High Spatiotemporal Flood Monitoring Associated with Rapid Lake Shrinkage Using Planet Smallsat and Sentinel-1 Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overall Methodological Workflow
2.2. Study Area
2.3. Satellite Imagery and Data Processing
2.3.1. Landsat Series
2.3.2. PlanetScope Series
2.3.3. Sentinel-1 Series
2.3.4. Surface Water and World Landcover Datasets
2.3.5. Climate Hazards Group InfraRed Precipitation with Station Dataset
2.4. Landcover Classification and Accuracy Assessment
2.5. Identification of Major Flood-Prone Areas
2.6. Investigation of Lake Surrounding Areas
3. Results
3.1. Time-Series Landcover Transformations Associated with Lake Shrinkage and Emergence of Converted Lands
3.2. Time-Series Precipitation Trend
3.3. Time-Series Flood Inundation Areas Using Multiple Satellite Dataset Series
3.4. Surface Water Occurrence at the Lake’s Surrounding Areas
4. Discussion
4.1. Time-Series Analysis of Flood Inundation Using Multiple Satellite Datasets
4.2. Implication of the Time-Series Analysis
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daily, G.C.; Polasky, S.; Goldstein, J.; Kareiva, P.M.; Mooney, H.A.; Pejchar, L.; Ricketts, T.H.; Salzman, J.; Shallenberger, R. Ecosystem services in decision making: Time to deliver. Front. Ecol. Environ. 2009, 7, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Arias-Arévalo, P.; Martín-López, B.; Gómez-Baggethun, E. Exploring intrinsic, instrumental, and relational values for sustainable management of social-ecological systems. Ecol. Soc. 2017, 22, 43. [Google Scholar] [CrossRef] [Green Version]
- Jones, N.A.; Shaw, S.; Ross, H.; Witt, K.; Pinner, B. The study of human values in understanding and managing social-ecological systems. Ecol. Soc. 2016, 21, 15. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Xue, H.P.; Wu, S.J.; Ling, F.; Xiao, F.; Wei, X.H. Lake area changes in the middle Yangtze region of China over the 20th century. J. Environ. Manag. 2011, 92, 1248–1255. [Google Scholar] [CrossRef] [PubMed]
- Bakoariniaina, L.N.; Kusky, T.; Raharimahefa, T. Disappearing Lake Alaotra: Monitoring catastrophic erosion, waterway silting, and land degradation hazards in Madagascar using Landsat imagery. J. Afr. Earth Sci. 2006, 44, 241–252. [Google Scholar] [CrossRef]
- Page, M.J.; Trustrum, N.A.; DeRose, R.C. A high resolution record of storm-induced erosion from lake sediments, New Zealand. J. Paleolimnol. 1994, 11, 333–348. [Google Scholar] [CrossRef]
- Ariztegui, D.; Anselmetti, F.S.; Robbiani, J.M.; Bernasconi, S.M.; Brati, E.; Gilli, A.; Lehmann, M.F. Natural and human-induced environmental change in southern Albania for the last 300 years—Constraints from the Lake Butrint sedimentary record. Glob. Planet. Chang. 2010, 71, 183–192. [Google Scholar] [CrossRef] [Green Version]
- United Nation. Drying Lake Chad Basin Gives Rise to Crisis. 2019. Available online: https://www.un.org/africarenewal/magazine/december-2019-march-2020/drying-lake-chad-basin-gives-rise-crisis (accessed on 1 December 2022).
