Flood Predictability of One-Way and Two-Way WRF Nesting Coupled Hydrometeorological Flow Simulations in a Transboundary Chenab River Basin, Pakistan
Abstract
:1. Introduction
- (1)
- To calibrate the hydrological Integrated Flood Analysis System (IFAS) model on the transboundary Chenab River Basin (CRB) using an open-source satellite precipitation product (SPP), elevation, soil, and land use.
- (2)
- To apply the calibrated IFAS model for hydrometeorological flow simulations using Global Forecast System (GFS) NWP, downscaled one-way WRF, and two-way WRF GFS precipitation to obtain the optimal flood peak of the 2016 flood in the CRB.
- (3)
- To conduct flood forecasting with the calibrated IFAS model by using different forecast lead times of GFS precipitations.
2. Study Area
3. Materials and Methods
3.1. Topographic, Land-Use, and Soil-Type Data in IFAS Model
3.2. Satellite Precipitation Data
3.3. Chenab River Flow Data
3.4. NWP Data for Flood Forecasting
3.5. WRF Model Settings for NWP Data
- = the hydrostatic component of the pressure of dry air;
- and = the values of along the surface and top boundaries, respectively.
- the covariant velocities in the two horizontal and vertical directions;
- the contravariant vertical velocity;
- = is the moist potential temperature.
- = pressure;
- = generic variable;
- = the ratio of heat capacities for dry air ;
- = the inverse density of the dry air ;
- = the inverse density taking the full parcel density into account;
- = the gas constant for dry air;
- = a reference surface pressure (in Pascals),
- ϕ = gz = the non-conserved variables (geo-potential);
- = forcing terms arising from model physics, turbulent mixing, spherical projections, and the Earth’s rotation the inverse density of dry air, respectively.
3.6. Hydrologic Flood Simulation
4. Results
4.1. Precipitation Forecasts from One-Way and Two-Way Nesting Approaches in WRF Model
4.2. Flood Forecasts with Different Precipitation Sources, (i.e., Global, One-Way and Two-Way WRF Nesting Approaches)
4.3. Hydrologic Performance Evaluation of WRF Domains
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saddique, N.; Muzammil, M.; Jahangir, I.; Sarwar, A.; Ahmed, E.; Aslam, R.A.; Bernhofer, C. Hydrological evaluation of 14 satellite-based, gauge-based and reanalysis precipitation products in a data-scarce mountainous catchment. Hydrol. Sci. J. 2022, 67, 436–450. [Google Scholar] [CrossRef]
- Larson, L.W.; Peck, E.L. Accuracy of precipitation measurements for hydrologic modeling. Water Resour. Res. 1974, 10, 857–863. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K. A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef] [Green Version]
- Parvaze, S.; Khan, J.N.; Kumar, R.; Allaie, S.P. Flood forecasting in Jhelum river basin using integrated hydrological and hydraulic modeling approach with a real-time updating procedure. Clim. Dyn. 2022, 59, 2231–2255. [Google Scholar] [CrossRef]
- Abro, M.I.; Zhu, D.; Ali Khaskheli, M.; Elahi, E.; Aleem ul Hassan Ramay, M. Statistical and qualitative evaluation of multi-sources for hydrological suitability inflood-prone areas of Pakistan. J. Hydrol. 2020, 588, 125117. [Google Scholar] [CrossRef]
- Yucel, I. Assessment of a flash flood event using different precipitation datasets. Nat. Hazards 2015, 79, 1889–1911. [Google Scholar] [CrossRef]
- Yilmaz, K.K.; Hogue, T.S.; Hsu, K.; Sorooshian, S.; Gupta, H.V.; Wagener, T. Intercomparison of Rain Gauge, Radar, and Satellite-Based Precipitation Estimates with Emphasis on Hydrologic Forecasting. J. Hydrometeorol. 2005, 6, 497–517. [Google Scholar] [CrossRef]
