Changes in Carbon Dioxide Balance Associated with Land Use and Land Cover in Brazilian Legal Amazon Based on Remotely Sensed Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Land Use and Land Cover Data
2.2.2. Gross Primary Production (GPP)
2.2.3. Carbon Dioxide Flux (CO2Flux)
2.2.4. Atmospheric CO2 Concentration (XCO2)
2.2.5. Precipitation Data
2.3. Analysis
2.3.1. Land Use and Cover Change from 2009 to 2019
2.3.2. Spatial Clustering of Atmospheric Carbon
2.3.3. Shapiro-Wilk Normality Test
2.3.4. Variability of Carbon Fluxes in between Land Cover and Use Classes
2.3.5. Cluster Analysis
2.3.6. Trend Analysis
3. Results
3.1. Land Use and Land Cover Changes
3.2. Spatial Variability of Carbon
3.3. Statistical Analysis
4. Discussion
4.1. The Effect of Changes in Land Use and Land Cover on Indigenous Lands, Protected Areas and Other Important Areas of Conservation
4.2. Spatial Carbon Flux in the Legal Amazon
4.3. Carbon Analysis by Land Use and Land Cover
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watson, J.E.M.; Evans, T.; Venter, O.; Williams, B.; Tulloch, A.; Stewart, C.; Thompson, I.; Ray, J.C.; Murray, K.; Salazar, A.; et al. The Exceptional Value of Intact Forest Ecosystems. Nat. Ecol. Evol. 2018, 2, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Xiao, X.; Liu, F.; de Sa e Silva, F.; Shimabukuro, Y.; Arai, E.; Fearnside, P.M. Forest Conservation in Indigenous Territories and Protected Areas in the Brazilian Amazon. Nat. Sustain. 2023, 6, 295–305. [Google Scholar] [CrossRef]
- BRASIL Base Legislação Da Presidência Da República—Lei Complementar No 124 de 03 de Janeiro de 2007; Planalto: Brasília, Brazil, 3 January 2007.
- IBGE Amazônia Legal. Available online: https://www.ibge.gov.br/geociencias/cartas-e-mapas/mapas-regionais/15819-amazonia-legal.html?=&t=o-que-e (accessed on 23 September 2021).
- Qin, Y.; Xiao, X.; Wigneron, J.P.; Ciais, P.; Brandt, M.; Fan, L.; Li, X.; Crowell, S.; Wu, X.; Doughty, R.; et al. Carbon Loss from Forest Degradation Exceeds That from Deforestation in the Brazilian Amazon. Nat. Clim. Chang. 2021, 11, 442–448. [Google Scholar] [CrossRef]
- Aragão, L.E.O.C.; Poulter, B.; Barlow, J.B.; Anderson, L.O.; Malhi, Y.; Saatchi, S.; Phillips, O.L.; Gloor, E. Environmental Change and the Carbon Balance of Amazonian Forests. Biol. Rev. 2014, 89, 913–931. [Google Scholar] [CrossRef] [PubMed]
- Garrett, R.D.; Cammelli, F.; Ferreira, J.; Levy, S.A.; Valentim, J.; Vieira, I. Forests and Sustainable Development in the Brazilian Amazon: History, Trends, and Future Prospects. Annu. Rev. Environ. Resour. 2021, 46, 625–652. [Google Scholar] [CrossRef]
- De Almeida, C.T.; Delgado, R.C.; Galvão, L.S.; de Oliveira Cruz e Aragão, L.E.; Ramos, M.C. Improvements of the MODIS Gross Primary Productivity Model Based on a Comprehensive Uncertainty Assessment over the Brazilian Amazonia. ISPRS J. Photogramm. Remote Sens. 2018, 145, 268–283. [Google Scholar] [CrossRef]
- Chagas, M.C.; Delgado, R.C.; de Souza, L.P.; de Carvalho, D.C.; Pereira, M.G.; Teodoro, P.E.; Silva Junior, C.A. Gross Primary Productivity in Areas of Different Land Cover in the Western Brazilian Amazon. Remote Sens. Appl. 2019, 16, 100259. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, X.; Wu, X.; Zhou, S.; Zhang, G.; Qin, Y.; Dong, J. A Global Moderate Resolution Dataset of Gross Primary Production of Vegetation for 2000–2016. Sci. Data 2017, 4, 170165. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, H.; Lin, A.; Zou, L.; Qin, W.; Du, Q. Evaluation of the Latest MODIS GPP Products across Multiple Biomes Using Global Eddy Covariance Flux Data. Remote Sens. 2017, 9, 418. [Google Scholar] [CrossRef]
- Yan, H.; Wang, S.; Huete, A.; Shugart, H.H. Effects of Light Component and Water Stress on Photosynthesis of Amazon Rainforests during the 2015/2016 El Niño Drought. J. Geophys. Res. Biogeosci. 2019, 124, 1574–1590. [Google Scholar] [CrossRef]
- Running, S.W.; Zhao, M. User’s Guide Daily GPP and Annual NPP (MOD17A2H/A3H) and Year-End Gap-Filled (MOD17A2HGF/A3HGF) Products NASA Earth Observing System MODIS Land Algorithm (For Collection 6). Process. DAAC 2019, 490, 1–37. [Google Scholar]