- Kiprutto, N.; Munyao, C.; Ngoriarita, J.; Kangogo, M.; Kiage, E. Tracing the Possible Root Causes for Fleeing Flamingos in Kenya’s Lake Nakuru National Park. J. Nat. Sci. Res. 2012, 2, 23–31. [Google Scholar]
- Patel, D.P.; Srivastava, P.K. Flood Hazards Mitigation Analysis Using Remote Sensing and GIS: Correspondence with Town Planning Scheme. Water Resour. Manag. 2013, 27, 2353–2368. [Google Scholar] [CrossRef]
- Lakshmi, V. (Ed.) Remote Sensing of Hydrological Extremes; Springer Remote Sensing/Photogrammetry; Springer: Cham, Switzerland, 2016. [Google Scholar]
- The UN Office for Disaster Risk Reduction. Human Cost of Disasters: An Overview of the Last 20 Years (2000–2019); The UN Office for Disaster Risk Reduction: Geneva, Switzerland, 2020. [Google Scholar] [CrossRef]
- Zeng, Z.; Gan, Y.; Kettner, A.J.; Yang, Q.; Zeng, C.; Brakenridge, G.R.; Hong, Y. Towards high resolution flood monitoring: An integrated methodology using passive microwave brightness temperatures and Sentinel synthetic aperture radar imagery. J. Hydrol. 2020, 582, 124377. [Google Scholar] [CrossRef]
- Brivio, P.A.; Colombo, R.; Maggi, M.; Tomasoni, R. Integration of remote sensing data and GIS for accurate mapping of flooded areas. Int. J. Remote Sens. 2002, 23, 429–441. [Google Scholar] [CrossRef]
- Kuntla, S.K. An era of Sentinels in flood management: Potential of Sentinel-1, -2, and -3 satellites for effective flood management. Open Geosci. 2021, 13, 1616–1642. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, S. Automatic monitoring of surface water dynamics using Sentinel-1 and Sentinel-2 data with Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2022, 13, 103010. [Google Scholar] [CrossRef]
- Kimijima, S.; Sakakibara, M.; Amin, A.K.M.A.; Nagai, M.; Arifin, Y.I. Mechanism of the rapid shrinkage of limboto lake in Gorontalo, Indonesia. Sustainability 2020, 12, 9598. [Google Scholar] [CrossRef]
- Japan International Cooperation Agency. The Study on Flood Control and Water Management Limboto-Bolango-Bone Basin in the Republic of Indonesia Volume-III Supporting Report: Part-A Existing Conditions; Japan International Cooperation Agency: Tokyo, Japan, 2002. [Google Scholar]
- Katili, J.A. Past and Present Getectonic Indonesia Position of Sulawesi, Indonesia. Tectonophysic 1978, 45, 289–322. [Google Scholar] [CrossRef]
- Druce, S.C. The Lands West of the Lakes; KITLV Press: Leiden, The Netherlands, 2009. [Google Scholar]
- Sulastri. Inland water resources and limnology in Indonesia. Tropics 2006, 15, 285–295. [Google Scholar] [CrossRef]
- Kimijima, S.; Nagai, M.; Sakakibara, M. Distribution of Enhanced Potentially Toxic Element Contaminations due to Natural and Coexisting Gold Mining Activities using Planet Smallsat Constellations. Remote Sens. 2023, 15, 861. [Google Scholar] [CrossRef]
- Li, L.; Su, H.; Du, Q.; Wu, T. A novel surface water index using local background information for long term and large-scale Landsat images. ISPRS J. Photogramm. Remote Sens. 2021, 172, 59–78. [Google Scholar] [CrossRef]
- Kwak, Y.; Arifuzzanman, B.; Iwami, Y. Prompt proxy mapping of flood damaged rice fields using MODIS-derived indices. Remote Sens. 2015, 7, 15969–15988. [Google Scholar] [CrossRef] [Green Version]
- Ticehurst, C.; Guerschman, J.P.; Chen, Y. The strengths and limitations in using the daily MODIS open water likelihood algorithm for identifying flood events. Remote Sens. 2014, 6, 11791–11809. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Huang, J.; Du, Y.; Han, P.; Huang, W. Monitoring spatial and temporal dynamics of flood regimes and their relation to wetland landscape patterns in Dongting Lake from MODIS time-series imagery. Remote Sens. 2015, 7, 7494–7520. [Google Scholar] [CrossRef] [Green Version]
- Ireland, G.; Volpi, M.; Petropoulos, G.P. Examining the capability of supervised machine learning classifiers in extracting flooded areas from landsat tm imagery: A case study from a mediterranean flood. Remote Sens. 2015, 7, 3372–3399. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y. Using Landsat 7 TM data acquired days after a flood event to delineate the maximum flood extent on a coastal floodplain. Int. J. Remote Sens. 2004, 25, 959–974. [Google Scholar] [CrossRef]
