A Google Earth Engine Platform to Integrate Multi-Satellite and Citizen Science Data for the Monitoring of River Ice Dynamics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Multisatellite Approach for River Ice Detection
2.3. Integration of Citizen Science Data
2.4. Data Processing and Analysis Framework
2.5. System Development Process
3. Results
3.1. User Interface for the River Ice Monitoring System
3.2. Evaluating VIIRS River Ice Product with Citizen Science Data
3.3. Spatial and Temporal Analysis of Ice Conditions
3.4. Monitoring Ice-Induced Hazards
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, X.; Pavelsky, T.M.; Allen, G.H. The Past and Future of Global River Ice. Nature 2020, 577, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Beaton, A.; Whaley, R.; Corston, K.; Kenny, F. Identifying Historic River Ice Breakup Timing Using MODIS and Google Earth Engine in Support of Operational Flood Monitoring in Northern Ontario. Remote Sens. Environ. 2019, 224, 352–364. [Google Scholar] [CrossRef]
- Chu, T.; Lindenschmidt, K.E. Integration of Space-Borne and Air-Borne Data in Monitoring River Ice Processes in the Slave River, Canada. Remote Sens. Environ. 2016, 181, 65–81. [Google Scholar] [CrossRef]
- Richards, E.; Stuefer, S.; Rangel, R.C.; Maio, C.; Belz, N.; Daanen, R. An Evaluation of GPR Monitoring Methods on Varying River Ice Conditions: A Case Study in Alaska. Cold Reg. Sci. Technol. 2023, 210, 103819. [Google Scholar] [CrossRef]
- Gatto, L.W. Monitoring River Ice with Landsat Images. Remote Sens. Environ. 1990, 32, 1–16. [Google Scholar] [CrossRef]
- Vuyovich, C.M.; Daly, S.F.; Gagnon, J.J.; Weyrick, P.; Zaitsoff, M. Monitoring River Ice Conditions Using Web-Based Cameras. J. Cold Reg. Eng. 2009, 23, 1–17. [Google Scholar] [CrossRef]
- Brown, D.R.N.; Arp, C.D.; Brinkman, T.J.; Cellarius, B.A.; Engram, M.; Miller, M.E.; Spellman, K.V. Long-Term Change and Geospatial Patterns of River Ice Cover and Navigability in Southcentral Alaska Detected with Remote Sensing. Arct. Antarct. Alp. Res. 2023, 55, 2241279. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Pérez-Cutillas, P.; Pérez-Navarro, A.; Conesa-García, C.; Zema, D.A.; Amado-Álvarez, J.P. What Is Going on within Google Earth Engine? A Systematic Review and Meta-Analysis. Remote Sens. Appl. Soc. Environ. 2023, 29, 100907. [Google Scholar] [CrossRef]
- Waleed, M.; Sajjad, M. On the Emergence of Geospatial Cloud-Based Platforms for Disaster Risk Management: A Global Scientometric Review of Google Earth Engine Applications. Int. J. Disaster Risk Reduct. 2023, 97, 104056. [Google Scholar] [CrossRef]
- Castillo, E.B.; Turpo Cayo, E.Y.; De Almeida, C.M.; López, R.S.; Rojas Briceño, N.B.; Silva López, J.O.; Gurbillón, M.Á.B.; Oliva, M.; Espinoza-Villar, R. Monitoring Wildfires in the Northeastern Peruvian Amazon Using Landsat-8 and Sentinel-2 Imagery in the GEE Platform. ISPRS Int. J. Geo-Inf. 2020, 9, 564. [Google Scholar] [CrossRef]
- DeVries, B.; Huang, C.; Armston, J.; Huang, W.; Jones, J.W.; Lang, M.W. Rapid and Robust Monitoring of Flood Events Using Sentinel-1 and Landsat Data on the Google Earth Engine. Remote Sens. Environ. 2020, 240, 111664. [Google Scholar] [CrossRef]
- Ghaffarian, S.; Farhadabad, A.R.; Kerle, N. Post-Disaster Recovery Monitoring with Google Earth Engine. Appl. Sci. 2020, 10, 4574. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, H.; Luo, C.; Yang, H.; Meng, X.; Ju, Y.; Guo, D. Rapid Extraction of Regional-Scale Agricultural Disasters by the Standardized Monitoring Model Based on Google Earth Engine. Sustainability 2020, 12, 6497. [Google Scholar] [CrossRef]
- Khan, R.; Gilani, H. Global Drought Monitoring with Big Geospatial Datasets Using Google Earth Engine. Environ. Sci. Pollut. Res. 2021, 28, 17244–17264. [Google Scholar] [CrossRef]
- Mehmood, H.; Conway, C.; Perera, D. Mapping of Flood Areas Using Landsat with Google Earth Engine Cloud Platform. Atmosphere 2021, 12, 866. [Google Scholar] [CrossRef]
- Scheip, C.M.; Wegmann, K.W. HazMapper: A Global Open-Source Natural Hazard Mapping Application in Google Earth Engine. Nat. Hazards Earth Syst. Sci. 2021, 21, 1495–1511. [Google Scholar] [CrossRef]
- Venkatappa, M.; Sasaki, N.; Han, P.; Abe, I. Impacts of Droughts and Floods on Croplands and Crop Production in Southeast Asia—An Application of Google Earth Engine. Sci. Total Environ. 2021, 795, 148829. [Google Scholar] [CrossRef]
- Yan, Y.; Zhuang, Q.; Zan, C.; Ren, J.; Yang, L.; Wen, Y.; Zeng, S.; Zhang, Q.; Kong, L. Using the Google Earth Engine to Rapidly Monitor Impacts of Geohazards on Ecological Quality in Highly Susceptible Areas. Ecol. Indic. 2021, 132, 108258. [Google Scholar] [CrossRef]
- Supervised Classification. Google Earth Engine. Google for Developers. Available online: https://developers.google.com/earth-engine/guides/classification (accessed on 20 November 2023).