- Chen, Y.; Ebert, E.E.; Walsh, K.J.E.; Davidson, N.E. Evaluation of TRMM 3B42 precipitation estimates of tropical cyclone rainfall using PACRAIN data. J. Geophys. Res. Atmos. 2013, 118, 2184–2196. [Google Scholar] [CrossRef]
- Maddah, M.A.; Akhoond-Ali, A.M.; Ahmadi, F.; Ghafarian, P.; Rusin, I.N. Forecastability of a heavy precipitation event at different lead-times using WRF model: The case study in Karkheh River basin. Acta Geophys. 2021, 69, 1979–1995. [Google Scholar] [CrossRef]
- Dubey, A.K.; Kumar, P.; Chembolu, V.; Dutta, S.; Singh, R.P.; Rajawat, A.S. Flood modeling of a large transboundary river using WRF-Hydro and microwave remote sensing. J. Hydrol. 2021, 598, 126391. [Google Scholar] [CrossRef]
- Kidd, C.; Becker, A.; Huffman, G.J.; Muller, C.L.; Joe, P.; Skofronick-Jackson, G.; Kirschbaum, D.B. So, How Much of the Earth’s Surface Is Covered by Rain Gauges? Bull. Am. Meteorol. Soc. 2017, 98, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Nkuna, T.R.; Odiyo, J.O. Filling of missing rainfall data in Luvuvhu River Catchment using artificial neural networks. Phys. Chem. Earth Parts A/B/C 2011, 36, 830–835. [Google Scholar] [CrossRef]
- Biswas, N.K.; Hossain, F.; Bonnema, M.; Aminul Haque, A.M.; Biswas, R.K.; Bhuyan, A.; Hossain, A. A computationally efficient flash flood early warning system for a mountainous and transboundary river basin in Bangladesh. J. Hydroinformatics 2020, 22, 1672–1692. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Hong, Y.; Hsu, K.-L.; Sorooshian, S.; Gao, X. Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System. J. Appl. Meteorol. 2004, 43, 1834–1853. [Google Scholar] [CrossRef] [Green Version]
- Garstang, M.; Kummerow, C.D. The Joanne Simpson Special Issue on the Tropical Rainfall Measuring Mission (TRMM). J. Appl. Meteorol. 2000, 39, 1961. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Okamoto, K.I.; Ushio, T.; Iguchi, T.; Takahashi, N.; Iwanami, K. The global satellite mapping of precipitation (GSMaP) project. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS’05, Seoul, Korea, 29 July 2005; IEEE: Manhattan, NY, USA, 2005; Volume 5, pp. 3414–3416. [Google Scholar]
- Chang, M.-J.; Chang, H.-K.; Chen, Y.-C.; Lin, G.-F.; Chen, P.-A.; Lai, J.-S.; Tan, Y.-C. A Support Vector Machine Forecasting Model for Typhoon Flood Inundation Mapping and Early Flood Warning Systems. Water 2018, 10, 1734. [Google Scholar] [CrossRef] [Green Version]
- Wagena, M.B.; Goering, D.; Collick, A.S.; Bock, E.; Fuka, D.R.; Buda, A.; Easton, Z.M. Comparison of short-term streamflow forecasting using stochastic time series, neural networks, process-based, and Bayesian models. Environ. Model. Softw. 2020, 126, 104669. [Google Scholar] [CrossRef]
- Diez-Sierra, J.; del Jesus, M. Long-term rainfall prediction using atmospheric synoptic patterns in semi-arid climates with statistical and machine learning methods. J. Hydrol. 2020, 586, 124789. [Google Scholar] [CrossRef]
- Paul, R.K.; Paul, A.K.; Bhar, L.M. Wavelet-based combination approach for modeling sub-divisional rainfall in India. Theor. Appl. Climatol. 2020, 139, 949–963. [Google Scholar] [CrossRef]
- Zhang, X.; Anagnostou, E.N.; Frediani, M.; Solomos, S.; Kallos, G. Using NWP Simulations in Satellite Rainfall Estimation of Heavy Precipitation Events over Mountainous Areas. J. Hydrometeorol. 2013, 14, 1844–1858. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, J.; Pan, S.; Tang, K.; Li, C.; Han, D. A real-time flood forecasting system with dual updating of the NWP rainfall and the river flow. Nat. Hazards 2015, 77, 1161–1182. [Google Scholar] [CrossRef]
