A Study of the Method for Retrieving the Vegetation Index from FY-3D MERSI-II Data
Abstract
:1. Introduction
2. Materials and the Study Area
2.1. The FY-3D/MERSI-II Data
2.2. The MODIS Data
2.3. The Study Region
3. Methodology
3.1. The Framework for NDVI-Specific Bias Correction
3.2. Atmospheric Molecular Transmittance
3.3. Atmospheric Molecular Scattering
3.4. The Dark Target Aerosol Inversion Algorithm
3.5. Atmospheric Correction Algorithm
3.6. The Calculation of NDVI
3.7. Validation
4. Results
4.1. Spatial Distribution Assessment Quality
4.2. Consistency Assessment of Different Vegetation Types
4.3. Correlation Analysis for Different Seasons
4.4. Consistency Test of Typical Regional Time Series
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, G.S.; Wang, Y.H.; Bai, L.P.; Xu, Z.Z.; Shi, R.X.; Zhou, L.; Yuan, W.P. Study on the interaction between terrestrial ecosystems and global change. Acta Meteorol. Sin. 2004, 62, 692–707. [Google Scholar]
- Carlson, T.; Ripley, D. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Liu, C.; Liu, J.; Zhang, Q.; Ci, H.; Gu, X.; Gulakhmadov, A. Attribution of NDVI Dynamics over the Globe from 1982 to 2015. Remote Sens. 2022, 14, 2706. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.; Haas, R.; Schell, J.; Deering, D. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the 3rd Earth Resources Technology Satellite-1 Symposium, Washington, DC, USA, 10–14 December 1973; Volume 1, pp. 309–317. [Google Scholar]
- Tucker, C.; Pinzon, J.; Brown, M.; Slarback, D.; Pak, E.; Mahoney, R.; Vermote, E.; Saleous, N. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Gamon, J.; Field, C.; Goulden, M.; Griffin, K.; Hartley, A.; Joel, G.; Penuelas, J.; Valentini, R. Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecol. Appl. 1995, 5, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Xu, X.; Zhang, T.; Xia, H.; Huang, Y.; Qiao, S. The Relative Roles of Climate Variation and Human Activities in Vegetation Dynamics in Coastal China from 2000 to 2019. Remote Sens. 2022, 14, 2485. [Google Scholar] [CrossRef]
- Kogan, F.N. Global drought watch from space. Bull. Am. Meteorol. Soc. 1997, 78, 621–636. [Google Scholar] [CrossRef]
- Salinas-Zavala, C.A.; Douglas, A.V.; Diaz, H.F. Interannual variability of NDVI in northwest Mexico Associated climatic mechanisms and ecological implications. Remote Sens. Environ. 2002, 82, 417–430. [Google Scholar] [CrossRef]
- Piao, S.L.; Mohammat, A.; Fang, J.Y.; Cai, Q.; Feng, J.M. NDVI-based increase in growth of temperate grasslands and its responses to climate change in China. Glob. Environ. Change 2006, 16, 340–348. [Google Scholar] [CrossRef]
- Nathalie, P.; Jon, O.V.; Atle, M.; Jean, M.; Gaillard, C.; Tucker, J.; Nils, C.S. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar]
- Ren, Z. Agreement Evaluation of the NDVI Derived from AVHRR and MODIS. Geospat. Inf. 2014, 12, 125–128. [Google Scholar] [CrossRef]
- Xue, L.; Xian, D.; Qi, Y.G.; Xu, Z.; Qian, J.M. Test and analysis of Fenyun Satellite data service evolution indexes. Mete. Sci. Tech. 2016, 44, 692–696. [Google Scholar]
- Zhang, P.; Yang, H.; Qiu, H. Quantitative remote sensing from the current Fengyun 3 satellites. Adv. Meteorol. Sci. Technol. 2012, 2, 6–11. [Google Scholar]
- Fan, T.X. Characteristics and Functions of FY-3 Meteorological Satellite. Meteorol. Sci. Technol. 2002, 30, 321–327. [Google Scholar]
- Yang, J.; Dong, C.H.; Lu, N.M. FY-3A: The new generation polar-orbiting meteorological satellite of China. Acta Meteorol. Sin. 2009, 67, 501–509. [Google Scholar]