- Ee.Classifier.SmileRandomForest. Google Earth Engine. Google for Developers. Available online: https://developers.google.com/earth-engine/apidocs/ee-classifier-smilerandomforest (accessed on 20 November 2023).
- Ee.Classifier.SmileNaiveBayes. Google Earth Engine. Google for Developers. Available online: https://developers.google.com/earth-engine/apidocs/ee-classifier-smilenaivebayes (accessed on 20 November 2023).
- Ee.Classifier.Libsvm. Google Earth Engine. Google for Developers. Available online: https://developers.google.com/earth-engine/apidocs/ee-classifier-libsvm (accessed on 20 November 2023).
- Orlecka-Sikora, B.; Lasocki, S.; Kocot, J.; Szepieniec, T.; Grasso, J.R.; Garcia-Aristizabal, A.; Schaming, M.; Urban, P.; Jones, G.; Stimpson, I.; et al. An Open Data Infrastructure for the Study of Anthropogenic Hazards Linked to Georesource Exploitation. Sci. Data 2020, 7, 89. [Google Scholar] [CrossRef]
- Garcia-Silva, A.; Gomez-Perez, J.M.; Palma, R.; Krystek, M.; Mantovani, S.; Foglini, F.; Grande, V.; De Leo, F.; Salvi, S.; Trasatti, E.; et al. Enabling FAIR Research in Earth Science through Research Objects. Futur. Gener. Comput. Syst. 2019, 98, 550–564. [Google Scholar] [CrossRef]
- Cannon, M.; Kelly, A.; Freeman, C. Implementing an Open & FAIR Data Sharing Policy—A Case Study in the Earth and Environmental Sciences. Learn. Publ. 2022, 35, 56–66. [Google Scholar] [CrossRef]
- Hut, R.; Drost, N.; Van De Giesen, N.; Van Werkhoven, B.; Abdollahi, B.; Aerts, J.; Albers, T.; Alidoost, F.; Andela, B.; Camphuijsen, J.; et al. The EWaterCycle Platform for Open and FAIR Hydrological Collaboration. Geosci. Model Dev. 2022, 15, 5371–5390. [Google Scholar] [CrossRef]
- Citizen Science: Public Participation in Environmental Research; Dickinson, J.L.; Bonney, R. (Eds.) Cornell University Press, Comstock Publishing Associates: Ithaca, NY, USA, 2015. [Google Scholar] [CrossRef]
- Shirk, J.L.; Ballard, H.L.; Wilderman, C.C.; Phillips, T.; Wiggins, A.; Jordan, R.; McCallie, E.; Minarchek, M.; Lewenstein, B.V.; Krasny, M.E.; et al. Public Participation in Scientific Research: A Framework for Deliberate Design. Ecol. Soc. 2012, 17, 29. [Google Scholar] [CrossRef]
- Amos, H.M.; Starke, M.J.; Rogerson, T.M.; Colón Robles, M.; Andersen, T.; Boger, R.; Campbell, B.A.; Low, R.D.; Nelson, P.; Overoye, D.; et al. GLOBE Observer Data: 2016–2019. Earth Sp. Sci. 2020, 7, e2020EA001175. [Google Scholar] [CrossRef]
- Dodson, J.B.; Colón Robles, M.; Rogerson, T.M.; Taylor, J.E. Do Citizen Science Intense Observation Periods Increase Data Usability? A Deep Dive of the NASA GLOBE Clouds Data Set With Satellite Comparisons. Earth Space Sci. 2023, 10, e2021EA002058. [Google Scholar] [CrossRef]
- Bonney, R.; Cooper, C.B.; Dickinson, J.; Kelling, S.; Phillips, T.; Rosenberg, K.V.; Shirk, J. Citizen Science: A Developing Tool for Expanding Science Knowledge and Scientific Literacy. Bioscience 2009, 59, 977–984. [Google Scholar] [CrossRef]
- Zhang, T.; Osterkamp, T.E.; Stamnes, K. Some Characteristics of the Climate in Northern Alaska, U.S.A. Arct. Alp. Res. 1996, 28, 509–518. [Google Scholar] [CrossRef]
- Arp, D.; Cherry, E.; Brown, R.N.; Bondurant, C.; Endres, L. Observation-Derived Ice Growth Curves Show Patterns and Trends in Maximum Ice Thickness and Safe Travel Duration of Alaskan Lakes and Rivers. Cryosphere 2020, 14, 3595–3609. [Google Scholar] [CrossRef]
- Alaska Mapping Business Plan—Appendix 2: An Overview of Communities in Alaska. Available online: https://www.commerce.alaska.gov/web/dcra/communityinformation.aspx (accessed on 27 March 2024).
