Mapping Tropical Forest Cover and Deforestation with Planet NICFI Satellite Images and Deep Learning in Mato Grosso State (Brazil) from 2015 to 2021
Abstract
:1. Introduction
2. Materials and Methods
2.1. Planet Satellite Images of Mato Grosso, Brazil
2.2. LiDAR Tree Cover Dataset
2.3. Deforestation History Datasets
2.4. Neural Network Architecture
2.5. Training
2.6. Prediction
2.7. Cloud Temporal Filtering
2.8. Tree Cover and Deforestation Biannual Maps
3. Results
3.1. Tree Cover Model Validation
3.2. Tree Cover and Deforestation of Mato Grosso
3.3. Comparison between our Deforestation Product and the Deforestation Estimated by PRODES and GFC Products
3.4. Comparison between our Deforestation Product and the Deforestation Estimated by PRODES and GFC Products for Some Selected Planet Tiles
4. Discussion
4.1. Mapping Evergreen Tropical Forests with Planet NICFI Images and Deep Learning
4.2. The Deforestation of Mato Grosso
4.3. Perspectives on Training Sample Production for Tree Cover Classification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harris, N.L.; Gibbs, D.A.; Baccini, A.; Birdsey, R.A.; De Bruin, S.; Farina, M.; Fatoyinbo, L.; Hansen, M.C.; Herold, M.; Houghton, R.A.; et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Chang. 2021, 11, 234–240. [Google Scholar] [CrossRef]
- Friedlingstein, P.; Jones, M.W.; O’Sullivan, M.; Andrew, R.M.; Bakker, D.C.; Hauck, J.; Le Quéré, C.; Peters, G.P.; Peters, W.; Pongratz, J.; et al. Global carbon budget 2021. Earth Syst. Sci. Data 2022, 14, 1917–2005. [Google Scholar] [CrossRef]
- Feng, Y.; Zeng, Z.; Searchinger, T.D.; Ziegler, A.D.; Wu, J.; Wang, D.; He, X.; Elsen, P.R.; Ciais, P.; Xu, R.; et al. Doubling of annual forest carbon loss over the tropics during the early twenty-first century. Nat. Sustain. 2022, 5, 444–451. [Google Scholar] [CrossRef]
- Shukla, P.; Skea, J.; Slade, R.; Khourdajie, A.A.; van Diemen, R.; McCollum, D.; Pathak, M.; Some, S.; Vyas, P.; Fradera, R.; et al. (Eds.) IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Working Group III contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Pendrill, F.; Persson, U.M.; Godar, J.; Kastner, T.; Moran, D.; Schmidt, S.; Wood, R. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Chang. 2019, 56, 1–10. [Google Scholar] [CrossRef]
- Silva Junior, C.H.; Pessoa, A.; Carvalho, N.S.; Reis, J.B.; Anderson, L.O.; Aragão, L.E. The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. Nat. Ecol. Evol. 2021, 5, 144–145. [Google Scholar] [CrossRef]
- de Almeida, C.A.; Maurano, L.E.P.; de Morisson Valeriano, D.; Camara, G.; Vinhas, L.; Gomes, A.R.; Monteiro, A.M.V.; de Almeida Souza, A.A.; Rennó, C.D.; Silva, D.E.; et al. Methodology for Forest Monitoring used in PRODES and DETER Projects. CEP 2021, 12, 010. [Google Scholar]
- Montibeller, B.; Kmoch, A.; Virro, H.; Mander, Ü.; Uuemaa, E. Increasing fragmentation of forest cover in Brazil’s Legal Amazon from 2001 to 2017. Sci. Rep. 2020, 10, 5803. [Google Scholar] [CrossRef] [Green Version]
- Valeriano, D.M.; Mello, E.M.; Moreira, J.C.; Shimabukuro, Y.E.; Duarte, V.; Souza, I.; Santos, J.; Barbosa, C.C.; Souza, R. Monitoring tropical forest from space: The PRODES digital project. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 35, 272–274. [Google Scholar]
- Mitchard, E.T. The tropical forest carbon cycle and climate change. Nature 2018, 559, 527–534. [Google Scholar] [CrossRef] [Green Version]
- National Institute for Space Research (INPE). Monitoring of the Brazilian Amazonian Forest by Satellite. Technical Report, INPE, 1988–2021. Available online: https://www.gov.br/inpe/pt-br (accessed on 15 January 2023).