- Zhu, A.J.; Hu, X.Q.; Lin, M.Y. Global data acquisition methods and data distribution for FY-3D meteorological satellite. J. Mar. Meteorol. 2018, 38, 63–68. [Google Scholar]
- Yang, J.; Xian, D.; Tang, S.H. The latest development and application of Fengyun series meteorological satellites. Satt. Appl. 2018, 11, 8–14. [Google Scholar]
- Fang, J.; Tian, M.; Zhang, X.X.; Wang, Y.G. Observation of thermosphere and ionosphere using the Ionosphere PhotoMeter (IPM) on the Chinese meteorological satellite FY-3D. Adv. Space Res. 2020, 66, 2151–2167. [Google Scholar]
- Xu, N.; Niu, X.H.; Hu, X.Q. Prelaunch calibration and radiometric performance of the advanced MERSI on FengYun-3D. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4866–4875. [Google Scholar] [CrossRef]
- Yang, Z.D.; Zhang, P.; Gu, S.Y. Capability of Fengyun-3D satellite in earth system observation. J. Meteorol. Res. 2019, 33, 1113–1130. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Li, G.C. Assessment of FY-3D MERSI/NDVI global product. Acta Meteorol. Sin. 2022, 80, 124–135. [Google Scholar]
- Ge, M.X.; Zhao, J.; Zhong, B.; Yang, A.X. Comparison of the vegetation indexex between FY-3/VIRR, FY-3/MERSI and EOS/MODIS Data. Remote Sens. Technol. Appl. 2017, 32, 262–273. [Google Scholar]
- Miura, T.; Huete, A.R.; Yoshioka, H. Evaluation of sensor calibration uncertainties on vegetation indices for MODIS. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1399–1409. [Google Scholar] [CrossRef]
- Hao, C.Y.; Ma, Y.; Zhu, Z.Z. Comparison of vegetation indices from AVHRR and MODIS in seasonal information. Geogr. Geo Inf. Sci. 2009, 25, 30–33. [Google Scholar]
- Jin, C. Research on land Cloud Detection Algorithm of FY-3D Satellite Spectral Imager. Ph.D. Thesis, Nanjing Information Engineering University, Nanjing, China, 2018. [Google Scholar]
- Wang, H.; Mao, K.; Mu, F.; Shi, J.; Yang, J.; Li, Z.; Qin, Z. A split window algorithm for retrieving land surface temperature from FY-3D Mersi-2 data. Remote Sens. 2019, 11, 2083. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.D.; Liu, J. A review of visible infrared imaging radiometer on meteorological satellite. J. Appl. Meteorol. Sci. 2016, 27, 592–603. [Google Scholar]
- Han, X.Z.; Zheng, W.; Liu, C. Estimation of chlorophyll a using MERSI and MODIS images in Taihu Lake, China. Geogr. Res. 2011, 30, 291–300. [Google Scholar]
- Aveni, S.; Blackett, M. The first evaluation of the FY-3D/MERSI-2 sensor’s thermal infrared capabilities for deriving land surface temperature in volcanic regions: A case study of Mount Etna. Int. J. Remote Sens. 2022, 43, 2777–2792. [Google Scholar] [CrossRef]
- Hu, X.Q.; Niu, X.H.; Xu, N. Improvement and application capability of fy-3d medium resolution spectral imager II. In Proceedings of the 35th Annual Meeting of the Chinese Meteorological Society, Hefei, China, 28–30 September 2018; pp. 92–100. [Google Scholar]
- Jiang, J.X.; Wang, M.S.; Ju, S.Y. Land surface temperature retrieval from FY-3D MERSI-2 data in the arid/semi-arid area. Adv. Geosci. 2019, 9, 693–702. [Google Scholar] [CrossRef]
- Vermote, E.F.; Saleous, N.Z.E.; Justice, C.O. Atmospheric correction of MODIS data in the visible to middle infrared: First results. Remote Sens. Environ. 2002, 83, 97–111. [Google Scholar] [CrossRef]
- Vermote, E.F.; Vermeulen, A. MODIS Algorithm Technical Background Document: Atmospheric Correction Algorithm: Spectral Reflectances (MOD09), 1999. Available online: https://lpdaac.usgs.gov/documents/305/MOD09_ATBD.pdf (accessed on 3 March 2022).
