A Novel Index for Daily Flood Inundation Retrieval from CYGNSS Measurements
Abstract
:1. Introduction
2. Data
2.1. CYGNSS
2.2. VIIRS
2.3. SMAP
2.4. GPM
3. Methods
3.1. SR Estimation with Vegetation and Surface Roughness Effect Calibrations
3.2. Retrieval Algorithm
4. Results
4.1. Comparisons between the CYGNSS SR, SMAP SM, and GPM Precipitations
4.2. VIIRS-ATFII Correlation in the Spatial and Temporal Distribution
4.3. Variation Characteristics in CYGNSS-Derived Inundation Data during Extreme Precipitations
4.4. Validation of the CYGNSS Result with the SMAP SM and GPM Data
4.5. A Case Study in Henan Province, China
5. Discussion
5.1. Influences of the Land Type
5.2. Feasibility of Using CYGNSS to Detect Sub-Daily Flood Inundation Processes
5.3. Advantages and Limitations
6. Conclusions
- (1)
- For monthly results, the R value between the VIIRS flood product and ATFII varies from 0.51 to 0.64, with an acceptable significance level (p < 0.05);
- (2)
- The ATFII is qualitatively consistent with the VIIRS flood product, GPM-derived precipitation, and SMAP SM. It provides a spatiotemporal distribution of flood inundation with high accuracy;
- (3)
- The CYNSS-derived ATFII can strengthen knowledge and be complementary to the existing flood products. For example, the CYNSS-derived ATFII can provide helpful information on a large scale with vegetation calibration, when the current flood products have challenges in identifying water under vegetation;
- (4)
- The inundation grade variations classified by the ATFII can capture the spatial variation in inundation. The results could support the timely retrieval of flood inundation data and changes in its extent.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schumann, G.; Bates, P.D.; Horritt, M.S.; Matgen, P.; Pappenberger, F. Progress in integration of remote sensing–derived flood extent and stage data and hydraulic models. Rev. Geophy. 2009, 47, RG4001. [Google Scholar] [CrossRef]
- Chew, C.; Reager, J.T.; Small, E. CYGNSS data map flood inundation during the 2017 Atlantic hurricane season. Sci. Rep. 2018, 8, 9336. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Kimball, J.S.; Zhou, N.; Alfieri, L.; Luo, L.; Du, J.; Huang, Z. Evaluation of real-time global flood modeling with satellite surface inundation observations from SMAP. Remote Sens. Environ. 2019, 233, 111360. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Boulange, J.; Do, H.X.; Gosling, S.N.; Zhao, F. Globally observed trends in mean and extreme river flow attributed to climate change. Science 2021, 371, 1159–1162. [Google Scholar] [CrossRef]
- Yin, J.; Guo, S.; Gentine, P.; Sullivan, S.C.; Liu, P. Does the hook structure constrain future flood intensification under anthropogenic climate warming? Water. Resour. Res. 2021, 57, e2020WR028491. [Google Scholar] [CrossRef]
- Apel, H.; Thieken, A.H.; Merz, B.; Blöschl, G. Flood risk assessment and associated uncertainty. Nat. Hazards Earth Syst. Sci. 2004, 4, 295–308. [Google Scholar] [CrossRef]
- Sanyal, J.; Lu, X. Application of remote sensing in flood management with special reference to monsoon asia: A review. Nat. Hazards J. Int. Soc. Prev. Mitig. Nat. Hazards 2004, 33, 283–301. [Google Scholar] [CrossRef]
- Tegos, A.; Ziogas, A.; Bellos, V.; Tzimas, A. Forensic Hydrology: A Complete Reconstruction of an Extreme Flood Event in Data-Scarce Area. Hydrology 2022, 9, 93. [Google Scholar] [CrossRef]
- Rahman, M.S.; Di, L. The state of the art of spaceborne remote sensing in flood management. Nat. Hazards 2017, 85, 1223–1248. [Google Scholar] [CrossRef]
- McCormack, T.; Campanyà, J.; Naughton, O. A methodology for mapping annual flood extent using multi-temporal Sentinel-1 imagery. Remote Sens. Environ. 2022, 282, 113273. [Google Scholar] [CrossRef]
- Zhao, J.; Pelich, R.; Hostache, R.; Matgen, P.; Wagner, W.; Chini, M. A large-scale 2005–2012 flood map record derived from ENVISAT-ASAR data: United Kingdom as a test case. Remote Sens. Environ. 2021, 256, 112338. [Google Scholar] [CrossRef]
- DeVries, B.; Huang, C.; Armston, J.; Huang, W.; Jones, J.W.; Lang, M.W. Rapid and robust monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine. Remote Sens. Environ. 2020, 240, 111664. [Google Scholar] [CrossRef]
- Li, S.; Goldberg, M.; Kalluri, S.; Lindsey, D.T.; Sjoberg, B.; Zhou, L.; Helfrich, S.; Green, D.; Borges, D.; Yang, T.; et al. High Resolution 3D Mapping of Hurricane Flooding from Moderate-Resolution Operational Satellites. Remote Sens. 2022, 14, 5445. [Google Scholar] [CrossRef]
- Carreno-Luengo, H.; Ruf, C.S. Retrieving Freeze/Thaw Surface State From CYGNSS Measurements. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4302313. [Google Scholar] [CrossRef]
- Chew, C.; Small, E. Soil Moisture Sensing Using Spaceborne GNSS Reflections: Comparison of CYGNSS Reflectivity to SMAP Soil Moisture. Geophys. Res. Lett. 2018, 45, 4049–4057. [Google Scholar] [CrossRef] [Green Version]
- Ruf, C.S.; Chang, P.S.; Clarizia, M.P.; Gleason, S.; Jelenak, Z.; Murray, J.; Morris, M.; Musko, S.; Posselt, D.; Provost, D.; et al. CYGNSS Handbook. Available online: https://cygnss.engin.umich.edu/wp-content/uploads/sites/534/2021/06/CYGNSS_Handbook_April2016.pdf (accessed on 1 April 2016).
