Adaptive Voxel-Based Model for the Dynamic Determination of Tomographic Region
Abstract
1. Introduction
2. GNSS Tomographic Modeling
2.1. GNSS Tomographic Observation
2.2. Adaptive Voxel Parameterization
2.2.1. Determination and Discretization of the Tomographic Region
- (1)
- Determination of the pixels crossed by the projection of GNSS signals
- (2)
- Determination of the voxels crossed by the GNSS signals
2.2.2. Construction of Tomographic Equations
3. Experiments and Results
3.1. Tomographic Region and Strategy
- (1)
- GFR: general voxel approach with a fixed cuboid tomographic region;
- (2)
- AAR: adaptive voxel parameterization with an accurate tomographic region.
3.2. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, B.; Liu, Z. Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of ECMWF and NCEP reanalyses, radiosonde, GPS, and microwave satellite. J. Geophys. Res. -Atmos. 2016, 121, 11,442–11,462. [Google Scholar] [CrossRef]
- Ye, H.; Fetzer, E.J.; Wong, S.; Behrangi, A.; Yang, D.; Lambrigtson, B.H. Increasing atmospheric water vapor and higher daily precipitation intensity over northern Eurasia. Geophys. Res. Lett. 2016, 42, 9404–9410. [Google Scholar] [CrossRef]
- Chen, B.; Liu, Z.; Wong, W.; Woo, W. Detecting Water Vapor Variability during Heavy Precipitation Events in Hong Kong Using the GPS Tomographic Technique. J. Atmos. Ocean. Tech. 2017, 34, 1001–1019. [Google Scholar] [CrossRef]
- Flores, A.; Ruffini, G.; Rius, A. 4D tropospheric tomography using GPS slant wet delays. Ann. Geophys. 2000, 18, 223–234. [Google Scholar] [CrossRef]
- Gradinarsky, L.P. Sensing Atmospheric Water Vapor Using Radio Waves. Ph.D. Thesis, Chalmers University of Technology, Göteborg, Sweden, 2002. [Google Scholar]
- Champollion, C.; Masson, F.; Bouin, M.N.; Walpersdorf, A.; Doerflinger, E.; Bock, O.; Van Baelen, J. GPS water vapour tomography: Preliminary results from the ESCOMPTE field experiment. Atmos. Res. 2005, 74, 253–274. [Google Scholar] [CrossRef]
- Troller, M.; Geiger, A.; Brockmann, E.; Bettems, J.M.; Burki, B.; Kahle, H.G. Tomographic determination of the spatial distribution of water vapor using GPS observations. ASR 2006, 37, 2211–2217. [Google Scholar] [CrossRef]
- Rohm, W.; Bosy, J. Local tomography troposphere model over mountains area. Atmos. Res. 2009, 93, 777–783. [Google Scholar] [CrossRef]
- Perler, D.; Geiger, A.; Hurter, F. 4D GPS water vapor tomography: New parameterized approaches. J. Geod. 2011, 85, 539–550. [Google Scholar] [CrossRef]
- Manning, T. Sensing the Dynamics of Severe Weather Using 4D GPS Tomography in the Australian Region. Ph.D. Thesis, RMIT University, Melbourne, Australia, 2013. [Google Scholar]
- Chen, B.; Liu, Z. Voxel-optimized regional water vapor tomography and comparison with radiosonde and numerical weather model. J. Geodesy. 2014, 88, 691–703. [Google Scholar] [CrossRef]
- Jiang, P.; Ye, S.R.; Liu, Y.Y.; Zhang, J.J.; Xia, P.F. Near real-time water vapor tomography using ground-based GPS and meteorological data: Long-term experiment in Hong Kong. Ann. Geophys. -Ger. 2014, 32, 911–923. [Google Scholar] [CrossRef]
- Rohm, W.; Zhang, K.; Bosy, J. Limited constraint, robust Kalman filtering for GNSS troposphere tomography. Atmos. Meas. Tech. 2014, 7, 1475–1486. [Google Scholar] [CrossRef]