- Kneizys, F.X.; Shettle, E.P.; Gallery, W.O.; Chetwynd, J.H.; Abreu, L.W.; Selbry, J.E.A.; Fenn, R.W.; McClatchey, R.A. Atmospheric Transmittance/Radiance: Computer Code Lowtran 5; AFGLTR-80–0067; Air Force Geophysics Laboratory: Bredford, MA, USA, 1980. [Google Scholar]
- Ermote, E.F.; Saleous, N. Operational Atmospheric Correction of MODIS Visible to Middle Infrared Land Surface Data in the Case of an Infinite Lambertian Target. In Earth Science Satellite Remote Sensing; Qu, J.J., Gao, W., Kafatos, M., Murphy, R.E., Salomonson, V.V., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 124–134. [Google Scholar]
- Jiang, Z.; Huete, A.; Wang, Y.; Lyapustin, A. Evaluation of MODIS VI Products using the AERONET-based surface reflectance validation network dataset. In Proceedings of the 34th International Symposium on Remote Sensing of Environment, Sydney, Australia, 10–15 April 2011. [Google Scholar]
- Xu, Y.M.; Qin, Z.H.; Chen, A.J. A pixel-by-pixel atmospheric correction algorithm for Modis Data based on Look-up Table. Geogr. Inf. Wuhan Univ. 2010, 35, 959–962. [Google Scholar]
- Deschamps, P.Y.; Herman, M.; Taner, D. Definitions of atmospheric radiance and transmittances in remote sensing. Remote Sens. Environ. 1983, 13, 89–92. [Google Scholar] [CrossRef]
- Wei, F.Y. Modern Climate Statistical Diagnosis and Prediction Technology, 3rd ed.; Meteorological Press: Beijing, China, 2009; pp. 36–56. [Google Scholar]
- Bai, Y.; Yang, Y.; Jiang, H. Inter comparison of AVHRR GIMMS3 g, Terra MODIS, and SPOT-VGT NDVI Products over the Mongolian Plateau. Remote Sens. 2019, 11, 2030. [Google Scholar] [CrossRef] [Green Version]
- Burgess, D.W.; Lewis, P.; Muller, J.P. Topographic effects in AVHRR NDVI data. Remote Sens. Environ. 2005, 54, 223–232. [Google Scholar] [CrossRef]
- Zhu, G.L.; Liu, Y.B.; Ju, W.M.; Chen, J.M. Evaluation of topographic effects on four commonly used vegetation indices. J. Remote Sens. 2013, 17, 210–221. [Google Scholar]
- Kane, V.R.; Gillespie, A.R.; McGaughey, R.; Lutz, J.A.; Ceder, K.; Franklin, J.F. Interpretation and topographic compensation of conifer canopy self-shadowing. Remote Sens. Environ. 2008, 112, 3820–3832. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J. MODIS NDVI optimization to fit the AVHRR data series-spectral considerations. Remote Sens. Environ. 1998, 66, 343–350. [Google Scholar] [CrossRef]
- Han, X.Z.; Yang, J.; Tang, S.H.; Han, Y. Vegetation products derived from Fengyun-3D Medium resolution spectral imager-II. J. Meteorol. Res. 2020, 34, 775–785. [Google Scholar] [CrossRef]