- Alaska Mapping Business Plan—Integrating Mapping, Risk Assessment and Resilience Planning. Available online: https://www.commerce.alaska.gov/web/dcra/PlanningLandManagement/RiskMAP/AlaskaMappingBusinessPlan.aspx (accessed on 27 March 2024).
- Newton, B.W.; Prowse, T.D.; De Rham, L.P. Hydro-Climatic Drivers of Mid-Winter Break-up of River Ice in Western Canada and Alaska. Hydrol. Res. 2017, 48, 945–956. [Google Scholar] [CrossRef]
- Beltaos, S. Threshold between Mechanical and Thermal Breakup of River Ice Cover. Cold Reg. Sci. Technol. 2003, 37, 1–13. [Google Scholar] [CrossRef]
- Qi, M.; Liu, S.; Yao, X.; Xie, F.; Gao, Y. Monitoring the Ice Phenology of Qinghai Lake from 1980 to 2018 Using Multisource Remote Sensing Data and Google Earth Engine. Remote Sens. 2020, 12, 2217. [Google Scholar] [CrossRef]
- Zakharova, E.; Agafonova, S.; Duguay, C.; Frolova, N.; Kouraev, A. River Ice Phenology and Thickness from Satellite Altimetry: Potential for Ice Bridge Road Operation and Climate Studies. Cryosphere 2021, 15, 5387–5407. [Google Scholar] [CrossRef]
- Zhang, X.; Yue, Y.; Han, L.; Li, F.; Yuan, X.; Fan, M.; Zhang, Y. River Ice Monitoring and Change Detection with Multi-Spectral and SAR Images: Application over Yellow River. Multimed. Tools Appl. 2021, 80, 28989–29004. [Google Scholar] [CrossRef]
- Altena, B.; Kääb, A. Quantifying River Ice Movement through a Combination of European Satellite Monitoring Services. Int. J. Appl. Earth Obs. Geoinf. 2021, 98, 102315. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Li, H.; Zhang, H.; Li, H.; Li, H. Monitoring the Ice Thickness in High-Order Rivers on the Tibetan Plateau with Dual-Polarized C-Band Synthetic Aperture Radar. Remote Sens. 2022, 14, 2591. [Google Scholar] [CrossRef]
- Temimi, M.; Abdelkader, M.; Tounsi, A.; Chaouch, N.; Carter, S.; Sjoberg, B.; Macneil, A.; Bingham-Maas, N. An Automated System to Monitor River Ice Conditions Using Visible Infrared Imaging Radiometer Suite Imagery. Remote Sens. 2023, 15, 4896. [Google Scholar] [CrossRef]
- Liu, B.; Ji, H.; Zhai, Y.; Luo, H. Estimation of River Ice Thickness in the Shisifenzi Reach of the Yellow River with Remote Sensing and Air Temperature Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 5645–5659. [Google Scholar] [CrossRef]
- Chaouch, N.; Temimi, M.; Romanov, P.; Cabrera, R.; Mckillop, G.; Khanbilvardi, R. An Automated Algorithm for River Ice Monitoring over the Susquehanna River Using the MODIS Data. Hydrol. Process. 2014, 28, 62–73. [Google Scholar] [CrossRef]
- Earth Engine Data Catalog. Google for Developers. Available online: https://developers.google.com/earth-engine/datasets (accessed on 20 November 2023).
