Large-Scale Crustal Deformation of the Tianshan Mountains, Xinjiang, from Sentinel-1 InSAR Observations (2015–2020)
Abstract
:1. Introduction
2. Active Tectonics of the Tianshan Region
3. Data and InSAR Time Series Processing
3.1. Data
3.2. SBAS-InSAR with Atmospheric-Corrected Interferograms
3.3. InSAR LOS Velocity Decomposition
4. Results
5. Discussion
5.1. Bolokenu-Aqikekuduke Fault
5.2. Post-Seismic Spatio-Temporal Evolution of Jinghe Earthquake
5.3. Huoerguosi-Manas-Tugulu Anticline Belt
5.4. Kuqa Depression
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, M.; Shen, Z.K. Present-Day Crustal Deformation of Continental China Derived From GPS and Its Tectonic Implications. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018774. [Google Scholar] [CrossRef]
- Fialko, Y. Interseismic Strain Accumulation and the Earthquake Potential on the Southern San Andreas Fault System. Nature 2006, 441, 968–971. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wright, T.J. Satellite Geodetic Imaging Reveals Internal Deformation of Western Tibet. Geophys. Res. Lett. 2012, 39, L07303. [Google Scholar] [CrossRef]
- Tong, X.; Sandwell, D.T.; Smith-Konter, B. High-Resolution Interseismic Velocity Data along the San Andreas Fault from GPS and InSAR. J. Geophys. Res. Solid Earth 2013, 118, 369–389. [Google Scholar] [CrossRef]
- Hussain, E.; Hooper, A.; Wright, T.J.; Walters, R.J.; Bekaert, D.P.S. Interseismic Strain Accumulation across the Central North Anatolian Fault from Iteratively Unwrapped InSAR Measurements. J. Geophys. Res. Solid Earth 2016, 121, 9000–9019. [Google Scholar] [CrossRef]
- Weiss, J.R.; Walters, R.J.; Morishita, Y.; Wright, T.J.; Lazecky, M.; Wang, H.; Hussain, E.; Hooper, A.J.; Elliott, J.R.; Rollins, C.; et al. High-Resolution Surface Velocities and Strain for Anatolia From Sentinel-1 InSAR and GNSS Data. Geophys. Res. Lett. 2020, 47, e2020GL087376. [Google Scholar] [CrossRef]
- Lu, R.; He, D.; Xu, X.; Wang, X.; Tan, X.; Wu, X. Seismotectonics of the 2016 M 6.2 Hutubi Earthquake: Implications for the 1906 M 7.7 Manas Earthquake in the Northern Tian Shan Belt, China. Seismol. Res. Lett. 2018, 89, 13–21. [Google Scholar] [CrossRef]
- Gong, W.; Zhang, Y.; Li, T.; Wen, S.; Zhao, D.; Hou, L.; Shan, X. Multi-Sensor Geodetic Observations and Modeling of the 2017 Mw 6.3 Jinghe Earthquake. Remote Sens. 2019, 11, 2157. [Google Scholar] [CrossRef]
- He, P.; Wen, Y.; Xu, C.; Liu, Y.; Fok, H.S. New Evidence for Active Tectonics at the Boundary of the Kashi Depression, China, from Time Series InSAR Observations. Tectonophysics 2015, 653, 140–148. [Google Scholar] [CrossRef]
- Qiao, X.; Yu, P.; Nie, Z.; Li, J.; Wang, X.; Kuzikov, S.I.; Wang, Q.; Yang, S. The Crustal Deformation Revealed by GPS and InSAR in the Northwest Corner of the Tarim Basin, Northwestern China. Pure Appl. Geophys. 2017, 174, 1405–1423. [Google Scholar] [CrossRef]
- Jahn, B.-M.; Wu, F.; Chen, B. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic. Earth Environ. Sci. Trans. R. Soc. Edinb. 2000, 91, 181–193. [Google Scholar]
- Wu, J.; Song, X.; Wu, W.; Meng, G.; Ren, Y. Analysis of Crustal Movement and Deformation in Mainland China Based on CMONOC Baseline Time Series. Remote Sens. 2021, 13, 2481. [Google Scholar] [CrossRef]
- Liu, D.Q.; Liu, M.; Wang, H.T.; Li, J.; Cheng, J.; Wang, X.Q. Slip Rates and Seismic Moment Deficits on Major Faults in the Tianshan Region. Chin. J. Geophys. 2016, 59, 1647–1660. [Google Scholar]