- Zhu, B.Q.; Huang, S.E.; Chen, X.J. Monitoring of Rice Growth based on FY3B/MERSI with AQUA/MODIS Data Contrastive Analysis. Acta Agric. Univ. Jiangxiensis 2014, 36, 1009–1015. [Google Scholar]
- Feng, R.; Ji, R.P.; Wu, J.W. Analysis on Difference between FY-3/MERSI-NDVI and EOS/MODIS-NDVI. Chin. Agric. Sci. Bull. 2010, 26, 359–362. [Google Scholar]
- Ke, Y.; Im, J.; Lee, J.; Gong, H.; Ryu, Y. Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations. Remote Sens. Environ. 2015, 164, 298–313. [Google Scholar] [CrossRef]
- Teillet, P.M.; Ren, X. Spectral band difference elects on vegetation indices derived from multiple satellite sensor data. Can. J. Remote Sens. 2008, 34, 159–173. [Google Scholar]
- Fontana, F.; Rixen, C.; Jonas, T.; Aberegg, G.; Wunderle, S. Alpine Grassland Phenology as Seen in AVHRR, vegetation, and MODIS NDVI Time Series—A Comparison with In Situ Measurements. Sensors 2008, 8, 2833–2853. [Google Scholar] [CrossRef]
Band | Central Wavelength (µm) | Spatial Resolution (m) | SNR NE∆T (K) | Application of this Algorithm |
---|---|---|---|---|
1 | 0.47 | 250 | 100 | Aerosol retrieval algorithm |
2 | 0.55 | 250 | 100 | |
3 | 0.65 | 250 | 100 | Aerosol retrieval algorithm and NDVI calculation |
4 | 0.865 | 250 | 100 | Aerosol retrieval algorithm and NDVI calculation |
5 | 1.38 | 1000 | 100 | |
6 | 1.64 | 1000 | 200 | |
7 | 2.13 | 1000 | 100 | Aerosol retrieval algorithm |
8 | 0.412 | 1000 | 300 | |
10 | 0.49 | 1000 | 300 | |
11 | 0.555 | 1000 | 500 | |
12 | 0.67 | 1000 | 500 | |
13 | 0.709 | 1000 | 500 | |
14 | 0.746 | 1000 | 500 | |
15 | 0.865 | 1000 | 500 | |
16 | 0.905 | 1000 | 200 | |
17 | 0.936 | 1000 | 100 | |
18 | 0.94 | 1000 | 200 | |
19 | 1.03 | 1000 | 100 | |
20 | 3.8 | 1000 | 0.25 K | |
21 | 4.05 | 1000 | 0.25 K | |
22 | 7.2 | 1000 | 0.30 K | |
23 | 8.55 | 1000 | 0.25 K | |
24 | 10.8 | 250 | 0.4 K | |
25 | 12 | 250 | 0.4 K |
Band Name | Central Wavelength (nm) | ||
---|---|---|---|
470 | 0.0000 | 0.0000 | |
B2 | 550 | 0.0000 | 0.0000 |
B3 | 650 | −5.6072 | 0.8202 |
B4 | 865 | −5.25251 | 0.7252 |
Band Name | Central Wavelength (nm) | Atmospheric Molecular Optical Thickness, |
---|---|---|
EV_250_RefSB_b1 | 470 | 0.188128 |
EV_250_RefSB_b2 | 550 | 0.0984957 |
EV_250_RefSB_b3 | 650 | 0.0529696 |
EV_250_RefSB_b4 | 865 | 0.0156664 |
Data (yy/mm) | Jilin | Fujian | Henan | Sichuan | Xinjiang | China |
---|---|---|---|---|---|---|
20/01 | 0.0112 | 0.0212 | 0.0385 | 0.0765 | 0.0213 | 0.033 |