- Schmidli, J.; Goodess, C.M.; Frei, C.; Haylock, M.R.; Hundecha, Y.; Ribalaygua, J.; Schmith, T. Statistical and dynamical downscaling of precipitation: An evaluation and comparison of scenarios for the European Alps. J. Geophys. Res. 2007, 112, D04105. [Google Scholar] [CrossRef] [Green Version]
- Vichot-Llano, A.; Martinez-Castro, D.; Giorgi, F.; Bezanilla-Morlot, A.; Centella-Artola, A. Comparison of GCM and RCM simulated precipitation and temperature over Central America and the Caribbean. Theor. Appl. Climatol. 2021, 143, 389–402. [Google Scholar] [CrossRef]
- Noble, E.; Druyan, L.M.; Fulakeza, M. The Sensitivity of WRF Daily Summertime Simulations over West Africa to Alternative Parameterizations. Part II: Precipitation. Mon. Weather Rev. 2017, 145, 215–233. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4; National Center for Atmospheric Research: Boulder, CO, USA, 2019; p. 145. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 2008, 227, 3465–3485. [Google Scholar] [CrossRef]
- Molteni, F.; Buizza, R.; Palmer, T.N.; Petroliagis, T. The ECMWF Ensemble Prediction System: Methodology and validation. Q. J. R. Meteorol. Soc. 1996, 122, 73–119. [Google Scholar] [CrossRef]
- Black, T.L. The New NMC Mesoscale Eta Model: Description and Forecast Examples. Weather Forecast. 1994, 9, 265–278. [Google Scholar] [CrossRef]
- Saito, K.; Fujita, T.; Yamada, Y.; Ishida, J.; Kumagai, Y.; Aranami, K.; Ohmori, S.; Nagasawa, R.; Kumagai, S.; Muroi, C.; et al. The Operational JMA Nonhydrostatic Mesoscale Model. Mon. Weather Rev. 2006, 134, 1266–1298. [Google Scholar] [CrossRef]
- Zechun, L.; Dehui, C. The development and application of the operational ensemble prediction system at National Meteorological Center. J. Appl. Meteorol. Sci. 2002, 13, 1–15. [Google Scholar]
- Yang, W.; Brüggemann, K.; Seguya, K.D.; Ahmed, E.; Kaeseberg, T.; Dai, H.; Hua, P.; Zhang, J.; Krebs, P. Measuring performance of low impact development practices for the surface runoff management. Environ. Sci. Ecotechnology 2020, 1, 100010. [Google Scholar] [CrossRef]
- Yan, H.; Gallus, W.A. An Evaluation of QPF from the WRF, NAM, and GFS Models Using Multiple Verification Methods over a Small Domain. Weather Forecast. 2016, 31, 1363–1379. [Google Scholar] [CrossRef]
- Yu, W.; Nakakita, E.; Kim, S.; Yamaguchi, K. Impact Assessment of Uncertainty Propagation of Ensemble NWP Rainfall to Flood Forecasting with Catchment Scale. Adv. Meteorol. 2016, 2016, 1384302. [Google Scholar] [CrossRef] [Green Version]
- Roberts, N.M.; Cole, S.J.; Forbes, R.M.; Moore, R.J.; Boswell, D. Use of high-resolution NWP rainfall and river flow forecasts for advance warning of the Carlisle flood, north-west England. Meteorol. Appl. 2009, 16, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Ushiyama, T.; Sayama, T.; Tatebe, Y.; Fujioka, S.; Fukami, K. Numerical Simulation of 2010 Pakistan Flood in the Kabul River Basin by Using Lagged Ensemble Rainfall Forecasting. J. Hydrometeorol. 2014, 15, 193–211. [Google Scholar] [CrossRef]
- Politi, N.; Vlachogiannis, D.; Sfetsos, A.; Nastos, P.T. High-resolution dynamical downscaling of ERA-Interim temperature and precipitation using WRF model for Greece. Clim. Dyn. 2021, 57, 799–825. [Google Scholar] [CrossRef]
- Sugiura, T.; Fukami, K.; Inomata, H. Development of Integrated Flood Analysis System (IFAS) and Its Applications. In Proceedings of the World Environmental and Water Resources Congress, Honolulu, HI, USA, 12–16 May 2008; American Society of Civil Engineers: Reston, VA, USA, 2008; pp. 1–10. [Google Scholar]