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Pacheco-Pascagaza, A.M.; Gou, Y.; Louis, V.; Roberts, J.F.; Rodríguez-Veiga, P.; da Conceição Bispo, P.; Espírito-Santo, F.D.; Robb, C.; Upton, C.; Galindo, G.; et al. Near real-time change detection system using Sentinel-2 and machine learning: A test for Mexican and Colombian forests. Remote Sens. 2022, 14, 707. [Google Scholar] [CrossRef]
- Doblas, J.; Reis, M.S.; Belluzzo, A.P.; Quadros, C.B.; Moraes, D.R.V.; Almeida, C.A.; Maurano, L.E.P.; Carvalho, A.F.A.; Sant’Anna, S.J.S.; Shimabukuro, Y.E. DETER-R: An Operational Near-Real Time Tropical Forest Disturbance Warning System Based on Sentinel-1 Time Series Analysis. Remote Sens. 2022, 14, 3658. [Google Scholar] [CrossRef]
- Norway’s International Climate and Forest Initiative. NICFI. Available online: https://www.nicfi.no/ (accessed on 10 January 2023).
- Planet Team. Planet Application Program Interface: In Space for Life on Earth. 2017. Available online: https://api.planet.com (accessed on 10 January 2023).
- Pandey, P.; Kington, J.; Kanwar, A.; Curdoglo, M. Addendum to Planet Basemaps. Product Specifications. NICFI Basemaps. v02. NICFI Basemaps, 2021. Available online: https://assets.planet.com/docs/NICFI_Basemap_Spec_Addendum.pdf (accessed on 10 January 2023).
- Cheng, Y.; Vrieling, A.; Fava, F.; Meroni, M.; Marshall, M.; Gachoki, S. Phenology of short vegetation cycles in a Kenyan rangeland from PlanetScope and Sentinel-2. Remote Sens. Environ. 2020, 248, 112004. [Google Scholar] [CrossRef]
- Francini, S.; McRoberts, R.E.; Giannetti, F.; Mencucci, M.; Marchetti, M.; Scarascia Mugnozza, G.; Chirici, G. Near-real time forest change detection using PlanetScope imagery. Eur. J. Remote Sens. 2020, 53, 233–244. [Google Scholar] [CrossRef]
- Chollet, F.; Allaire, J. Deep Learning with R; Manning Publications Co.: Shelter Island, NY, USA, 2018. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Shendryk, Y.; Rist, Y.; Ticehurst, C.; Thorburn, P. Deep learning for multi-modal classification of cloud, shadow and land cover scenes in PlanetScope and Sentinel-2 imagery. ISPRS J. Photogramm. Remote Sens. 2019, 157, 124–136. [Google Scholar] [CrossRef]
- Matosak, B.M.; Fonseca, L.M.G.; Taquary, E.C.; Maretto, R.V.; Bendini, H.d.N.; Adami, M. Mapping Deforestation in Cerrado Based on Hybrid Deep Learning Architecture and Medium Spatial Resolution Satellite Time Series. Remote Sens. 2022, 14, 209. [Google Scholar] [CrossRef]
- Maretto, R.V.; Fonseca, L.M.; Jacobs, N.; Körting, T.S.; Bendini, H.N.; Parente, L.L. Spatio-temporal deep learning approach to map deforestation in amazon rainforest. IEEE Geosci. Remote Sens. Lett. 2020, 18, 771–775. [Google Scholar] [CrossRef]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar]