- Da Silva Junior, C.A.; Lima, M.; Teodoro, P.E.; de Oliveira-Júnior, J.F.; Rossi, F.S.; Funatsu, B.M.; Butturi, W.; Lourençoni, T.; Kraeski, A.; Pelissari, T.D.; et al. Fires Drive Long-Term Environmental Degradation in the Amazon Basin. Remote Sens. 2022, 14, 338. [Google Scholar] [CrossRef]
- Lin, X.; Chen, B.; Chen, J.; Zhang, H.; Sun, S.; Xu, G.; Guo, L.; Ge, M.; Qu, J.; Li, L.; et al. Seasonal Fluctuations of Photosynthetic Parameters for Light Use Efficiency Models and the Impacts on Gross Primary Production Estimation. Agric. For. Meteorol. 2017, 236, 22–35. [Google Scholar] [CrossRef]
- Wagle, P.; Zhang, Y.; Jin, C.; Xiao, X. Comparison of Solar-induced Chlorophyll Fluorescence, Light-use Efficiency, and Process-based GPP Models in Maize. Ecol. Appl. 2016, 26, 1211–1222. [Google Scholar] [CrossRef]
- Raju, A.; Sijikumar, S.; Kumar, P.; Burman, D.; Valsala, V.; Tiwari, Y.K.; Mukherjee, S.; Lohani, P.; Kumar, K. Very High-Resolution Net Ecosystem Exchange over India Using Vegetation Photosynthesis and Respiration Model (VPRM) Simulations. Ecol. Modell. 2023, 481, 110340. [Google Scholar] [CrossRef]
- Berenguer, E.; Lennox, G.D.; Ferreira, J.; Malhi, Y.; Aragão, L.E.O.C.; Barreto, J.R.; Del Bon Espírito-Santo, F.; Figueiredo, A.E.S.; França, F.; Gardner, T.A.; et al. Tracking the Impacts of El Niño Drought and Fire in Human-Modified Amazonian Forests. Proc. Natl. Acad. Sci. USA 2021, 118, e2019377118. [Google Scholar] [CrossRef]
- Ferreira Barbosa, M.L.; Delgado, R.C.; Forsad de Andrade, C.; Teodoro, P.E.; Silva Junior, C.A.; Wanderley, H.S.; Capristo-Silva, G.F. Recent Trends in the Fire Dynamics in Brazilian Legal Amazon: Interaction between the ENSO Phenomenon, Climate and Land Use. Environ. Dev. 2021, 39, 100648. [Google Scholar] [CrossRef]
- Alves, L.M.; Marengo, J.A.; Fu, R.; Bombardi, R.J.; Alves, L.M.; Marengo, J.A.; Fu, R.; Bombardi, R.J. Sensitivity of Amazon Regional Climate to Deforestation. Am. J. Clim. Chang. 2017, 6, 75–98. [Google Scholar] [CrossRef]
- Rammig, A.; Lapola, D.M. The Declining Tropical Carbon Sink. Nat. Clim. Chang. 2021, 11, 727–728. [Google Scholar] [CrossRef]
- Amaral, S.S.; Costa, M.A.M.; Soares Neto, T.G.; Costa, M.P.; Dias, F.F.; Anselmo, E.; dos Santos, J.C.; de Carvalho, J.A. CO2, CO, Hydrocarbon Gases and PM2.5 Emissions on Dry Season by Deforestation Fires in the Brazilian Amazonia. Environ. Pollut. 2019, 249, 311–320. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, G.; Chen, J.M.; Mataveli, G.A.V.; Chaves, M.E.D.; Seixas, H.T.; Cardozo, F.d.S.; Shimabukuro, Y.E.; He, L.; Stark, S.C.; dos Santos, C.A.C. Rapid Recent Deforestation Incursion in a Vulnerable Indigenous Land in the Brazilian Amazon and Fire-Driven Emissions of Fine Particulate Aerosol Pollutants. Forests 2020, 11, 829. [Google Scholar] [CrossRef]
- Crisostomo, A.C.; Alencar, A.; Mesquita, I.; Silva, I.C.; Dourado, M.F.; Moutinho, P.; Constantino, P.d.A.L.; Piontekowski, V. Terras Indígenas Na Amazônia Brasileira: Reservas de Carbono e Barreiras Ao Desmatamento; IPAM: Brasília, Brazil, 2015. [Google Scholar]
- Begotti, R.A.; Peres, C.A. Brazil’s Indigenous Lands under Threat. Science 2019, 363, 592. [Google Scholar] [CrossRef]
- Silveira, F.A.O.; Ferreira, M.C.; Perillo, L.N.; Carmo, F.F.; Neves, F.S. Brazil’s Protected Areas under Threat. Science 2018, 361, 459. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.; do Vale, J.C.E.; Costa, G.d.M.; dos Santos, R.C.; Correia Filho, W.L.F.; Gois, G.; de Oliveira-Junior, J.F.; Teodoro, P.E.; Rossi, F.S.; da Silva Junior, C.A. The Forests in the Indigenous Lands in Brazil in Peril. Land Use Policy 2020, 90, 104258. [Google Scholar] [CrossRef]
- Lima, M.; Santana, D.C.; Junior, I.C.M.; da Costa, P.M.C.; de Oliveira, P.P.G.; de Azevedo, R.P.; Silva, R.d.S.; Marinho, U.d.F.; da Silva, V.; de Souza, J.A.A.; et al. The “New Transamazonian Highway”: BR-319 and Its Current Environmental Degradation. Sustainability 2022, 14, 823. [Google Scholar] [CrossRef]
- Peres, C. Arco Do Desmatamento, Brasil|Prêmio Whitley. Available online: https://whitleyaward.org/winners/informed-landscape-management-brazil/ (accessed on 13 March 2023).