- Sugiura, A.; Fujioka, S.; Nabesaka, S.; Tsuda, M.; Iwami, Y. Development of a flood forecasting system on the upper Indus catchment using IFAS. J. Flood Risk Manag. 2016, 9, 265–277. [Google Scholar] [CrossRef]
- Hafiz, I.; Nor, N.D.M.; Sidek, L.M.; Basri, H.; Hanapi, M.N.; Livia, L. Application of Integrated Flood Analysis System (IFAS) for Dungun River Basin. IOP Conf. Ser. Earth Environ. Sci. 2013, 16, 012128. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-C.; Gao, J.-J.; Bin, Z.-H.; Qian, J.-Z.; Pei, R.-L.; Zhu, H. Application study of IFAS and LSTM models on runoff simulation and flood prediction in the Tokachi River basin. J. Hydroinformatics 2021, 23, 1098–1111. [Google Scholar] [CrossRef]
- Kimmany, B.; Ruangrassamee, P.; Visessri, S. Optimal Multi-Reservoir Operation for Hydropower Production in the Nam Ngum River Basin. Eng. J. 2020, 24, 1–13. [Google Scholar] [CrossRef]
- Shahzad, A.; Gabriel, H.F.; Haider, S.; Mubeen, A.; Siddiqui, M.J. Development of a flood forecasting system using IFAS: A case study of scarcely gauged Jhelum and Chenab river basins. Arab. J. Geosci. 2018, 11, 383. [Google Scholar] [CrossRef]
- Asghar, M.R.; Ushiyama, T.; Riaz, M.; Miyamoto, M. Flood and Inundation Forecasting in the Sparsely Gauged Transboundary Chenab River Basin Using Satellite Rain and Coupling Meteorological and Hydrological Models. J. Hydrometeorol. 2019, 20, 2315–2330. [Google Scholar] [CrossRef]
- Ali, S.; Cheema, M.; Waqas, M.; Waseem, M.; Leta, M.; Qamar, M.; Awan, U.; Bilal, M.; Rahman, M. Flood Mitigation in the Transboundary Chenab River Basin: A Basin-Wise Approach from Flood Forecasting to Management. Remote Sens. 2021, 13, 3916. [Google Scholar] [CrossRef]
- Ahmed, E.; Al Janabi, F.; Zhang, J.; Yang, W.; Saddique, N.; Krebs, P. Hydrologic Assessment of TRMM and GPM-Based Precipitation Products in Transboundary River Catchment (Chenab River, Pakistan). Water 2020, 12, 1902. [Google Scholar] [CrossRef]
- Ahmed, E.; Al Janabi, F.; Yang, W.; Ali, A.; Saddique, N.; Krebs, P. Comparison of flow simulations with sub-daily and daily GPM IMERG products over a transboundary Chenab River catchment. J. Water Clim. Chang. 2022, 13, 1204–1224. [Google Scholar] [CrossRef]
- Wagner, S.; Fersch, B.; Yuan, F.; Yu, Z.; Kunstmann, H. Fully coupled atmospheric-hydrological modeling at regional and long-term scales: Development, application, and analysis of WRF-HMS. Water Resour. Res. 2016, 52, 3187–3211. [Google Scholar] [CrossRef] [Green Version]
- Givati, A.; Lynn, B.; Liu, Y.; Rimmer, A. Using the WRF Model in an Operational Streamflow Forecast System for the Jordan River. J. Appl. Meteorol. Climatol. 2011, 51, 285–299. [Google Scholar] [CrossRef]
- Li, J.; Chen, Y.; Wang, H.; Qin, J.; Li, J.; Chiao, S. Extending flood forecasting lead time in a large watershed by coupling WRF QPF with a distributed hydrological model. Hydrol. Earth Syst. Sci. 2017, 21, 1279–1294. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Peng, D.; Deng, C.; Zhao, K.; Pang, B.; Zuo, D. Atmospheric–hydrological modeling for Beijing’s sub-center based on WRF and SWMM. Urban Clim. 2022, 41, 101066. [Google Scholar] [CrossRef]
- Ali, S.; Kiani, R.S.; Reboita, M.S.; Dan, L.; Eum, H.; Cho, J.; Dairaku, K.; Khan, F.; Shreshta, M.L. Identifying hotspots cities vulnerable to climate change in Pakistan under CMIP5 climate projections. Int. J. Climatol. 2021, 41, 559–581. [Google Scholar] [CrossRef]
- Federal Floods Commission Government of Pakistan. Annual Flood Report for the Year 2020. Available online: https://ffc.gov.pk/wp-content/uploads/2021/04/2020-Annual-Report-of-Oo-CEA-CFFC.pdf (accessed on 10 September 2022).