- Sentinel-3 OLCI EFR: Ocean and Land Color Instrument Earth Observation Full Resolution. Earth Engine Data Catalog. Google for Developers. Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S3_OLCI (accessed on 26 March 2024).
- GLOBE Observer—GLOBE Observer—GLOBE.Gov. Available online: https://observer.globe.gov/ (accessed on 20 November 2023).
- Observation List. Available online: https://obs.feoi.axds.co/observations/ (accessed on 20 November 2023).
- River Ice Camera University of Alaska Fairbanks. Available online: https://fresheyesonice.org/view-data/realtime-data/river-ice-camera/ (accessed on 20 November 2023).
- Kealy, K.; Danielson, J.; Allen, D. Fresh Eyes on Ice: Assessment of the river ice information needs of Alaskans. In Technical Evaluation Report Prepared for the Fresh Eyes on Ice Program of the University of Alaska Fairbanks, National Weather Service, Tanana Chiefs Conference, and NASA GLOBE Observer; Goldstream Group LLC: Fairbanks, AK, USA, 2022. [Google Scholar]
- Fresh Eyes on Ice: Search. Available online: https://idevs.portal.axds.co/#search?type_group=all&page=1 (accessed on 10 December 2023).
- Land Products. I-SMART. Available online: https://web.stevens.edu/ismart/land_products/rivericemapping.html (accessed on 22 November 2023).
- Donchyts, G.; Baart, F. Advanced Raster Visualization. In Cloud-Based Remote Sensing with Google Earth Engine; Springer: Cham, Switzerland, 2024; pp. 527–556. [Google Scholar] [CrossRef]
- Madaeni, F.; Chokmani, K.; Lhissou, R.; Homayouni, S.; Gauthier, Y.; Tolszczuk-Leclerc, S. Convolutional Neural Network and Long Short-Term Memory Models for Ice-Jam Predictions. Cryosphere 2022, 16, 1447–1468. [Google Scholar] [CrossRef]
- River Watch Program. Available online: https://www.weather.gov/aprfc/riverWatchProgram (accessed on 22 November 2023).
Satellite | Sensor(s) | Sensor Type | Spatial Resolution |
---|---|---|---|
Landsat 8 | OLI/TIRS | Optical | 30 m |
Landsat 9 | OLI-2/TIRS-2 | Optical | 30 m |
Sentinel-1 | C- SAR | Radar | 10 m |
Sentinel-2 | MSI | Optical | 10 m |
Sentinel-3 | SLSTR | Optical | 300 m |
NOAA-20 | VIIRS | Optical | 375 m |
Target User | Needs |
---|---|
Transportation Agencies |
|
General Public |
|
Indigenous Communities |
|
Scientific Researchers |
|
Weather Agencies |
|
Military |
|
Oil and Gas Companies |
|
Emergency Management Services |
|
Marine Navigation Services |
|
Environmental Conservation Groups |
|
Outdoor Recreation and Tourism Businesses |
|
Local Fishermen |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelkader, M.; Bravo Mendez, J.H.; Temimi, M.; Brown, D.R.N.; Spellman, K.V.; Arp, C.D.; Bondurant, A.; Kohl, H. A Google Earth Engine Platform to Integrate Multi-Satellite and Citizen Science Data for the Monitoring of River Ice Dynamics. Remote Sens. 2024, 16, 1368. https://doi.org/10.3390/rs16081368
Abdelkader M, Bravo Mendez JH, Temimi M, Brown DRN, Spellman KV, Arp CD, Bondurant A, Kohl H. A Google Earth Engine Platform to Integrate Multi-Satellite and Citizen Science Data for the Monitoring of River Ice Dynamics. Remote Sensing. 2024; 16(8):1368. https://doi.org/10.3390/rs16081368
Chicago/Turabian StyleAbdelkader, Mohamed, Jorge Humberto Bravo Mendez, Marouane Temimi, Dana R. N. Brown, Katie V. Spellman, Christopher D. Arp, Allen Bondurant, and Holli Kohl. 2024. "A Google Earth Engine Platform to Integrate Multi-Satellite and Citizen Science Data for the Monitoring of River Ice Dynamics" Remote Sensing 16, no. 8: 1368. https://doi.org/10.3390/rs16081368
APA StyleAbdelkader, M., Bravo Mendez, J. H., Temimi, M., Brown, D. R. N., Spellman, K. V., Arp, C. D., Bondurant, A., & Kohl, H. (2024). A Google Earth Engine Platform to Integrate Multi-Satellite and Citizen Science Data for the Monitoring of River Ice Dynamics. Remote Sensing, 16(8), 1368. https://doi.org/10.3390/rs16081368