- WWF Estradas|WWF Brasil. Available online: https://www.wwf.org.br/natureza_brasileira/areas_prioritarias/amazonia1/ameacas_riscos_amazonia/infraestrutura_na_amazonia/estradas_na_amazonia/ (accessed on 13 March 2023).
- Barlow, J.; Berenguer, E.; Carmenta, R.; França, F. Clarifying Amazonia’s Burning Crisis. Glob. Chang. Biol. 2020, 26, 319–321. [Google Scholar] [CrossRef]
- Silva Junior, C.H.L.; Carvalho, N.S.; Pessôa, A.C.M.; Reis, J.B.C.; Pontes-Lopes, A.; Doblas, J.; Heinrich, V.; Campanharo, W.; Alencar, A.; Silva, C.; et al. Amazonian Forest Degradation Must Be Incorporated into the COP26 Agenda. Nat. Geosci. 2021, 14, 634–635. [Google Scholar] [CrossRef]
- Rossi, F.S.; de Araújo Santos, G.A.; de Souza Maria, L.; Lourençoni, T.; Pelissari, T.D.; Della-Silva, J.L.; Oliveira Júnior, J.W.; e Silva, A.D.; Lima, M.; Teodoro, P.E.; et al. Carbon Dioxide Spatial Variability and Dynamics for Contrasting Land Uses in Central Brazil Agricultural Frontier from Remote Sensing Data. J. S. Am. Earth Sci. 2022, 116, 103809. [Google Scholar] [CrossRef]
- Lovejoy, T.E.; Nobre, C. Amazon Tipping Point. Sci. Adv. 2018, 4, eaat2340. [Google Scholar] [CrossRef]
- Lovejoy, T.E.; Nobre, C. Amazon Tipping Point: Last Chance for Action. Sci. Adv. 2019, 5, eaba2949. [Google Scholar] [CrossRef] [PubMed]
- Roy, B. A Machine Learning Approach to Monitoring and Forecasting Spatio-Temporal Dynamics of Land Cover in Cox’s Bazar District, Bangladesh from 2001 to 2019. Environ. Chall. 2021, 5, 100237. [Google Scholar] [CrossRef]
- Alshari, E.A.; Gawali, B.W. Development of Classification System for LULC Using Remote Sensing and GIS. Glob. Transit. Proc. 2021, 2, 8–17. [Google Scholar] [CrossRef]
- Ghosh, A.; Sharma, R.; Joshi, P.K. Random Forest Classification of Urban Landscape Using Landsat Archive and Ancillary Data: Combining Seasonal Maps with Decision Level Fusion. Appl. Geogr. 2014, 48, 31–41. [Google Scholar] [CrossRef]
- Aragão, L.E.O.C.; Anderson, L.O.; Fonseca, M.G.; Rosan, T.M.; Vedovato, L.B.; Wagner, F.H.; Silva, C.V.J.; Silva Junior, C.H.L.; Arai, E.; Aguiar, A.P.; et al. 21st Century Drought-Related Fires Counteract the Decline of Amazon Deforestation Carbon Emissions. Nat. Commun. 2018, 9, 536. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, L.A.P.; de Souza, C.M.P.; da Silva, C.R.; Bolfe, É.L.; Rocha, A.M. Projection of Climate Change Impacts on Net Primary Productivity of the Legal Amazon—Brazil. Cad. Geogr. 2023, 33, 110–130. [Google Scholar]
- Della-Silva, J.L.; Junior, C.A.d.S.; Lima, M.; Teodoro, P.E.; Nanni, M.R.; Shiratsuchi, L.S.; Teodoro, L.P.R.; Capristo-Silva, G.F.; Baio, F.H.R.; de Oliveira, G.; et al. CO2Flux Model Assessment and Comparison between an Airborne Hyperspectral Sensor and Orbital Multispectral Imagery in Southern Amazonia. Sustainability 2022, 14, 5458. [Google Scholar] [CrossRef]
- De Oliveira-Júnior, J.F.; da Silva Junior, C.A.; Teodoro, P.E.; Rossi, F.S.; Blanco, C.J.C.; Lima, M.; de Gois, G.; Correia Filho, W.L.F.; de Barros Santiago, D.; dos Santos Vanderley, M.H.G. Confronting CHIRPS Dataset and in Situ Stations in the Detection of Wet and Drought Conditions in the Brazilian Midwest. Int. J. Climatol. 2021, 41, 4478–4493. [Google Scholar] [CrossRef]
- Da Silva Junior, C.A.; Costa, G.d.M.; Rossi, F.S.; do Vale, J.C.E.; de Lima, R.B.; Lima, M.; de Oliveira-Junior, J.F.; Teodoro, P.E.; Santos, R.C. Remote Sensing for Updating the Boundaries between the Brazilian Cerrado-Amazonia Biomes. Environ. Sci. Policy 2019, 101, 383–392. [Google Scholar] [CrossRef]
- Mataveli, G.; de Oliveira, G. Protect the Amazon’s Indigenous Lands. Science 2022, 375, 275–276. [Google Scholar] [CrossRef]
- Stark, S.C.; Breshears, D.D.; Arag, S.O.; Camilo Villegas, J.; Law, D.J.; Smith, M.N.; Minor, D.M.; Leandro Assis, R.D.E.; Roberti Alves Almeida, D.D.E.; Oliveira, G.D.E.; et al. Reframing Tropical Savannization: Linking Changes in Canopy Structure to Energy Balance Alterations That Impact Climate. Ecosphere 2020, 11, e03231. [Google Scholar] [CrossRef]
- Smith, M.N.; Stark, S.C.; Taylor, T.C.; Schietti, J.; de Almeida, D.R.A.; Aragón, S.; Torralvo, K.; Lima, A.P.; de Oliveira, G.; de Assis, R.L.; et al. Diverse Anthropogenic Disturbances Shift Amazon Forests along a Structural Spectrum. Front. Ecol. Environ. 2023, 21, 24–32. [Google Scholar] [CrossRef]
- Flach, R.; Abrahão, G.; Bryant, B.; Scarabello, M.; Soterroni, A.C.; Ramos, F.M.; Valin, H.; Obersteiner, M.; Cohn, A.S. Conserving the Cerrado and Amazon Biomes of Brazil Protects the Soy Economy from Damaging Warming. World Dev. 2021, 146, 105582. [Google Scholar] [CrossRef]
- Coutinho, L. Biomas Brasileiros; Oficina de Textos: São Paulo, Brazil, 2016. [Google Scholar]
- IBGE Conheca Cidades e Estados Do Brasil. Available online: https://cidades.ibge.gov.br/ (accessed on 21 November 2020).