- Ye, S.; Xia, P.; Cai, C. Optimization of GPS water vapor tomography technique with radiosonde and COSMIC historical data. Ann. Geophys. 2016, 34, 789–799. [Google Scholar] [CrossRef]
- Haji Aghajany, S.; Amerian, Y. Three dimensional ray tracing technique for tropospheric water vapor tomography using GPS measurements. J. Atmos. SolL-Terr. Phy. 2017, 164, 81–88. [Google Scholar] [CrossRef]
- Ding, N.; Zhang, S.B.; Wu, S.Q.; Wang, X.M.; Zhang, K.F. Adaptive Node Parameterization for Dynamic Determination of Boundaries and Nodes of GNSS Tomographic Models. J. Geophys. Res. Atmos. 2018, 123, 1990–2003. [Google Scholar] [CrossRef]
- Yao, Y.; Xin, L.; Zhao, Q. An improved pixel-based water vapor tomography model. Ann. Geophys. 2019, 37, 89–100. [Google Scholar] [CrossRef]
- Rohm, W.; Bosy, J. The verification of GNSS tropospheric tomography model in a mountainous area. Adv. Space. Res. 2011, 47, 1721–1730. [Google Scholar] [CrossRef]
- Nilsson, T.; Gradinarsky, L. Water vapor tomography using GPS phase observations: Simulation results. IEEE. T Geosci. Remote. 2006, 44, 2927–2941. [Google Scholar] [CrossRef]
- Sudhir, M.S. Investigations into the Estimation of Tropospheric Delay and Wet Refractivity Using GPS Measurements. Ph.D. Thesis, Department of Geomatics Engineering, University of Calgary, Calgary, AB, Canada, 2003. [Google Scholar]
- Yao, Y.; Liu, C.; Xu, C. A New GNSS-Derived Water Vapor Tomography Method Based on Optimized Voxel for Large GNSS Network. Remote Sens. 2020, 12, 2306. [Google Scholar] [CrossRef]
- Hu, H.; Liu, M.; Zhong, J.; Deng, X.; Cao, Y.; Fang, P. A Case Study of the 3D Water Vapor Tomography Model Based on a Fast Voxel Traversal Algorithm for Ray Tracing. Remote Sens. 2021, 13, 2422. [Google Scholar] [CrossRef]
- Shoji, Y.; Nakamura, H.; Iwabuchi, T.; Aonashi, K.; Seko, H.; Mishima, K.; Itagaki, A.; Ichikawa, R.; Ohtani, R. Tsukuba GPS dense net campaign observation: Improvement in GPS analysis of slant path delay by stacking one-way postfit phase residuals. J. Meteorol. Soc. Japan. 2004, 82, 301–314. [Google Scholar] [CrossRef]
- Kačmařík, M.; Douša, J.; Dick, G.; Zus, F.; Brenot, H.; Möller, G.; Pottiaux, E.; Kapłon, J.; Hordyniec, P.; Václavovic, P. Inter-technique validation of tropospheric slant total delays. Atmos. Meas. Tech. 2017, 10, 2183–2208. [Google Scholar] [CrossRef]
- Bar-Sever, Y.E.; Kroger, P.M.; Borjesson, J.A. Estimating horizontal gradients of tropospheric path delay with a single GPS receiver. J. Geophys. Res.-Sol. Ea. 1998, 103, 5019–5035. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Chiswell, S.; Herring, T.A.; Anthes, R.A.; Rocken, C.; Ware, R.H. GPS meteorology: Mapping zenith wet delays onto precipitable water. J. Appl Met. 1994, 33, 379–386. [Google Scholar] [CrossRef]
- Kui, Y.L. An All-integer Algorithm for Drawing Anti-aliased Straight Lines. Comput. Graph. Forum. 1994, 13, 219–221. [Google Scholar] [CrossRef]
- Amanatides, J.; Woo, A. A Fast Voxel Traversal Algorithm for Ray Tracing. Eurographics 1987, 87, 3–10. Available online: https://www.cse.chalmers.se/edu/year/2012/course/_courses_2011/TDA361/grid.pdf (accessed on 10 January 2023).







