–2006) Back in Time with NOAA-AVHRR Data (1985–1998) for Southern Africa. IEEE Trans. Geosci. Remote Sens. 2008, 46, 558–572. [Google Scholar] [CrossRef]
- Swinnen, E.; Toté, C. Copernicus Global Land Operations “Vegetation and Energy”. 2020. Available online: https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_QAR_NDVI1km-V3_I1.10.pdf (accessed on 22 October 2023).
- Buffo, A.; Alopaeus, V. Experimental determination of size distributions: Analyzing proper sample sizes. Meas. Sci. Technol. 2016, 27, 045301. [Google Scholar] [CrossRef]
- Janjai, S.; Núñez, M.; Masiri, I.; Wattan, R.; Buntoung, S.; Jantarach, T.; Promsen, W. Aerosol Optical Properties at Four Sites in Thailand. Atmos. Clim. Sci. 2012, 2, 441. [Google Scholar] [CrossRef]
- Lyapustin, A.Y.W. Mcd19a3 Modis/Terra+Aqua Brdf Model Parameters 8-Day l3 Global 1 km Sin Grid V006; Technical Report; NASA EOSDIS Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2018.
- Errera, Q.; Bennouna, Y.; Schulz, M.; Eskes, H.; Basart, S.; Benedictow, A.; Blechschmidt, A.M.; Chabrillat, S.; Clark, H.; Cuevas, E.; et al. Validation Report of the CAMS Global Reanalysis of Aerosols and Reactive Gases, Years 2003–2020; Copernicus Atmosphere Monitoring Service: Reading, UK, 2021. [Google Scholar] [CrossRef]
- Mackin, S.; Settle, J.; Warner, J.; Ramsay, A. Statistically Based Approach for Estimation of Sensor Performance Indicators. 2020. Available online: https://earth.esa.int/eogateway/documents/20142/1484253/Statistically-based-approach-for-estimation-of-sensor-performance-indicators-status-and-way-forward.pdf (accessed on 22 October 2023).
- Popp, T.; Mittaz, J. Systematic Propagation of AVHRR AOD Uncertainties—A Case Study to Demonstrate the FIDUCEO Approach. Remote Sens. 2022, 14, 875. [Google Scholar] [CrossRef]
BLUE | RED | NIR | SWIR | |
---|---|---|---|---|
SPOT-VGT1 | ||||
1.042 | 1.028 | 1.020 | 1.026 | |
SPOT-VGT2 | ||||
1.036 | 1.024 | 1.013 | 1.019 | |
PROBA-V | ||||
ALL | 1.024 | 1.005 | 0.997 | 1.004 |
LEFT | 1.040 | 1.005 | 0.997 | 1.001 |
CENTRAL | 1.011 | 1.012 | 1.001 | 1.003 |
RIGHT | 1.010 | 0.999 | 0.993 | 1.014 |
Station | Latitude | Longitude | Land Cover | Main Aerosol Source |
---|---|---|---|---|
Alta Floresta | −9.87 | −56.10 | Mixed | Seasonal biomass burning |
Venice | 45.31 | 12.51 | Water | Northern Italy pollution |
Beijing | 39.98 | 116.38 | Urban | Extreme pollution |
Banizoumbou | 13.55 | 2.66 | Arid | Dust |
Alta Floresta | Venice | |||||
---|---|---|---|---|---|---|
VG1 | VGT2 | PROBA-V | VG1 | VGT2 | PROBA-V | |
n | 328 | 539 | 398 | 259 | 1395 | 1039 |
R | 0.54 | 0.69 | 0.42 | 0.61 | 0.59 | 0.51 |
A | 0.01 | −0.03 | −0.10 | 0.02 | 0.02 | −0.01 |
P | 0.29 | 0.21 | 0.32 | 0.17 | 0.12 | 0.13 |
U | 0.29 | 0.22 | 0.33 | 0.17 | 0.13 | 0.13 |
Beijing | Banizoumbou | |||||
VG1 | VGT2 | PROBA-V | VG1 | VGT2 | PROBA-V | |
n | 136 | 1137 | 777 | 125 | 509 | 290 |
R | 0.49 | 0.53 | 0.63 | 0.28 | 0.60 | 0.52 |
A | 0.15 | 0.17 | −0.03 | 0.07 | 0.10 | 0.01 |
P | 0.56 | 0.47 | 0.37 | 0.31 | 0.31 | 0.33 |
U | 0.58 | 0.50 | 0.37 | 0.32 | 0.33 | 0.33 |
Water | Vegetation | Urban | Arid | |
---|---|---|---|---|
A | −0.019 | 0.009 | −0.000 | −0.059 |
P | 0.138 | 0.146 | 0.191 | 0.212 |
U | 0.139 | 0.146 | 0.191 | 0.220 |
N | 365 | 2639 | 959 | 860 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luffarelli, M.; Franceschini, L.; Govaerts, Y.; Niro, F.; De Grandis, E. Surface Reflectance and Aerosol Retrieval from SPOT-VGT and PROBA-V in the Mission Exploitation Platform Environment. Remote Sens. 2023, 15, 5109. https://doi.org/10.3390/rs15215109
Luffarelli M, Franceschini L, Govaerts Y, Niro F, De Grandis E. Surface Reflectance and Aerosol Retrieval from SPOT-VGT and PROBA-V in the Mission Exploitation Platform Environment. Remote Sensing. 2023; 15(21):5109. https://doi.org/10.3390/rs15215109
Chicago/Turabian StyleLuffarelli, Marta, Lucio Franceschini, Yves Govaerts, Fabrizio Niro, and Erminia De Grandis. 2023. "Surface Reflectance and Aerosol Retrieval from SPOT-VGT and PROBA-V in the Mission Exploitation Platform Environment" Remote Sensing 15, no. 21: 5109. https://doi.org/10.3390/rs15215109
APA StyleLuffarelli, M., Franceschini, L., Govaerts, Y., Niro, F., & De Grandis, E. (2023). Surface Reflectance and Aerosol Retrieval from SPOT-VGT and PROBA-V in the Mission Exploitation Platform Environment. Remote Sensing, 15(21), 5109. https://doi.org/10.3390/rs15215109