- Lobo Torres, D.; Queiroz Feitosa, R.; Nigri Happ, P.; Elena Cué La Rosa, L.; Marcato Junior, J.; Martins, J.; Olã Bressan, P.; Gonçalves, W.N.; Liesenberg, V. Applying Fully Convolutional Architectures for Semantic Segmentation of a Single Tree Species in Urban Environment on High Resolution UAV Optical Imagery. Sensors 2020, 20, 563. [Google Scholar] [CrossRef] [Green Version]
- Wagner, F.H.; Sanchez, A.; Tarabalka, Y.; Lotte, R.G.; Ferreira, M.P.; Aidar, M.P.M.; Gloor, E.; Phillips, O.L.; Aragão, L.E.O.C. Using the U-net convolutional network to map forest types and disturbance in the Atlantic rainforest with very high resolution images. Remote Sens. Ecol. Conserv. 2019, 5, 360–375. [Google Scholar] [CrossRef]
- Tyukavina, A.; Hansen, M.C.; Potapov, P.V.; Stehman, S.V.; Smith-Rodriguez, K.; Okpa, C.; Aguilar, R. Types and rates of forest disturbance in Brazilian Legal Amazon, 2000–2013. Sci. Adv. 2017, 3, e1601047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Planet API, NICFI Basemaps. Available online: https://api.planet.com/basemaps/v1/mosaics (accessed on 10 January 2023).
- Mouselimis, L. PlanetNICFI: Processing of the ’Planet NICFI’ Satellite Imagery Using R, R package version 1.0.4; 2022. Available online: https://cran.r-project.org/web/packages/PlanetNICFI/index.html (accessed on 10 January 2023).
- Planet. Planet Imagery Product Specifications; Planet Labs: San Francisco, CA, USA, 2021; p. 91. [Google Scholar]
- Dalagnol, R.; Phillips, O.L.; Gloor, E.; Galvão, L.S.; Wagner, F.H.; Locks, C.J.; Aragão, L.E. Quantifying canopy tree loss and gap recovery in tropical forests under low-intensity logging using VHR satellite imagery and airborne LiDAR. Remote Sens. 2019, 11, 817. [Google Scholar] [CrossRef] [Green Version]
- Dalagnol, R.; Wagner, F.H.; Galvão, L.S.; Streher, A.S.; Phillips, O.L.; Gloor, E.; Pugh, T.A.; Ometto, J.P.; Aragão, L.E. Large-scale variations in the dynamics of Amazon forest canopy gaps from airborne lidar data and opportunities for tree mortality estimates. Sci. Rep. 2021, 11, 138. [Google Scholar] [CrossRef]
- Hansen Global Forest Change v1.9 (2000–2021). Available online: https://developers.google.com/earth-engine/datasets/catalog/UMD_hansen_global_forest_change_2021_v1_9 (accessed on 15 June 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Chollet, F. Keras. 2015. Available online: https://github.com/fchollet/keras (accessed on 10 January 2023).
- Allaire, J.; Chollet, F. keras: R Interface to ’Keras’, R Package Version 2.1.4; 2016. Available online: https://cran.r-project.org/web/packages/keras/index.html (accessed on 10 January 2023).
- Allaire, J.; Tang, Y. tensorflow: R Interface to ’TensorFlow’, R Package Version 2.2.0; 2020. Available online: https://cran.r-project.org/web/packages/tensorflow/index.html (accessed on 10 January 2023).
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: tensorflow.org (accessed on 10 January 2023).