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; De Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Dubreuil, V.; Fante, K.P.; Planchon, O.; Neto, J.L.S. Os Tipos de Climas Anuais No Brasil: Uma Aplicação Da Classificação de Köppen de 1961 a 2015. Rev. Fr. 2018, 37, 1–26. [Google Scholar] [CrossRef]
- Friedl, M.; Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Tipo Anual L3 Global 500 m SIN Grid V006. Available online: https://lpdaac.usgs.gov/products/mcd12q1v006/ (accessed on 21 June 2022).
- Ahmad, S.; Israr, M.; Ahmed, R.; Ashraf, A.; Amin, M.; Ahmad, N. Land Use and Cover Changes in the Northern Mountains of Pakistan; A Spatio-Temporal Change Using MODIS (MCD12Q1) Time Series. Sarhad J. Agric. 2022, 38, 1419–1429. [Google Scholar] [CrossRef]
- Brown, C.F.; Brumby, S.P.; Guzder-Williams, B.; Birch, T.; Hyde, S.B.; Mazzariello, J.; Czerwinski, W.; Pasquarella, V.J.; Haertel, R.; Ilyushchenko, S.; et al. Dynamic World, Near Real-Time Global 10 m Land Use Land Cover Mapping. Sci. Data 2022, 9, 251. [Google Scholar] [CrossRef]
- Caúla, R.H.; de Oliveira-Júnior, J.F.; de Gois, G.; Delgado, R.C.; Pimentel, L.C.G.; Teodoro, P.E. Nonparametric Statistics Applied to Fire Foci Obtained by Meteorological Satellites and Their Relationship to the MCD12Q1 Product in the State of Rio de Janeiro, Southeast Brazil. Land Degrad. Dev. 2017, 28, 1056–1067. [Google Scholar] [CrossRef]
- He, S.; Li, J.; Wang, J.; Liu, F. Evaluation and Analysis of Upscaling of Different Land Use/Land Cover Products (FORM-GLC30, GLC_FCS30, CCI_LC, MCD12Q1 and CNLUCC): A Case Study in China. Geocarto Int. 2022, 37, 17340–17360. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Monteith, J.L. Solar Radiation and Productivity in Tropical Ecosystems. J. Appl. Ecol. 1972, 9, 747. [Google Scholar] [CrossRef]
- Felton, A.J.; Goldsmith, G.R. Timing and Magnitude of Drought Impacts on Carbon Uptake across a Grassland Biome. Glob. Chang. Biol. 2023, 29, 2790–2803. [Google Scholar] [CrossRef] [PubMed]
- Boas dos Santos, C.V. Modelagem Espectral Para Determinação de Fluxo de CO2 Em Áreas de Caatinga Preservada e Em Regeneração. Master’s Thesis, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil, 2017. [Google Scholar]
- Vermote, E. MOD09A1.006 Terra Surface Reflectance 8-Day Global 500 m. Available online: https://lpdaac.usgs.gov/products/mod09a1v006/ (accessed on 10 July 2022).
- Mustafa, F.; Wang, H.; Bu, L.; Wang, Q.; Shahzaman, M.; Bilal, M.; Zhou, M.; Iqbal, R.; Aslam, R.W.; Ali, M.d.A.; et al. Validation of GOSAT and OCO-2 against In Situ Aircraft Measurements and Comparison with CarbonTracker and GEOS-Chem over Qinhuangdao, China. Remote Sens. 2021, 13, 899. [Google Scholar] [CrossRef]
- ESA GOSAT Objectives. Available online: https://earth.esa.int/eogateway/missions/gosat/description (accessed on 5 February 2022).