| Type of Number | Classification |
|---|---|
| 1 | Ys/Xs > |y1 − y2|/|x1 − x2|; x1 − x2 < 0; y1 − y2 < 0 |
| 2 | Ys/Xs > |y1 − y2|/|x1 − x2|; x1 − x2 < 0; y1 − y2 > 0 |
| 3 | Ys/Xs > |y1 − y2|/|x1 − x2|; x1 − x2 > 0; y1 − y2 < 0 |
| 4 | Ys/Xs > |y1 − y2|/|x1 − x2|; x1 − x2 > 0; y1 − y2 > 0 |
| 5 | Ys/Xs < |y1 − y2|/|x1 − x2|; x1 − x2 < 0; y1 − y2 < 0 |
| 6 | Ys/Xs < |y1 − y2|/|x1 − x2|; x1 − x2 < 0; y1 − y2 > 0 |
| 7 | Ys/Xs < |y1 − y2|/|x1 − x2|; x1 − x2 > 0; y1 − y2 < 0 |
| 8 | Ys/Xs < |y1 − y2|/|x1 − x2|; x1 − x2 > 0; y1 − y2 > 0 |
| Statistic | Approach | UTC 0 | UTC 12 | ||
|---|---|---|---|---|---|
| DOY 245 | DOY 259 | DOY 245 | DOY 259 | ||
| RMSE (g/m3) | GFR (Figure 6a1–a4) | 2.731 | 1.458 | 1.747 | 2.111 |
| AAR (Figure 6b1–b4) | 0.941 | 0.722 | 1.231 | 0.932 | |
| Bias (g/m3) | GFR (Figure 6a1–a4) | −1.170 | −0.969 | −0.488 | −1.692 |
| AAR (Figure 6b1–b4) | −0.081 | 0.125 | −0.047 | −0.253 | |
| IQR (g/m3) | GFR (Figure 6a1–a4) | 3.844 | 1.309 | 2.438 | 2.023 |
| AAR (Figure 6b1–b4) | 1.329 | 0.839 | 0.825 | 0.791 | |
| Statistics | RMSE (g m−3) | Bias (g m−3) | IQR (g m−3) | Outliers Rejected (%) | |
|---|---|---|---|---|---|
| Methods | |||||
| GFR | 2.107 | −0.438 | 1.848 | 5.3 | |
| AAR | 0.942 | 0.077 | 0.966 | 5.8 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, N.; Tan, X.; Liu, X.; He, Z.; Zhang, Y.; Wang, Y.; Zhang, S.; Holden, L.; Zhang, K. Adaptive Voxel-Based Model for the Dynamic Determination of Tomographic Region. Remote Sens. 2023, 15, 492. https://doi.org/10.3390/rs15020492
Ding N, Tan X, Liu X, He Z, Zhang Y, Wang Y, Zhang S, Holden L, Zhang K. Adaptive Voxel-Based Model for the Dynamic Determination of Tomographic Region. Remote Sensing. 2023; 15(2):492. https://doi.org/10.3390/rs15020492
Chicago/Turabian StyleDing, Nan, Xinglong Tan, Xin Liu, Zhifen He, Yu Zhang, Yuchen Wang, Shubi Zhang, Lucas Holden, and Kefei Zhang. 2023. "Adaptive Voxel-Based Model for the Dynamic Determination of Tomographic Region" Remote Sensing 15, no. 2: 492. https://doi.org/10.3390/rs15020492
APA StyleDing, N., Tan, X., Liu, X., He, Z., Zhang, Y., Wang, Y., Zhang, S., Holden, L., & Zhang, K. (2023). Adaptive Voxel-Based Model for the Dynamic Determination of Tomographic Region. Remote Sensing, 15(2), 492. https://doi.org/10.3390/rs15020492