- Wagner, F.H.; Dalagnol, R.; Sánchez, A.H.; Hirye, M.C.M.; Favrichon, S.; Lee, J.H.; Mauceri, S.; Yang, Y.; Saatchi, S. K-textures, a self-supervised hard clustering deep learning algorithm for satellite image segmentation. Front. Environ. Sci. 2022, 10, 946729. Available online: https://www.frontiersin.org/articles/10.3389/fenvs.2022.946729 (accessed on 10 January 2023). [CrossRef]
- Wagner, F.H. The flowering of Atlantic Forest Pleroma trees. Sci. Rep. 2021, 11, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Dice, L.R. Measures of the amount of ecologic association between species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar] [CrossRef]
- Wagner, F.H.; Sanchez, A.; Aidar, M.P.; Rochelle, A.L.; Tarabalka, Y.; Fonseca, M.G.; Phillips, O.L.; Gloor, E.; Aragao, L.E. Mapping Atlantic rainforest degradation and regeneration history with indicator species using convolutional network. PLoS ONE 2020, 15, e0229448. [Google Scholar] [CrossRef] [Green Version]
- USGS. Landsat Global Archive Consolidation. Available online: https://www.usgs.gov/landsat-missions/landsat-global-archive-consolidation (accessed on 10 January 2023).
- FAO. Global Forest Resources Assessment 2020: Main report. Technical report, Food and Agriculture Organization of the United Nations, ROME. 2020. Available online: https://doi.org/10.4060/ca9825en (accessed on 1 June 2022).
- MapBiomas. Project MapBiomas, Collection 2.3 of Brazilian Land Cover & Use Map Series. Technical Report. Available online: https://mapbiomas.org/ (accessed on 9 May 2018).
- Rajão, R.; Soares-Filho, B.; Nunes, F.; Börner, J.; Machado, L.; Assis, D.; Oliveira, A.; Pinto, L.; Ribeiro, V.; Rausch, L.; et al. The rotten apples of Brazil’s agribusiness. Science 2020, 369, 246–248. [Google Scholar] [CrossRef] [PubMed]
- Silgueiro, V.; Cardoso, B.; Vadiones, A.; Batista, L.; Bernasconi, P. Logging Illegality in Mato Grosso, Brazil, from 2018 to 2019; Technical Report; Instituto Centro de Vida (ICV): Alta Floresta, MT, Brazil, 2021. [Google Scholar]
- Silva Junior, C.H.; Heinrich, V.H.; Freire, A.T.; Broggio, I.S.; Rosan, T.M.; Doblas, J.; Anderson, L.O.; Rousseau, G.X.; Shimabukuro, Y.E.; Silva, C.A.; et al. Benchmark maps of 33 years of secondary forest age for Brazil. Sci. Data 2020, 7, 269. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, V.H.; Dalagnol, R.; Cassol, H.L.; Rosan, T.M.; de Almeida, C.T.; Silva Junior, C.H.; Campanharo, W.A.; House, J.I.; Sitch, S.; Hales, T.C.; et al. Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nat. Commun. 2021, 12, 1785. [Google Scholar] [CrossRef]
- Rosan, T.M.; Aragao, L.E.; Oliveras, I.; Phillips, O.L.; Malhi, Y.; Gloor, E.; Wagner, F.H. Extensive 21st-century woody encroachment in South America’s savanna. Geophys. Res. Lett. 2019, 46, 6594–6603. [Google Scholar] [CrossRef] [Green Version]