- Bauer-Marschallinger, B.; Cao, S.; Tupas, M.E.; Roth, F.; Navacchi, C.; Melzer, T.; Freeman, V.; Wagner, W. Satellite-Based Flood Mapping through Bayesian Inference from a Sentinel-1 SAR Datacube. Remote Sens. 2022, 14, 3673. [Google Scholar] [CrossRef]
- Chen, S.; Huang, W.; Chen, Y.; Feng, M. An adaptive thresholding approach toward rapid flood coverage extraction from sentinel-1 SAR imagery. Remote Sens. 2021, 13, 4899. [Google Scholar] [CrossRef]
- Lei, T.; Wang, J.; Li, X.; Wang, W.; Shao, C.; Liu, B. Flood Disaster Monitoring and Emergency Assessment Based on Multi-Source Remote Sensing Observations. Water 2022, 14, 2207. [Google Scholar] [CrossRef]
- Ahamed, A.; Bolten, J.; Doyle, C.; Fayne, J. Near Real-Time Flood Monitoring and Impact Assessment Systems. In Remote Sensing of Hydrological Extremes; Lakshmi, V., Ed.; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Psomiadis, E.; Diakakis, M.; Soulis, K.X. Combining SAR and optical earth observation with hydraulic simulation for flood mapping and impact assessment. Remote Sens. 2020, 12, 3980. [Google Scholar] [CrossRef]
- Kimijima, S.; Sakakibara, M.; Nagai, M.; Gafur, N.A. Time-series Assessment of Camp-type Artisanal and Small-scale Gold Mining Sector with Large Influxes of Miners using LANDSAT Imagery. Int. J. Environ. Res. Public Health 2021, 18, 9441. [Google Scholar] [CrossRef] [PubMed]
- Kimijima, S.; Sakakibara, M.; Nagai, M. Detection of artisanal and small-scale gold mining activities and their transformation using earth observation, nighttime light, and precipitation data. Int. J. Environ. Res. Public Health 2021, 18, 10954. [Google Scholar] [CrossRef]
- Kimijima, S.; Sakakibara, M.; Nagai, M. Characterizing Time-Series Roving Artisanal and Small-Scale Gold Mining Activities in Indonesia Using Sentinel-1 Data. Int. J. Environ. Res. Public Health 2022, 19, 6266. [Google Scholar] [CrossRef]
- Kimijima, S.; Sakakibara, M.; Nagai, M. Investigation of Long-Term Roving Artisanal and Small-Scale Gold Mining Activities Using Time-Series Sentinel-1 and Global Surface Water Datasets. Int. J. Environ. Res. Public Health 2022, 19, 5530. [Google Scholar] [CrossRef] [PubMed]
- Kimijima, S.; Nagai, M.; Sakakibara, M.; Jahja, M. Investigation of Cultural–Environmental Relationships for an Alternative Environmental Management Approach Using Planet Smallsat Constellations and Questionnaire Datasets. Remote Sens. 2022, 14, 4249. [Google Scholar] [CrossRef]
- Kimijima, S.; Nagai, M.; Sakakibara, M. Monitoring Coexisting Rapid Small-scale and Large-scale Gold Mining Developments Using Planet Smallsats Constellations. Mining 2022, 2, 566–577. [Google Scholar] [CrossRef]
- The National Aeronautics and Space Administration. What Is Synthetic Aperture Radar? 2022. Available online: https://www.earthdata.nasa.gov/learn/backgrounders/what-is-sar (accessed on 1 December 2022).
- Long, S.; Fatoyinbo, T.E.; Policelli, F. Flood extent mapping for Namibia using change detection and thresholding with SAR. Environ. Res. Lett. 2014, 9, 035002. [Google Scholar] [CrossRef]
- Tsyganskaya, V.; Martinis, S.; Marzahn, P.; Ludwig, R. SAR-based detection of flooded vegetation–a review of characteristics and approaches. Int. J. Remote Sens. 2018, 39, 2255–2293. [Google Scholar] [CrossRef]
- Yang, H.; Wang, H.; Lu, J.; Zhou, Z.; Feng, Q.; Wu, Y. Full lifecycle monitoring on drought-converted catastrophic flood using sentinel-1 sar: A case study of poyang lake region during summer 2020. Remote Sens. 2021, 13, 3485. [Google Scholar] [CrossRef]
- Eraku, S.; Akase, N.; Koem, S. Analyzing Limboto lake inundation area using landsat 8 OLI imagery and rainfall data. J. Phys. Conf. Ser. 2019, 1317, 012111. [Google Scholar] [CrossRef]
- Febrianti, N.; Yulianto, F.; Arda, M.; Haryani, N. Flood inundation mapping using synthetic aperture radar data single polarization: A case study of flood in lake tempe, South Sulawesi-Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2020, 572, 012028. [Google Scholar] [CrossRef]
- Kanematsu Corporation Japan Weather Association. FY 2018 Operational Feasibility Study Project towards Overseas Deployment of High-Quality Infrastructure (Republic of Indonesia: Feasibility Study Project for Flood Disaster Preparedness Planning Assuming the Use of Flood Simulator and Weather Radar in the Province of Gorontalo). 2019. Available online: https://www.meti.go.jp/meti_lib/report/H30FY/000154.pdf (accessed on 1 December 2022).