- Riaz, M.; Aziz, A.; Hussain, S. Flood Forecasting of an Ungauged Trans-boundary Chenab River Basin Using Distributed Hydrological Model Integrated Flood Analysis System (IFAS). Pak. J. Meteorol. 2017, 13, 51–62. [Google Scholar]
- Carsell, K.M.; Pingel, N.D.; Ford, D.T. Quantifying the Benefit of a Flood Warning System. Nat. Hazards Rev. 2004, 5, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Hossain, F.; Katiyar, N.; Hong, Y.; Wolf, A. The emerging role of satellite rainfall data in improving the hydro-political situation of flood monitoring in the under-developed regions of the world. Nat. Hazards 2007, 43, 199–210. [Google Scholar] [CrossRef]
- Awan, S. Pakistan: Flood Management-River Chenab from Marala to Khanki. World Meteorol. Organ. Glob. Water Partnersh. 2003, 1–4. Available online: https://www.floodmanagement.info/publications/casestudies/cs_pakistan_chenab_sum.pdf (accessed on 10 September 2022).
- Singh, P.; Ramasastri, K.S.; Kumar, N. Topographical Influence on Precipitation Distribution in Different Ranges of Western Himalayas. Hydrol. Res. 1995, 26, 259–284. [Google Scholar] [CrossRef]
- Singh, P.; Jain, S.K.; Kumar, N. Estimation of Snow and Glacier-Melt Contribution to the Chenab River, Western Himalaya. Mt. Res. Dev. 1997, 17, 49. [Google Scholar] [CrossRef]
- Kubota, T.; Shige, S.; Hashizume, H.; Aonashi, K.; Takahashi, N.; Seto, S.; Hirose, M.; Takayabu, Y.N.; Ushio, T.; Nakagawa, K.; et al. Global Precipitation Map Using Satellite-Borne Microwave Radiometers by the GSMaP Project: Production and Validation. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2259–2275. [Google Scholar] [CrossRef]
- Powers, J.G.; Klemp, J.B.; Skamarock, W.C.; Davis, C.A.; Dudhia, J.; Gill, D.O.; Coen, J.L.; Gochis, D.J.; Ahmadov, R.; Peckham, S.E.; et al. The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions. Bull. Am. Meteorol. Soc. 2017, 98, 1717–1737. [Google Scholar] [CrossRef]
- Ekström, M. Metrics to identify meaningful downscaling skill in WRF simulations of intense rainfall events. Environ. Model. Softw. 2016, 79, 267–284. [Google Scholar] [CrossRef]
- Srinivas, C.V.; Hariprasad, D.; Bhaskar Rao, D.V.; Anjaneyulu, Y.; Baskaran, R.; Venkatraman, B. Simulation of the Indian summer monsoon regional climate using advanced research WRF model. Int. J. Climatol. 2013, 33, 1195–1210. [Google Scholar] [CrossRef]
- Patil, R.; Pradeep Kumar, P. WRF model sensitivity for simulating intense western disturbances over North West India. Model. Earth Syst. Environ. 2016, 2, 82. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-L.; Farley, R.D.; Orville, H.D. Bulk Parameterization of the Snow Field in a Cloud Model. J. Clim. Appl. Meteorol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Dudhia, J. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Kain, J.S. The Kain–Fritsch Convective Parameterization: An Update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Hafiz, I.; Sidek, L.M.; Basri, H.; Fukami, K.; Hanapi, M.N.; Livia, L.; Jaafar, A.S. Integrated flood analysis system (IFAS) for Kelantan river basin. In Proceedings of the 2014 IEEE 2nd International Symposium on Telecommunication Technologies (ISTT), Langkawi, Malaysia, 24–26 November 2014; IEEE: Manhattan, NY, USA, 2014; pp. 159–162. [Google Scholar]