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. In Geographical Analysis; Wiley Online Library: Hoboken, NJ, USA, 1992; pp. 189–206. [Google Scholar]
- ESRI. ArcGIS Desktop; ESRI: Redlands, CA, USA, 2019. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Hervé, M. Aide-Mémoire de Statistique Appliquée à La Biologie—Construire Son Étude et Analyser Les Résultats à l’aide Du Logiciel R; Université de Rennes: Rennes, France, 2016; 203p. [Google Scholar]
- MacFarland, T.W.; Yates, J.M. Using R for Biostatistics; Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-62403-3. [Google Scholar]
- Dirikolu, L.; Waller, P.; Malveaux, K.; Lucas, C.H.; Lomnicka, I.; Pourciau, A.; Bennadji, H.; Liu, C.-C. Total Carbon Dioxide (TCO2) Concentrations in Thoroughbred and Quarter Racehorses in Louisiana. J. Equine Vet. Sci. 2023, 121, 104220. [Google Scholar] [CrossRef] [PubMed]
- Kroeger, M.E.; Wang, R.Z.; Suazo, D.; Dunbar, J. Simulated Nitrogen Deposition and Precipitation Events Alter Microbial Carbon Cycling during Early Stages of Litter Decomposition. 2022. preprint. Available online: https://www.researchsquare.com/article/rs-2086262/v1 (accessed on 15 March 2023).
- Díaz Arango, A. Captura de Carbono En Un Sistema Agroforestal Con Cacao (Theobroma Cacao) En Victoria, Caldas; Universidad de Caldas: Manizales, Colômbia, 2023. [Google Scholar]
- Regazzi, A.J.; Cruz, C.D. Análise Multivariada Aplicada; Editora UFV: Viçosa, Brazil, 2020; 401p. [Google Scholar]
- Ward, J.H. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Everitt, B.S.; Dunn, G. Applied Multivariate Data Analysis; Springer: New York, NY, USA, 1991. [Google Scholar]
- Teodoro, P.; Cezar, C.; Corrêa, G.; Torres, F.E.; Silva, C.; Gois, G.; Delgado, R.C. Analysis of the Occurrence of Wet and Drought Periods Using Standardized Precipitation Index in Mato Grosso Do Sul State, Brazil. J. Agron. 2015, 14, 80–86. [Google Scholar]
- Camarretta, N.; Ehbrecht, M.; Seidel, D.; Wenzel, A.; Zuhdi, M.; Merk, M.S.; Schlund, M.; Erasmi, S.; Knohl, A. Using Airborne Laser Scanning to Characterize Land-Use Systems in a Tropical Landscape Based on Vegetation Structural Metrics. Remote Sens. 2021, 13, 4794. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Pettitt, A.N. A Non-Parametric Approach to the Change-Point Problem. Appl. Stat. 1979, 28, 126. [Google Scholar] [CrossRef]
- Richey, J.E.; Melack, J.M.; Aufdenkampe, A.K.; Ballester, V.M.; Hess, L.L. Outgassing from Amazonian Rivers and Wetlands as a Large Tropical Source of Atmospheric CO2. Nature 2002, 416, 617–620. [Google Scholar] [CrossRef]
- BRASIL Decreto s/n, de 11 de Maio de 2016. Área de Proteção Ambiental Dos Campos de Manicoré. Available online: https://www.gov.br/icmbio/pt-br/assuntos/biodiversidade/unidade-de-conservacao/unidades-de-biomas/amazonia/lista-de-ucs/apa-dos-campos-de-manicore (accessed on 11 March 2023).
- Duarte, M.L.; de Sousa, J.A.P.; de Castro, A.L.; Lourenço, R.W. Dynamics of Land Use in a Rural Settlement in the Brazilian Legal Amazon. Rev. Bras. Ciências Ambient. 2021, 56, 375–384. [Google Scholar] [CrossRef]
- Wenzel, F. Depois Da Madeira Vem o Gado: O Desmatamento Em Santo Antônio Do Matupi. Available online: https://idesam.org/conteudo/imprensa/depois-da-madeira-vem-o-gado-o-desmatamento-em-santo-antonio-do-matupi/ (accessed on 13 March 2023).
- da Silva Junior, C.A.; Nanni, M.R.; de Oliveira-Júnior, J.F.; Cezar, E.; Teodoro, P.E.; Delgado, R.C.; Shiratsuchi, L.S.; Shakir, M.; Chicati, M.L. Object-Based Image Analysis Supported by Data Mining to Discriminate Large Areas of Soybean. Int. J. Digit. Earth 2019, 12, 270–292. [Google Scholar] [CrossRef]
- Hui, D.; Deng, Q.; Tian, H.; Luo, Y. Climate Change and Carbon Sequestration in Forest Ecosystems. In Handbook of Climate Change Mitigation and Adaptation; Springer: New York, NY, USA, 2015; pp. 1–40. [Google Scholar]
- Ribeiro, J.F.; Walter, B.M.T. As Principais Fitofisionomias Do Bioma Cerrado. In Cerrado: Ecologia e Flora; Sano, S.M., Almeida, S.P., Ribeiro, J.F., Eds.; Embrapa-Cerrados: Brasília, Brazil, 2008; p. 876. [Google Scholar]
- Funai, F.N.d.Í. Terras Indígenas. Available online: https://metadados.snirh.gov.br/geonetwork/srv/api/records/3fa8cc38-79b4-4aa1-8179-bba315baea4b (accessed on 28 June 2022).