- Planet Labs. PlanetScope. 2022. Available online: https://developers.planet.com/docs/data/planetscope/#:~:text=lastupdated%3AJune01%2C2022,200millionkm2%2Fday (accessed on 1 December 2022).
- Subehi, L.; Wibowo, H.; Jung, K. Characteristics of rainfall-discharge and water quality at Limboto Lake, Gorontalo, Indonesia. J. Eng. Technol. Sci. 2016, 48, 288–300. [Google Scholar] [CrossRef] [Green Version]
- Lamangida, T.; Akib, H.; Malago, J. Management of Public Assets Study Management of Lake Limboto Gorontalo District. IOSR J. Humanit. Soc. Sci. 2018, 23, 92–99. [Google Scholar] [CrossRef]
- BPS-Statistics Indonesia. STATISTIC INDONESIA. 2020. Available online: https://www.bps.go.id/ (accessed on 1 December 2022).
- ASEAN Disaster Information Network. Indonesia, Flooding in Gorontalo Regency, Gorontalo. 2022. Available online: https://adinet.ahacentre.org/report/indonesia-flooding-in-gorontalo-regency-gorontalo-20211106 (accessed on 1 December 2022).
- Planet Labs. Planet Explore. 2022. Available online: https://www.planet.com/expl (accessed on 1 December 2022).
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- European Space Agency. Worldwide Land Cover Mapping. 2022. Available online: https://esa-worldcover.org/en (accessed on 1 December 2022).
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man. Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
Instrument (Sensor) | Acquisition Date | Spatial Res. (m) | Temporal Res. (Days) | Operational Mode and Pass (Polarization) | Space Agency |
---|---|---|---|---|---|
Landsat3 (TM) | 23 May 1978 | 30–60 | 16 | USGS | |
Landsat7 (ETM+) | 14 April 2002, 16 May 2002 | 15–30 | |||
Landsat8 (OLI) | 10 April 2015, 12, 28 May 2015 | 15–30 | |||
23 April 2020, 9, 25 May 2020 | |||||
Planet smallsat | 7 November 2021 | 3 | 1 | Planet | |
(SuperDove) | 13 November 2021 | Scope | |||
23 November 2021 | |||||
12 December 2021 | |||||
27 January 2022 | |||||
Sentinel-1(C-SAR) | 28 July 2021 | 10 | 12 | Interferometric Wide | ESA |
13 November 2021 | swath mode | ||||
25 November 2021 | Descending | ||||
7 December 2021 | (vertical–vertical) | ||||
19 December 2021 | |||||
31 December 2021 | |||||
12 January 2022 | |||||
24 January 2022 | |||||
5 February 2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimijima, S.; Nagai, M. High Spatiotemporal Flood Monitoring Associated with Rapid Lake Shrinkage Using Planet Smallsat and Sentinel-1 Data. Remote Sens. 2023, 15, 1099. https://doi.org/10.3390/rs15041099
Kimijima S, Nagai M. High Spatiotemporal Flood Monitoring Associated with Rapid Lake Shrinkage Using Planet Smallsat and Sentinel-1 Data. Remote Sensing. 2023; 15(4):1099. https://doi.org/10.3390/rs15041099
Chicago/Turabian StyleKimijima, Satomi, and Masahiko Nagai. 2023. "High Spatiotemporal Flood Monitoring Associated with Rapid Lake Shrinkage Using Planet Smallsat and Sentinel-1 Data" Remote Sensing 15, no. 4: 1099. https://doi.org/10.3390/rs15041099
APA StyleKimijima, S., & Nagai, M. (2023). High Spatiotemporal Flood Monitoring Associated with Rapid Lake Shrinkage Using Planet Smallsat and Sentinel-1 Data. Remote Sensing, 15(4), 1099. https://doi.org/10.3390/rs15041099