- Chow, M.F.; Jamil, M.M. Review of development and applications of Integrated Flood Analysis System (IFAS) for flood forecasting in insufficiently-gauged catchments. J. Eng. Appl. Sci. 2017, 12, 9210–9215. [Google Scholar]
- ICHARM/PWRI IFAS ver.2.0 Technical Manual. 2014, p. 40. Available online: https://www.pwri.go.jp/icharm/research/ifas/download_files/ifas_calibrator_ver_2_0_user_manual_e.pdf (accessed on 10 August 2022).
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Yapo, P.O.; Gupta, H.V.; Sorooshian, S. Automatic calibration of conceptual rainfall-runoff models: Sensitivity to calibration data. J. Hydrol. 1996, 181, 23–48. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Givati, A.; Gochis, D.; Rummler, T.; Kunstmann, H. Comparing One-Way and Two-Way Coupled Hydrometeorological Forecasting Systems for Flood Forecasting in the Mediterranean Region. Hydrology 2016, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Harris, L.M.; Durran, D.R. An Idealized Comparison of One-Way and Two-Way Grid Nesting. Mon. Weather Rev. 2010, 138, 2174–2187. [Google Scholar] [CrossRef]
IFAS Parameters | GLCC Land-Use Class |
---|---|
1 | Deciduous Broadleaf Forest |
Deciduous Needleleaf Forest | |
Evergreen Broadleaf Forest | |
Evergreen Needleleaf Forest | |
Mixed Forest | |
2 | Cropland/Grassland Mosaic |
Cropland/Woodland Mosaic | |
Grassland | |
Shrubland | |
Mixed Shrubland/Grassland | |
Savanna | |
Barren or Sparsely Vegetated | |
Herbaceous Tundra | |
Wooded Wetland | |
Mixed Tundra | |
Bare Ground Tundra | |
3 | Dryland Cropland and Pasture |
Irrigated Cropland and Pasture | |
Mixed Dryland/Irrigated Cropland and Pasture | |
Herbaceous Wetland | |
Wooded Wetland | |
4 | Urban and Built-Up Land |
5 | Water Bodies |
Snow or Ice |
Lead Time | Downloaded GFS Files | ||
---|---|---|---|
Days and Hours | Date | Time | Forecast Timestep (Hours) |
4 days | 1 August 2016 | 00 UTC | 96 |
3 days | 2 August 2016 | 00 UTC | 72 |
2 days 12 h | 2 August 2016 | 12 UTC | 60 |
2 days | 3 August 2016 | 00 UTC | 48 |
1 days 12 h | 3 August 2016 | 18 UTC | 30 |
1 day | 4 August 2016 | 00 UTC | 24 |
0 day 18 h | 4 August 2016 | 06 UTC | 18 |
0 day 12 h | 4 August 2016 | 12 UTC | 12 |
0 day 06 h | 4 August 2016 | 18 UTC | 06 |
Model Aspects | Model Settings |
---|---|
Model version | 4.0 |
Map projection | Lambert conformal |
Mandatory Static Data | High-resolution dataset at 30ʺ and 6ʺ for d01 and d02, respectively |
True-lat | 33.27°N |
True-lon | 75.84°W |
Domain grids | 96 and 56 grid points for x and y, respectively |