- Ruf, C.S.; Chew, C.; Lang, T.; Morris, M.G.; Nave, K.; Ridley, A.; Balasubramaniam, R. A New Paradigm in Earth Environmental Monitoring with the CYGNSS Small Satellite Constellation. Sci. Rep. 2018, 8, 8782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loria, E.; O’Brien, A.; Zavorotny, V.; Downs, B.; Zuffada, C. Analysis of scattering characteristics from inland bodies of water observed by CYGNSS. Remote Sens. Environ. 2020, 245, 111825. [Google Scholar] [CrossRef]
- Mayers, D.; Ruf, C. Measuring Ice Thickness with Cygnss Altimetry. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8535–8538. [Google Scholar]
- Li, W.; Cardellach, E.; Fabra, F.; Ribó, S.; Rius, A. Assessment of Spaceborne GNSS-R Ocean Altimetry Performance Using CYGNSS Mission Raw Data. IEEE Trans. Geosci. Remote Sens. 2019, 58, 238–250. [Google Scholar] [CrossRef]
- Ruf, C.S.; Gleason, S.; McKague, D.S. Assessment of CYGNSS Wind Speed Retrieval Uncertainty. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 87–97. [Google Scholar] [CrossRef]
- Clarizia, M.P.; Ruf, C.S. Wind Speed Retrieval Algorithm for the Cyclone Global Navigation Satellite System (CYGNSS) Mission. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4419–4432. [Google Scholar] [CrossRef]
- Liu, B.; Wan, W.; Guo, Z.; Ji, R.; Wang, T.; Tang, G.; Cui, Y.; Hong, Y. First Assessment of CyGNSS-Incorporated SMAP Sea Surface Salinity Retrieval Over Pan-Tropical Ocean. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 12163–12173. [Google Scholar] [CrossRef]
- Morris, M.; Chew, C.; Reager, J.T.; Shah, R.; Zuffada, C. A novel approach to monitoring wetland dynamics using CYGNSS: Everglades case study. Remote Sens. Environ. 2019, 233, 111417. [Google Scholar] [CrossRef]
- Gerlein-Safdi, C.; Ruf, C.S. A CYGNSS-Based Algorithm for the Detection of Inland Waterbodies. Geophys. Res. Lett. 2019, 46, 12065–12072. [Google Scholar] [CrossRef]
- Wan, W.; Liu, B.; Zeng, Z.; Chen, X.; Wu, G.; Xu, L.; Chen, X.; Hong, Y. Using CYGNSS Data to Monitor China’s Flood Inundation during Typhoon and Extreme Precipitation Events in 2017. Remote Sens. 2019, 11, 854. [Google Scholar] [CrossRef] [Green Version]
- Chew, C.; Small, E. Estimating inundation extent using CYGNSS data: A conceptual modeling study. Remote Sens. Environ. 2022, 246, 111869. [Google Scholar] [CrossRef]
- Unnithan, S.L.K.; Biswal, B.; Rüdiger, C. Flood Inundation Mapping by Combining GNSS-R Signals with Topographical Information. Remote Sens. 2020, 12, 3026. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, Z.; Li, Z.; Zhang, P.; Liu, Q.; Nan, Y.; Zhang, J.; Hu, S.; Feng, Y.; Zhao, H. Using CYGNSS Data to Map Flood Inundation during the 2021 Extreme Precipitation in Henan Province, China. Remote Sens. 2021, 13, 5181. [Google Scholar] [CrossRef]
- Yang, W.; Gao, F.; Xu, T.; Wang, N.; Tu, J.; Jing, L.; Kong, Y. Daily Flood Monitoring Based on Spaceborne GNSS-R Data: A Case Study on Henan, China. Remote Sens. 2021, 13, 4561. [Google Scholar] [CrossRef]
- Gleason, S.; Ruf, C.S.; O’Brien, A.J.; McKague, D.S. The CYGNSS Level 1 Calibration Algorithm and Error Analysis Based on On-Orbit Measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 37–49. [Google Scholar] [CrossRef]