- England, P.; Molnar, P. Late Quaternary to Decadal Velocity Fields in Asia. J. Geophys. Res. Solid Earth 2005, 110, B12401. [Google Scholar] [CrossRef]
- Niu, Z.J.; Wang, M.; Sun, H.R.; Sun, J.Z.; You, X.Z.; Gan, W.J.; Xue, G.J.; Hao, J.X.; Xin, S.H.; Wang, Y.Q.; et al. Recent Observations of Current Crustal Movement Velocity Field in Chinese Mainland. Chin. Sci. Bull. 2005, 50, 839–840. [Google Scholar] [CrossRef]
- Yang, Z.X.; Waldhauser, F.; Chen, Y.T.; Richards, P.G. Double-Difference Relocation of Earthquakes in Central-Western China, 1992–1999. J. Seismol. 2005, 9, 241–264. [Google Scholar] [CrossRef]
- Wang, H.; Liu, M.; Cao, J.; Shen, X.; Zhang, G. Slip Rates and Seismic Moment Deficits on Major Active Faults in Mainland China. J. Geophys. Res. Solid Earth 2011, 116, B02405. [Google Scholar] [CrossRef]
- Campbell, G.E.; Walker, R.T.; Abdrakhmatov, K.; Schwenninger, J.; Jackson, J.; Elliott, J.R.; Copley, A. The Dzhungarian Fault: Late Quaternary Tectonics and Slip Rate of a Major Right-Lateral Strike-Slip Fault in the Northern Tien Shan Region. J. Geophys. Res. Solid Earth 2013, 118, 5681–5698. [Google Scholar] [CrossRef]
- Wu, C.; Wu, G.; Shen, J.; Chen, J.; Chang, X. The Late-Quaternary Activity of the Nalati Fault and Its Implication for the Crustal Deformation in the Interior of the Tianshan Mountains. Quat. Sci. 2014, 34, 269–280. [Google Scholar]
- Li, Y.; Liu, M.; Hao, M.; Zhu, L.; Cui, D.; Wang, Q. Active Crustal Deformation in the Tian Shan Region, Central Asia. Tectonophysics 2021, 811, 228868. [Google Scholar] [CrossRef]
- Burchfiel, B.C.; Brown, E.T.; Qidong, D.; Xianyue, F.; Jun, L.; Molnar, P.; Jianbang, S.; Zhangming, W.; Huichuan, Y. Crustal Shortening on the Margins of the Tien Shan, Xinjiang, China. Int. Geol. Rev. 1999, 41, 665–700. [Google Scholar] [CrossRef]
- Rodriguez, E.; Martin, J.M. Theory and Design of Interferometric Synthetic Aperture Radars. IEE Proc. F (Radar Signal Process.) 1992, 139, 147–159. [Google Scholar] [CrossRef]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. GAMMA SAR and Interferometric Processing Software. In Proceedings of the ERS—ENVISAT Symposium, Gothenburg, Sweden, 16–20 October 2000. [Google Scholar]
- Wegnüller, U.; Werner, C.; Strozzi, T.; Wiesmann, A.; Frey, O.; Santoro, M. Sentinel-1 Support in the GAMMA Software. Procedia Comput. Sci. 2016, 100, 1305–1312. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Lin, G.; Shearer, P.; Fialko, Y. Obtaining Absolute Locations for Quarry Seismicity Using Remote Sensing Data. Bull. Seismol. Soc. Am. 2006, 96, 722–728. [Google Scholar] [CrossRef]
- Jin, Z.; Fialko, Y. Coseismic and Early Postseismic Deformation Due to the 2021 M7.4 Maduo (China) Earthquake. Geophys. Res. Lett. 2021, 48, e2021GL095213. [Google Scholar] [CrossRef]
- De Zan, F.; Guarnieri, A.M. TOPSAR: Terrain Observation by Progressive Scans. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2352–2360. [Google Scholar] [CrossRef]
- Werner, C.L.; Wegmüller, U.; Strozzi, T. Processing Strategies for Phase Unwrapping for InSAR Applications. In Proceedings of the European Conference on Synthetic Aperture Radar (EUSAR 2002), Cologne, Germany, 4–6 June 2002. [Google Scholar]
- Pepe, A.; Lanari, R. On the Extension of the Minimum Cost Flow Algorithm for Phase Unwrapping of Multitemporal Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2374–2383. [Google Scholar] [CrossRef]
- Biggs, J.; Wright, T.; Lu, Z.; Parsons, B. Multi-Interferogram Method for Measuring Interseismic Deformation: Denali Fault, Alaska. Geophys. J. Int. 2007, 170, 1165–1179. [Google Scholar] [CrossRef]