- Silva, C.H.L.; Aragão, L.E.O.C.; Fonseca, M.G.; Almeida, C.T.; Vedovato, L.B.; Anderson, L.O. Deforestation-Induced Fragmentation Increases Forest Fire Occurrence in Central Brazilian Amazonia. Forests 2018, 9, 305. [Google Scholar] [CrossRef]
- Zhang, Z.; Feng, Z.; Zhang, H.; Zhao, J.; Yu, S.; Du, W. Spatial Distribution of Grassland Fires at the Regional Scale Based on the MODIS Active Fire Products. Int. J. Wildland Fire 2017, 26, 209. [Google Scholar] [CrossRef]
- Amigo, I. When Will the Amazon Hit a Tipping Point? Nature 2020, 578, 505–507. [Google Scholar] [CrossRef] [PubMed]
- Cardil, A.; de-Miguel, S.; Silva, C.A.; Reich, P.B.; Calkin, D.; Brancalion, P.H.S.; Vibrans, A.C.; Gamarra, J.G.P.; Zhou, M.; Pijanowski, B.C.; et al. Recent Deforestation Drove the Spike in Amazonian Fires. Environ. Res. Lett. 2020, 15, 121003. [Google Scholar] [CrossRef]
- Schielein, J.; Börner, J. Recent Transformations of Land-Use and Land-Cover Dynamics across Different Deforestation Frontiers in the Brazilian Amazon. Land Use Policy 2018, 76, 81–94. [Google Scholar] [CrossRef]
- Da Silva Júnior, L.A.S.; Delgado, R.C.; Pereira, M.G.; Teodoro, P.E.; da Silva Junior, C.A. Fire Dynamics in Extreme Climatic Events in Western Amazon. Environ. Dev. 2019, 32, 100450. [Google Scholar] [CrossRef]
- Noaa National Oceanic and Atmospheric Administration. NOAA’s Climate Prediction Center. Available online: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (accessed on 13 March 2023).
- Staal, A.; Flores, B.M.; Aguiar, A.P.D.; Bosmans, J.H.C.; Fetzer, I.; Tuinenburg, O.A. Feedback between Drought and Deforestation in the Amazon. Environ. Res. Lett. 2020, 15, 044024. [Google Scholar] [CrossRef]
- Santos, G.A.d.A.; Morais Filho, L.F.F.; de Meneses, K.C.; da Silva Junior, C.A.; Rolim, G.d.S.; La Scala, N. Hot Spots and Anomalies of CO2 over Eastern Amazonia, Brazil: A Time Series from 2015 to 2018. Environ. Res. 2022, 215, 114379. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Xie, Z. Land Cover Diversity: Reshaping the Socioeconomic Value of Land. J. Environ. Manag. 2023, 332, 117404. [Google Scholar] [CrossRef] [PubMed]
- Wagner, F.H.; Hérault, B.; Rossi, V.; Hilker, T.; Maeda, E.E.; Sanchez, A.; Lyapustin, A.I.; Galvão, L.S.; Wang, Y.; Aragão, L.E.O.C. Climate Drivers of the Amazon Forest Greening. PLoS ONE 2017, 12, e0180932. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Hagan, D.F.T.; Dalagnol, R.; Liu, Y. Forest Canopy Changes in the Southern Amazon during the 2019 Fire Season Based on Passive Microwave and Optical Satellite Observations. Remote Sens. 2021, 13, 2238. [Google Scholar] [CrossRef]
- Faria, T.d.O.; Rodrigues, T.R.; Curado, L.F.A.; Gaio, D.C.; Nogueira, J.d.S. Surface Albedo in Different Land-Use and Cover Types in Amazon Forest Region. Rev. Ambiente Agua 2018, 13, 1–13. [Google Scholar] [CrossRef]
- Zhang, C.; Brodylo, D.; Sirianni, M.J.; Li, T.; Comas, X.; Douglas, T.A.; Starr, G. Mapping CO2 Fluxes of Cypress Swamp and Marshes in the Greater Everglades Using Eddy Covariance Measurements and Landsat Data. Remote Sens. Environ. 2021, 262, 112523. [Google Scholar] [CrossRef]
Class | Color | Acronym | Description |
---|---|---|---|
1 | 05450a | ENF | Evergreen Needleleaf Forests: dominated by evergreen conifer trees (canopy >2 m). Tree cover >60%. |
2 | 086a10 | EBF | Evergreen Broadleaf Forests: dominated by evergreen broadleaf and palmate trees (canopy >2 m). Tree cover >60%. |
3 | 54a708 | DNF | Deciduous Needleleaf Forests: dominated by deciduous needleleaf (larch) trees (canopy >2 m). Tree cover >60%. |
4 | 78d203 | DBF | Deciduous Broadleaf Forests: dominated by deciduous broadleaf trees (canopy >2 m). Tree cover >60%. |