- Vogt, P.; Ferrari, J.R.; Lookingbill, T.R.; Gardner, R.H.; Riitters, K.H.; Ostapowicz, K. Mapping functional connectivity. Ecol. Indic. 2009, 9, 64–71. [Google Scholar] [CrossRef]
- Strassburg, B.B.; Barros, F.S.; Crouzeilles, R.; Iribarrem, A.; Santos, J.S.d.; Silva, D.; Sansevero, J.B.; Alves-Pinto, H.N.; Feltran-Barbieri, R.; Latawiec, A.E. The role of natural regeneration to ecosystem services provision and habitat availability: A case study in the Brazilian Atlantic Forest. Biotropica 2016, 48, 890–899. [Google Scholar] [CrossRef] [Green Version]
- Brodrick, P.G.; Davies, A.B.; Asner, G.P. Uncovering Ecological Patterns with Convolutional Neural Networks. Trends Ecol. Evol. 2019, 34, 734–745. [Google Scholar] [CrossRef] [PubMed]
Classes | Area (km) | Area (%) |
---|---|---|
2015 total tree cover | 556,510.76 | 58.08 |
2015 non-tree cover | 401,689.23 | 41.92 |
2015 remaining tree cover | 414,912.25 | 43.30 |
deforestation June 2016 | 18,763.20 | 1.96 |
deforestation December 2016 | 6632.05 | 0.69 |
deforestation June 2017 | 8511.05 | 0.89 |
deforestation December 2017 | 8037.00 | 0.84 |
deforestation June 2018 | 8066.52 | 0.84 |
deforestation December 2018 | 9016.48 | 0.94 |
deforestation June 2019 | 8812.72 | 0.92 |
deforestation December 2019 | 9944.50 | 1.04 |
deforestation June 2020 | 9998.04 | 1.04 |
deforestation December 2020 | 15,297.82 | 1.60 |
deforestation June 2021 | 18,701.35 | 1.95 |
deforestation December 2021 | 19,817.78 | 2.07 |
Deforestation | |||
---|---|---|---|
Our Product (km) | Prodes (km) | GFC Tree Loss Year (km) | |
2016 | 7762.19 | 1370.87 | 5192.88 |
2017 | 5453.75 | 1327.95 | 7638.69 |
2018 | 5959.05 | 1407.31 | 3950.39 |
2019 | 6271.88 | 1848.54 | 3666.78 |
2020 | 7638.07 | 1817.41 | 5636.31 |
2021 | 13,930.53 | 1860.23 | 3987.56 |
PRODES | ||||||||
---|---|---|---|---|---|---|---|---|
Non-Forest | Forest | Deforestation | Deforestation | Deforestation | Deforestation | Deforestation | Deforestation | |
December 2016 | December 2017 | December 2018 | December 2019 | December 2020 | December 2021 | |||
OURS | ||||||||
non-forest | 67.30 | 1.30 | 52.60 | 22.20 | 9.30 | 6.00 | 5.00 | 3.50 |
forest | 19.50 | 95.30 | 8.60 | 9.90 | 13.60 | 11.60 | 17.90 | 17.20 |
deforestation | ||||||||
June 2016 | 2.10 | 0.20 | 8.00 | 15.50 | 3.00 | 1.40 | 1.10 | 0.60 |
December 2016 | 0.70 | 0.10 | 1.90 | 1.70 | 0.50 | 0.40 | 0.30 | 0.20 |
June 2017 | 0.90 | 0.10 | 4.40 | 13.60 | 4.20 | 1.40 | 0.80 | 0.50 |
December 2017 | 0.80 | 0.10 | 3.30 | 9.80 | 13.40 | 2.40 | 1.00 | 0.50 |
June 2018 | 0.90 | 0.10 | 3.10 | 5.30 | 16.80 | 4.20 | 1.50 | 0.60 |
December 2018 | 0.90 | 0.10 | 3.80 | 4.60 | 11.40 | 18.70 | 2.70 | 0.90 |
June 2019 | 0.80 | 0.10 | 3.20 | 3.20 | 7.70 | 18.60 | 7.20 | 1.40 |
December 2019 | 0.90 | 0.20 | 2.70 | 3.30 | 5.00 | 12.50 | 19.80 | 2.10 |
June 2020 | 0.80 | 0.20 | 1.90 | 2.70 | 3.20 | 6.70 | 16.30 | 3.60 |
December 2020 | 1.20 | 0.40 | 2.70 | 3.40 | 5.50 | 7.40 | 11.80 | 20.20 |