- Watson, A.R.; Elliott, J.R.; Walters, R.J. Interseismic Strain Accumulation Across the Main Recent Fault, SW Iran, From Sentinel-1 InSAR Observations. J. Geophys. Res. Solid Earth 2022, 127, e2021JB022674. [Google Scholar] [CrossRef]
- Zebker, H.A.; Rosen, P.A.; Hensley, S. Atmospheric Effects in Interferometric Synthetic Aperture Radar Surface Deformation and Topographic Maps. J. Geophys. Res. Solid Earth 1997, 102, 7547–7563. [Google Scholar] [CrossRef]
- Yu, C.; Penna, N.T.; Li, Z. Generation of Real-Time Mode High-Resolution Water Vapor Fields from GPS Observations. J. Geophys. Res. 2017, 122, 2008–2025. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.; Penna, N.T. Interferometric Synthetic Aperture Radar Atmospheric Correction Using a GPS-Based Iterative Tropospheric Decomposition Model. Remote Sens. Environ. 2018, 204, 109–121. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.; Penna, N.T.; Crippa, P. Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations. J. Geophys. Res. Solid Earth 2018, 123, 9202–9222. [Google Scholar] [CrossRef]
- Song, X.; Jiang, Y.; Shan, X.; Gong, W.; Qu, C. A Fine Velocity and Strain Rate Field of Present-Day Crustal Motion of the Northeastern Tibetan Plateau Inverted Jointly by InSAR and GPS. Remote Sens. 2019, 11, 435. [Google Scholar] [CrossRef]
- Zhao, D.; Qu, C.; Shan, X.; Bürgmann, R.; Gong, W.; Zhang, G. Spatiotemporal Evolution of Postseismic Deformation Following the 2001 Mw7.8 Kokoxili, China, Earthquake from 7 Years of Insar Observations. Remote Sens. 2018, 10, 1988. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, G.; Li, Z.; Xu, W.; Wang, H.; Hu, J.; Liu, S.; He, L. Estimating the Long-Term Deformation and Permanent Loss of Aquifer in the Southern Junggar Basin, China, Using InSAR. J. Hydrol. 2022, 614, 128604. [Google Scholar] [CrossRef]
- Shen, J.; Wang, Y.; Li, Y.; Jiang, H.; Xiang, Z. Late Quaternary Right-Lateral Strike-Slip Faulting along the Bolokenu-Aqikekuduke Fault in Chinese Tian Shan. Seismol. Geol. 2003, 25, 183–194. [Google Scholar]
- Ammon, C.J. Source Parameters of Moderate-Sized Earthquakes in the Tien Shan, Central Asia from Regional Moment Tensor Inversion. Geophys. Res. Lett. 1998, 25, 3181–3184. [Google Scholar]
- Guangjie, Z.; Xianqing, L.; Mancang, L.; Caiyuan, D.; Jin, L.; Yang, L.; Zhongyao, X. Fault activity in the northern structural belt of Kuqa Depression and its significance for oil and gas accumulation. J. Min. Sci. Technol. 2022, 7, 618. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sha, P.; He, X.; Wang, X.; Gao, Z. Large-Scale Crustal Deformation of the Tianshan Mountains, Xinjiang, from Sentinel-1 InSAR Observations (2015–2020). Remote Sens. 2023, 15, 4901. https://doi.org/10.3390/rs15204901
Sha P, He X, Wang X, Gao Z. Large-Scale Crustal Deformation of the Tianshan Mountains, Xinjiang, from Sentinel-1 InSAR Observations (2015–2020). Remote Sensing. 2023; 15(20):4901. https://doi.org/10.3390/rs15204901
Chicago/Turabian StyleSha, Pengcheng, Xiufeng He, Xiaohang Wang, and Zhuang Gao. 2023. "Large-Scale Crustal Deformation of the Tianshan Mountains, Xinjiang, from Sentinel-1 InSAR Observations (2015–2020)" Remote Sensing 15, no. 20: 4901. https://doi.org/10.3390/rs15204901
APA StyleSha, P., He, X., Wang, X., & Gao, Z. (2023). Large-Scale Crustal Deformation of the Tianshan Mountains, Xinjiang, from Sentinel-1 InSAR Observations (2015–2020). Remote Sensing, 15(20), 4901. https://doi.org/10.3390/rs15204901