- Eroglu, O.; Kurum, M.; Boyd, D.; Gurbuz, A.C. High Spatio-Temporal Resolution CYGNSS Soil Moisture Estimates Using Artificial Neural Networks. Remote Sens. 2019, 11, 2272. [Google Scholar] [CrossRef]
- Li, S.; Sun, D.; Goldberg, M.D.; Sjoberg, B.; Santek, D.; Hoffman, J.P.; DeWeese, M.; Restrepo, P.; Lindsey, S.; Holloway, E. Automatic near real-time flood detection using Suomi-NPP/VIIRS data. Remote Sens. Environ. 2018, 204, 672–689. [Google Scholar] [CrossRef]
- Skofronick-Jackson, G.; Petersen, W.A.; Berg, W.; Kidd, C.; Stocker, E.F.; Kirschbaum, D.B.; Kakar, R.; Braun, S.A.; Huffman, G.J.; Iguchi, T.; et al. The Global Precipitation Measurement (GPM) Mission for Science and Society. BAMS 2017, 98, 1679–1695. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Wan, W.; Wang, J.; Liu, B.; Sun, Z. A Physics-Based Algorithm to Couple CYGNSS Surface Reflectivity and SMAP Brightness Temperature Estimates for Accurate Soil Moisture Retrieval. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4409715. [Google Scholar] [CrossRef]
- Choudhury, B.J.; Schmugge, T.J.; Chang, A.; Newton, R.W. Effect of surface roughness on the microwave emission from soils. J. Geophys. Res. 1979, 84, 5699–5706. [Google Scholar] [CrossRef]
- Panciera, R.; Walker, J.P.; Jackson, T.J.; Gray, D.A.; Tanase, M.A.; Ryu, D.; Monerris, A.; Yardley, H.; Rüdiger, C.; Wu, X.; et al. The soil moisture active passive experiments (SMAPEx): Toward soil moisture retrieval from the SMAP mission. IEEE Trans. Geosci. Remote Sens. 2013, 52, 490–507. [Google Scholar] [CrossRef]
Non- Inundation | Mild- Inundation | Moderate-Inundation | Severe- Inundation | Inundated Area | |
---|---|---|---|---|---|
ATFII value | 0–0.33 | 0.33–0.47 | 0.47–0.68 | 0.68–0.86 | >0.86 |
Date | Non | Mild | Moderate | Severe | Full |
---|---|---|---|---|---|
19 July 2021 | 46% | 39% | 15% | 0% | 0% |
20 July 2021 | 47% | 8% | 16% | 18% | 11% |
21 July 2021 | 2% | 9% | 37% | 33% | 19% |
22 July 2021 | 2% | 6% | 36% | 35% | 21% |
23 July 2021 | 16% | 29% | 29% | 19% | 6% |
24 July 2021 | 48% | 31% | 12% | 5% | 4% |
Land Type | Sample Numbers | R Value |
---|---|---|
Evergreen Needleleaf Forest | 84 | 0.67 |
Evergreen Broadleaf Forest | 956 | 0.58 |
Deciduous Broadleaf Forest | 316 | 0.56 |
Mixed Forest | 1040 | 0.59 |
Woody Savannas | 3756 | 0.67 |
Savannas | 11,839 | 0.52 |
Grasslands | 3022 | 0.58 |
Permanent Wetlands | 2390 | 0.50 |
Croplands | 23,811 | 0.58 |
Urban and Built-up | 3314 | 0.46 |
Cropland/Natural Vegetation Mosaic | 3418 | 0.56 |
Barren or Sparsely Vegetated | 56 | 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Sun, Z.; Jiang, L. A Novel Index for Daily Flood Inundation Retrieval from CYGNSS Measurements. Remote Sens. 2023, 15, 524. https://doi.org/10.3390/rs15020524
Yang T, Sun Z, Jiang L. A Novel Index for Daily Flood Inundation Retrieval from CYGNSS Measurements. Remote Sensing. 2023; 15(2):524. https://doi.org/10.3390/rs15020524
Chicago/Turabian StyleYang, Ting, Zhigang Sun, and Lulu Jiang. 2023. "A Novel Index for Daily Flood Inundation Retrieval from CYGNSS Measurements" Remote Sensing 15, no. 2: 524. https://doi.org/10.3390/rs15020524
APA StyleYang, T., Sun, Z., & Jiang, L. (2023). A Novel Index for Daily Flood Inundation Retrieval from CYGNSS Measurements. Remote Sensing, 15(2), 524. https://doi.org/10.3390/rs15020524