June 2021 | 1.60 | 0.50 | 2.10 | 2.70 | 3.90 | 5.50 | 9.30 | 34.00 |
December 2021 | 1.50 | 1.40 | 1.70 | 2.10 | 2.70 | 3.30 | 5.50 | 14.70 |
GFC Tree Loss Year | ||||||||
---|---|---|---|---|---|---|---|---|
Non Forest | Forest 2000 | Deforestation | Deforestation | Deforestation | Deforestation | Deforestation | Deforestation | |
December 2016 | December 2017 | December 2018 | December 2019 | December 2020 | December 2021 | |||
OURS | ||||||||
non forest | 26.90 | 72.90 | 26.30 | 7.80 | 5.40 | 4.90 | 3.90 | 5.30 |
forest | 67.40 | 13.10 | 42.30 | 50.30 | 38.70 | 36.50 | 56.40 | 31.60 |
deforestation | ||||||||
June 2016 | 0.80 | 2.70 | 5.40 | 5.30 | 2.20 | 1.10 | 0.60 | 0.90 |
December 2016 | 0.30 | 0.70 | 1.20 | 0.70 | 0.30 | 0.60 | 0.30 | 0.40 |
June 2017 | 0.30 | 1.20 | 2.70 | 4.60 | 2.80 | 0.90 | 0.40 | 0.50 |
December 2017 | 0.30 | 1.00 | 2.20 | 5.00 | 5.30 | 1.40 | 0.40 | 0.60 |
June 2018 | 0.30 | 1.00 | 1.90 | 3.10 | 9.00 | 1.90 | 0.50 | 0.70 |
December 2018 | 0.30 | 1.20 | 2.50 | 3.10 | 9.20 | 8.90 | 0.90 | 0.60 |
June 2019 | 0.30 | 1.00 | 2.20 | 2.60 | 5.90 | 11.40 | 1.50 | 0.60 |
December 2019 | 0.30 | 1.00 | 2.30 | 2.50 | 4.50 | 9.40 | 6.00 | 0.80 |
June 2020 | 0.40 | 0.70 | 1.70 | 2.20 | 2.90 | 5.10 | 7.00 | 1.00 |
December 2020 | 0.50 | 1.10 | 2.80 | 4.30 | 5.10 | 6.00 | 13.50 | 6.20 |
June 2021 | 0.80 | 1.30 | 2.60 | 3.90 | 4.20 | 6.00 | 5.90 | 21.80 |
December 2021 | 1.20 | 1.20 | 3.70 | 4.50 | 4.40 | 6.00 | 2.70 | 28.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagner, F.H.; Dalagnol, R.; Silva-Junior, C.H.L.; Carter, G.; Ritz, A.L.; Hirye, M.C.M.; Ometto, J.P.H.B.; Saatchi, S. Mapping Tropical Forest Cover and Deforestation with Planet NICFI Satellite Images and Deep Learning in Mato Grosso State (Brazil) from 2015 to 2021. Remote Sens. 2023, 15, 521. https://doi.org/10.3390/rs15020521
Wagner FH, Dalagnol R, Silva-Junior CHL, Carter G, Ritz AL, Hirye MCM, Ometto JPHB, Saatchi S. Mapping Tropical Forest Cover and Deforestation with Planet NICFI Satellite Images and Deep Learning in Mato Grosso State (Brazil) from 2015 to 2021. Remote Sensing. 2023; 15(2):521. https://doi.org/10.3390/rs15020521
Chicago/Turabian StyleWagner, Fabien H., Ricardo Dalagnol, Celso H. L. Silva-Junior, Griffin Carter, Alison L. Ritz, Mayumi C. M. Hirye, Jean P. H. B. Ometto, and Sassan Saatchi. 2023. "Mapping Tropical Forest Cover and Deforestation with Planet NICFI Satellite Images and Deep Learning in Mato Grosso State (Brazil) from 2015 to 2021" Remote Sensing 15, no. 2: 521. https://doi.org/10.3390/rs15020521
APA StyleWagner, F. H., Dalagnol, R., Silva-Junior, C. H. L., Carter, G., Ritz, A. L., Hirye, M. C. M., Ometto, J. P. H. B., & Saatchi, S. (2023). Mapping Tropical Forest Cover and Deforestation with Planet NICFI Satellite Images and Deep Learning in Mato Grosso State (Brazil) from 2015 to 2021. Remote Sensing, 15(2), 521. https://doi.org/10.3390/rs15020521