20/02 | 0.0363 | 0.0101 | 0.0593 | 0.0412 | 0.0214 | 0.0226 |
20/03 | 0.0235 | 0.0314 | 0.0499 | 0.037 | 0.0158 | 0.021 |
20/04 | 0.0534 | 0.0302 | 0.1059 | 0.0446 | 0.016 | 0.0015 |
20/05 | 0.0385 | 0.1317 | 0.1283 | 0.0143 | 0.0001 | 0.0047 |
20/06 | 0.0663 | 0.1148 | 0.0032 | 0.0762 | 0.007 | 0.0342 |
20/07 | 0.0102 | 0.1014 | 0.0329 | 0.0929 | 0.0002 | 0.0335 |
20/08 | 0.0495 | 0.1119 | 0.0105 | 0.0626 | 0.0049 | 0.0223 |
20/09 | 0.0304 | 0.1231 | 0.0514 | 0.1039 | 0.0026 | 0.0224 |
20/10 | 0.0272 | 0.0342 | 0.0338 | 0.1226 | 0.0206 | 0.023 |
20/11 | 0.0223 | 0.0168 | 0.0028 | 0.0297 | 0.024 | 0.0227 |
20/12 | 0.0194 | 0.0488 | 0.0131 | 0.0982 | 0.0302 | 0.0326 |
21/01 | 0.0164 | 0.0021 | 0.0211 | 0.0061 | 0.0162 | 0.0115 |
21/02 | 0.0638 | 0.006 | 0.0578 | 0.0173 | 0.019 | 0.0143 |
21/03 | 0.0143 | 0.0235 | 0.0222 | 0.0211 | 0.0244 | 0.0184 |
21/04 | 0.0103 | 0.0334 | 0.0481 | 0.008 | 0.0067 | 0.0048 |
21/05 | 0.0408 | 0.128 | 0.0695 | 0.0836 | 0.0022 | 0.0114 |
21/06 | 0.0257 | 0.1551 | 0.0155 | 0.1175 | 0.001 | 0.0245 |
21/07 | 0.0394 | 0.092 | 0.008 | 0.0922 | 0.0013 | 0.0361 |
21/08 | 0.0541 | 0.1383 | 0.0257 | 0.027 | 0.0007 | 0.0361 |
21/09 | 0.0351 | 0.0512 | 0.0063 | 0.0662 | 0.0021 | 0.0071 |
21/10 | 0.0467 | 0.0605 | 0.0224 | 0.1073 | 0.0292 | 0.0239 |
21/11 | 0.092 | 0.0102 | 0.0223 | 0.0503 | 0.0271 | 0.0232 |
21/12 | 0.0434 | 0.0069 | 0.0138 | 0.029 | 0.0249 | 0.0167 |
Absolute deviation | 0.0363 | 0.0618 | 0.0359 | 0.0594 | 0.0133 | 0.0209 |
Relative deviation | 3.63% | 6.18% | 3.59% | 5.94% | 1.33% | 2.09% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, F.; Liu, Q.; Li, S.; Qin, Y.; Huang, D.; Wang, Y.; Wang, L. A Study of the Method for Retrieving the Vegetation Index from FY-3D MERSI-II Data. Remote Sens. 2023, 15, 491. https://doi.org/10.3390/rs15020491
Xiao F, Liu Q, Li S, Qin Y, Huang D, Wang Y, Wang L. A Study of the Method for Retrieving the Vegetation Index from FY-3D MERSI-II Data. Remote Sensing. 2023; 15(2):491. https://doi.org/10.3390/rs15020491
Chicago/Turabian StyleXiao, Fengjin, Qiufeng Liu, Shuai Li, Yun Qin, Dapeng Huang, Yanjiao Wang, and Lei Wang. 2023. "A Study of the Method for Retrieving the Vegetation Index from FY-3D MERSI-II Data" Remote Sensing 15, no. 2: 491. https://doi.org/10.3390/rs15020491
APA StyleXiao, F., Liu, Q., Li, S., Qin, Y., Huang, D., Wang, Y., & Wang, L. (2023). A Study of the Method for Retrieving the Vegetation Index from FY-3D MERSI-II Data. Remote Sensing, 15(2), 491. https://doi.org/10.3390/rs15020491