Domain ratio | 1:5 |
Grid resolution | 25 km (d01) and 5 km (d02) |
Outer domain extent | 2400 km × 1400 km |
Inner domain extent | 480 km × 280 km |
Cloud microphysics | Lin (Purdue) [67] |
Long-wave radiation | Rapid Radiative Transfer Model (RRTM) [68] |
Short-wave radiation | Dudhia scheme [69] |
Land surface model | Noah land surface model (LSM) [70] |
Planetary boundary layer | Yonsei University scheme [71] |
Cumulus parameterization | Kain–Fritsch [72] for d01; without cumulus scheme mode for d02 |
Forecasts | f06 | f12 | f18 | f24 | f30 | f48 | f60 | f72 | f96 | |
---|---|---|---|---|---|---|---|---|---|---|
Global forecast | avg | 19.5 | 18.6 | 21.1 | 21.9 | 23.7 | 32.5 | 30.4 | 28.2 | 21.3 |
max | 142.6 | 132.1 | 147.4 | 136.0 | 152.9 | 142.2 | 213.2 | 160.8 | 134.9 | |
min | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | |
std | 18.7 | 18.7 | 22.0 | 24.1 | 25.3 | 26.3 | 30.6 | 25.9 | 19.6 | |
One-way nesting (d02) | avg | 57.0 | 45.0 | 48.5 | 53.9 | 61.6 | 68.6 | 57.1 | 63.5 | 76.1 |
max | 378.8 | 397.0 | 369.8 | 290.8 | 354.7 | 477.6 | 444.0 | 409.5 | 746.0 | |
min | 1.4 | 0.3 | 0.1 | 0.4 | 0.2 | 0.5 | 0.5 | 0.2 | 0.0 | |
std | 66.6 | 51.5 | 53.5 | 50.9 | 61.2 | 75.9 | 69.8 | 70.5 | 114.1 | |
Two-way nesting (d02) | avg | 171.0 | 141.8 | 98.1 | 147.8 | 118.0 | 141.9 | 115.5 | 123.6 | 165.8 |
max | 1268.5 | 1650.2 | 1029.5 | 1371.3 | 807.0 | 1440.2 | 1131.3 | 1826.5 | 1298.3 | |
min | 3.0 | 0.0 | 0.1 | 0.0 | 1.3 | 0.0 | 0.2 | 0.0 | 0.0 | |
std | 187.1 | 217.9 | 98.7 | 209.0 | 109.4 | 168.2 | 126.4 | 219.4 | 229.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, E.; Saddique, N.; Al Janabi, F.; Barfus, K.; Asghar, M.R.; Sarwar, A.; Krebs, P. Flood Predictability of One-Way and Two-Way WRF Nesting Coupled Hydrometeorological Flow Simulations in a Transboundary Chenab River Basin, Pakistan. Remote Sens. 2023, 15, 457. https://doi.org/10.3390/rs15020457
Ahmed E, Saddique N, Al Janabi F, Barfus K, Asghar MR, Sarwar A, Krebs P. Flood Predictability of One-Way and Two-Way WRF Nesting Coupled Hydrometeorological Flow Simulations in a Transboundary Chenab River Basin, Pakistan. Remote Sensing. 2023; 15(2):457. https://doi.org/10.3390/rs15020457
Chicago/Turabian StyleAhmed, Ehtesham, Naeem Saddique, Firas Al Janabi, Klemens Barfus, Malik Rizwan Asghar, Abid Sarwar, and Peter Krebs. 2023. "Flood Predictability of One-Way and Two-Way WRF Nesting Coupled Hydrometeorological Flow Simulations in a Transboundary Chenab River Basin, Pakistan" Remote Sensing 15, no. 2: 457. https://doi.org/10.3390/rs15020457
APA StyleAhmed, E., Saddique, N., Al Janabi, F., Barfus, K., Asghar, M. R., Sarwar, A., & Krebs, P. (2023). Flood Predictability of One-Way and Two-Way WRF Nesting Coupled Hydrometeorological Flow Simulations in a Transboundary Chenab River Basin, Pakistan. Remote Sensing, 15(2), 457. https://doi.org/10.3390/rs15020457