5 | 009900 | MF | Mixed Forests: dominated by neither deciduous nor evergreen (40–60% of each) tree type (canopy >2 m). Tree cover >60%. |
6 | c6b044 | CS | Closed Shrublands: dominated by woody perennials (1–2 m height) >60% cover. |
7 | dcd159 | OS | Open Shrublands: dominated by woody perennials (1–2 m height) 10–60% cover. |
8 | dade48 | WSV | Woody Savannas: tree cover 30–60% (canopy >2 m). |
9 | fbff13 | SV | Savannas: tree cover 10–30% (canopy >2 m). |
10 | b6ff05 | GL | Grasslands: dominated by herbaceous annuals (<2 m). |
11 | 27ff87 | PW | Permanent Wetlands: permanently inundated lands with 30–60% water cover and >10% vegetated cover. |
12 | c24f44 | CL | Croplands: at least 60% of area is cultivated cropland. |
13 | a5a5a5 | UBL | Urban and Built-up Lands: at least 30% impervious surface area including building materials, asphalt and vehicles. |
14 | ff6d4c | NVM | Cropland/Natural Vegetation Mosaics: mosaics of small-scale cultivation 40–60% with natural tree, shrub, or herbaceous vegetation. |
15 | 69fff8 | PSI | Permanent Snow and Ice: at least 60% of area is covered by snow and ice for at least 10 months of the year. |
16 | f9ffa4 | BN | Barren: at least 60% of area is non-vegetated barren (sand, rock, soil) areas with less than 10% vegetation. |
17 | 1c0dff | WB | Water Bodies: at least 60% of area is covered by permanent water bodies. |
Classes | ENF 1 | EBF | DNF | DBF | MF | CS | OS | WSV |
---|---|---|---|---|---|---|---|---|
2009 | 126.49 | 3,374,351.77 | 0.74 | 9370.81 | 2685.39 | 313.90 | 170.61 | 219,487.50 |
2010 | 110.76 | 3,363,598.69 | 0.00 | 10,976.39 | 2837.62 | 320.71 | 100.80 | 223,691.17 |
2011 | 114.47 | 3,356,746.45 | 0.00 | 11,235.69 | 2671.78 | 332.30 | 64.89 | 226,820.70 |
2012 | 119.11 | 3,351,448.68 | 0.00 | 12,161.83 | 2525.68 | 383.75 | 59.83 | 225,836.89 |
2013 | 132.59 | 3,346,877.56 | 0.00 | 12,592.50 | 2292.61 | 419.95 | 60.18 | 225,740.05 |
2014 | 141.44 | 3,341,805.65 | 0.00 | 13,785.02 | 2265.73 | 470.68 | 65.79 | 222,678.17 |
2015 | 144.93 | 3,332,142.23 | 0.00 | 15,043.02 | 2275.90 | 525.03 | 86.63 | 218,875.11 |
2016 | 143.43 | 3,320,505.98 | 0.00 | 15,357.38 | 2206.02 | 728.91 | 102.35 | 218,150.23 |
2017 | 157.83 | 3,318,989.15 | 0.24 | 16,228.36 | 2122.46 | 830.99 | 98.89 | 212,146.05 |
2018 | 148.00 | 3,311,486.93 | 0.00 | 15,606.63 | 1571.92 | 883.70 | 72.94 | 217,815.19 |
2019 | 122.77 | 3,307,899.08 | 0.00 | 16,282.29 | 1554.08 | 823.63 | 59.67 | 219,497.52 |
Minimum | 110.76 | 3,307,899.08 | 0.24 | 9370.81 | 1554.08 | 313.90 | 59.67 | 212,146.05 |
Maximum | 157.83 | 3,374,351.77 | 0.74 | 16,282.29 | 2837.62 | 883.70 | 170.61 | 226,820.70 |
Mean | 132.89 | 3,338,713.83 | 0.09 | 13,512.72 | 2273.56 | 548.50 | 85.69 | 220,976.23 |
Classes | SV | GL | PW | CL | UBL | NVM | BN | WB |
2009 | 814,410.32 | 427,688.15 | 42,969.10 | 46,468.92 | 3214.24 | 760.86 | 118.81 | 76,486.03 |
2010 | 814,458.43 | 430,814.48 | 43,318.25 | 47,845.75 | 3218.21 | 752.73 | 119.44 | 76,460.22 |
2011 | 820,451.11 | 424,921.60 | 44,032.14 | 50,617.98 | 3222.43 | 775.05 | 114.60 | 76,502.45 |
2012 | 828,404.93 | 419,508.25 | 44,750.54 | 52,640.53 | 3225.15 | 807.99 | 120.01 | 76,630.49 |
2013 | 831,246.14 | 418,879.58 | 45,302.60 | 54,131.14 | 3227.63 | 837.67 | 121.21 | 76,762.25 |
2014 | 829,377.20 | 425,725.68 | 45,899.51 | 55,250.24 | 3232.08 | 884.83 | 126.88 | 76,914.74 |
2015 | 825,109.87 | 440,198.42 | 46,546.19 | 56,517.91 | 3234.31 | 892.63 | 139.62 | 76,891.86 |
2016 | 821,453.22 | 454,674.01 | 47,346.18 | 56,951.16 | 3236.53 | 915.08 | 166.13 | 76,687.03 |
2017 | 814,680.05 | 466,125.38 | 46,820.45 | 59,371.91 | 3241.23 | 867.62 | 177.82 | 76,765.22 |
2018 | 792,856.33 | 489,266.49 | 47,711.84 | 60,107.64 | 3245.43 | 798.85 | 160.64 | 76,891.15 |
2019 | 777,734.68 | 504,234.83 | 47,931.70 | 61,454.07 | 3249.64 | 668.03 | 142.10 | 76,969.55 |
Minimum | 777,734.68 | 418,879.58 | 42,969.10 | 46,468.92 | 3214.24 | 668.03 | 114.60 | 76,460.22 |
Maximum | 831,246.14 | 504,234.83 | 47,931.70 | 61,454.07 | 3249.64 | 915.08 | 177.82 | 76,969.55 |
Mean | 815,471.12 | 445,639.72 | 45,693.50 | 54,668.84 | 3231.53 | 814.67 | 137.02 | 76,723.73 |
Varible | Grouped by Classes | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Non- Grouping | EBF | DBF | MF | WSV | SV | GL | PW | CL | UBL | WB | |
GPP | 0.000 *** | - | - | - | - | - | - | - | - | - | - |
CO2Flux | 0.000 *** | 0.000 *** | 0.936 | 0.658 | 0.204 | 0.874 | 0.047 ** | 0.474 | 0.007 *** | 0.692 | 0.464 |
Rainfall | 0.000 *** | 0.793 | 0.786 | 0.436 | 0.952 | 0.229 | 0.577 | 0.0794 * | 0.695 | 0.117 | 0.424 |
Grouped by Year | |||||||||||
2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | |
GPP | 0.483 | 0.406 | 0.439 | 0.390 | 0.506 | 0.567 | 0.470 | 0.493 | 0.478 | 0.421 | 0.398 |
CO2Flux | 0.004 *** | 0.007 *** | 0.005 *** | 0.006*** | 0.000 *** | 0.009 *** | 0.005 *** | 0.008 *** | 0.008 *** | 0.005 *** | 0.006 *** |
Rainfall | 0.192 | 0.824 | 0.715 | 0.2067 | 0.007 *** | 0.015 ** | 0.002 *** | 0.006 *** | 0.058 * | 0.062 * | 0.144 |
Classes | GPP | CO2Flux | Rainfall | ||||||
---|---|---|---|---|---|---|---|---|---|
Mann-Kendall | Z | Pettitt | Mann-Kendall | Z | Pettitt | Mann-Kendall | Z | Pettitt | |
EBF | 0.07 * | 1.80 | 0.04 ** | 0.24 | −1.18 | 0.56 | 0.56 | 0.58 | 0.79 |
DBF | 0.58 | 0.55 | 0.42 | 0.64 | −0.46 | 1.00 | 0.60 | 0.52 | 0.41 |
MF | 0.44 | 0.77 | 0.01 *** | 0.54 | −0.61 | 0.80 | 0.76 | 0.30 | 0.13 |
WSV | 0.29 | 1.06 | 0.28 | 0.92 | 0.10 | 1.00 | 0.21 | −1.27 | 0.73 |
SV | 0.94 | 0.07 | 1.00 | 0.28 | −1.07 | 0.86 | 0.66 | −0.43 | 1.00 |
GL | 0.63 | 0.48 | 0.83 | 0.59 | −0.54 | 1.00 | 0.19 | −1.30 | 0.19 |
CL | 0.22 | 1.22 | 0.10 | 0.39 | −0.86 | 0.52 | 0.41 | 0.83 | 0.31 |
PW | 0.74 | −0.33 | 1.00 | 0.97 | −0.04 | 1.00 | 0.34 | −0.95 | 1.00 |
UBL | - | - | - | 0.12 | 1.55 | 0.47 | 0.76 | 0.30 | 0.78 |
WB | - | - | - | 0.76 | −0.30 | 1.00 | 0.58 | −0.56 | 0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crivelari-Costa, P.M.; Lima, M.; La Scala Jr., N.; Rossi, F.S.; Della-Silva, J.L.; Dalagnol, R.; Teodoro, P.E.; Teodoro, L.P.R.; Oliveira, G.d.; Junior, J.F.d.O.; et al. Changes in Carbon Dioxide Balance Associated with Land Use and Land Cover in Brazilian Legal Amazon Based on Remotely Sensed Imagery. Remote Sens. 2023, 15, 2780. https://doi.org/10.3390/rs15112780
Crivelari-Costa PM, Lima M, La Scala Jr. N, Rossi FS, Della-Silva JL, Dalagnol R, Teodoro PE, Teodoro LPR, Oliveira Gd, Junior JFdO, et al. Changes in Carbon Dioxide Balance Associated with Land Use and Land Cover in Brazilian Legal Amazon Based on Remotely Sensed Imagery. Remote Sensing. 2023; 15(11):2780. https://doi.org/10.3390/rs15112780
Chicago/Turabian StyleCrivelari-Costa, Patrícia Monique, Mendelson Lima, Newton La Scala Jr., Fernando Saragosa Rossi, João Lucas Della-Silva, Ricardo Dalagnol, Paulo Eduardo Teodoro, Larissa Pereira Ribeiro Teodoro, Gabriel de Oliveira, José Francisco de Oliveira Junior, and et al. 2023. "Changes in Carbon Dioxide Balance Associated with Land Use and Land Cover in Brazilian Legal Amazon Based on Remotely Sensed Imagery" Remote Sensing 15, no. 11: 2780. https://doi.org/10.3390/rs15112780
APA StyleCrivelari-Costa, P. M., Lima, M., La Scala Jr., N., Rossi, F. S., Della-Silva, J. L., Dalagnol, R., Teodoro, P. E., Teodoro, L. P. R., Oliveira, G. d., Junior, J. F. d. O., & Silva Junior, C. A. d. (2023). Changes in Carbon Dioxide Balance Associated with Land Use and Land Cover in Brazilian Legal Amazon Based on Remotely Sensed Imagery. Remote Sensing, 15(11), 2780. https://doi.org/10.3390/rs15112780