Predicting Short-Term Deformation in the Central Valley Using Machine Learning
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Area of Study
2.2. Principal Component Analysis
2.3. GRACE/GRACE-FO and GLDAS Data
2.4. InSAR Time Series and Baseline Model
2.5. CNN Model
2.6. LSTM Model
3. Results
3.1. PCA Study
3.2. GRACE/GLDAS Study
3.3. Machine Learning Study
4. Discussion
4.1. Eigenimages Analysis and GRACE Findings
4.2. Machine Learning Findings
4.3. Limitations
4.4. Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
InSAR | Interferometric Synthetic Aperture Radar |
PCA | Principal Component Analysis |
GRACE | Gravity Recovery and Climate Experiment |
GRACE-FO | Gravity Recovery and Climate Experiment-Follow On |
GLDAS | Global Land Data Assimilation System |
LSTM | Long Short-Term Memory |
CNN | Convolutional Neural Network |
LOS | Line-of-Sight |
MSE | Mean Squared Error |
References
- Erban, L.E.; Gorelick, S.M.; Zebker, H.A. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environ. Res. Lett. 2014, 9, 084010. [Google Scholar] [CrossRef]
- Holzer, T.L.; Galloway, D.L. Impacts of land subsidence caused by withdrawal of underground fluids in the United States. Humans Geol. Agents 2005, 16, 87–99. [Google Scholar]
- Xue, Y.Q.; Zhang, Y.; Ye, S.J.; Wu, J.C.; Li, Q.F. Land subsidence in China. Environ. Geol. 2005, 48, 713–720. [Google Scholar] [CrossRef]
- Nolan, B.T.; Gronberg, J.M.; Faunt, C.C.; Eberts, S.M.; Belitz, K. Modeling nitrate at domestic and public-supply well depths in the Central Valley, California. Environ. Sci. Technol. 2014, 48, 5643–5651. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Chen, J.; Zhang, X. Monitoring the land subsidence area in a coastal urban area with InSAR and GNSS. Sensors 2019, 19, 3181. [Google Scholar] [CrossRef] [Green Version]
- Galloway, D.L.; Burbey, T.J. Regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Bürgmann, R.; Rosen, P.A.; Fielding, E.J. Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annu. Rev. Earth Planet. Sci. 2000, 28, 169–209. [Google Scholar] [CrossRef]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Monti-Guarnieri, A.V.; Prati, C.M.; Rocca, F.; Massonnet, D. INSAR Principles B; ESA Publications: Paris, France, 2007. [Google Scholar]
- Kang, Z.; Bettadpur, S.; Nagel, P.; Save, H.; Poole, S.; Pie, N. GRACE-FO precise orbit determination and gravity recovery. J. Geod. 2020, 94, 1–17. [Google Scholar] [CrossRef]
- Ciracì, E.; Velicogna, I.; Swenson, S. Continuity of the mass loss of the world’s glaciers and ice caps from the GRACE and GRACE Follow-On missions. Geophys. Res. Lett. 2020, 47, e2019GL086926. [Google Scholar] [CrossRef]
- Tapley, B.D.; Watkins, M.M.; Flechtner, F.; Reigber, C.; Bettadpur, S.; Rodell, M.; Sasgen, I.; Famiglietti, J.S.; Landerer, F.W.; Chambers, D.P.; et al. Contributions of GRACE to understanding climate change. Nat. Clim. Chang. 2019, 9, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Kornfeld, R.P.; Arnold, B.W.; Gross, M.A.; Dahya, N.T.; Klipstein, W.M.; Gath, P.F.; Bettadpur, S. GRACE-FO: The gravity recovery and climate experiment follow-on mission. J. Spacecr. Rocket. 2019, 56, 931–951. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Lo, M.; Ho, S.L.; Bethune, J.; Anderson, K.; Syed, T.H.; Swenson, S.C.; de Linage, C.R.; Rodell, M. Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Faunt, C.C.; Hanson, R.T.; Belitz, K.; Schmid, W.; Predmore, S.P.; Rewis, D.; McPherson, K. Chapter C. Numerical model of the hydrologic landscape and groundwater flow in California’s Central Valley. In Groundwater Availability of the Central Valley Aquifer of California; US Geological Survey: Reston, VA, USA, 2009. [Google Scholar]
- Thomas, B.F.; Famiglietti, J.S.; Landerer, F.W.; Wiese, D.N.; Molotch, N.P.; Argus, D.F. GRACE groundwater drought index: Evaluation of California Central Valley groundwater drought. Remote Sens. Environ. 2017, 198, 384–392. [Google Scholar] [CrossRef]
- Poland, J.F.; Lofgren, B.; Ireland, R.; Pugh, R. Land Subsidence, in the San Joaquin Valley, California, as of 1972: A History of Land Subsidence Caused by Water-Level Decline in the San Joaquin Valley, from the 1920’s to 1972; US Government Printing Office: Washington, DC, USA, 1975; Volume 437. [Google Scholar]
- Lawson, A.C. Subsidence by thrusting: The discussion of a hypothetical fault. Bull. Geol. Soc. Am. 1939, 50, 1381–1394. [Google Scholar] [CrossRef]
- Ingerson, I.M. The hydrology of the Southern San Joaquin Valley, California, and its relation to imported water-supplies. Eos Trans. Am. Geophys. Union 1941, 22, 20–45. [Google Scholar] [CrossRef]
- Lofgren, B.E.; Klausing, R.L. Land Subsidence Due to Ground-Water Withdrawal, Tulare-Wasco Area, California; US Government Printing Office: Washington, DC, USA, 1969; Volume 437. [Google Scholar]
- Ireland, R.L.; Poland, J.F.; Riley, F.S. Land Subsidence in the San Joaquin Valley, California, as of 1980; US Government Printing Office: Washington, DC, USA, 1984; Volume 437. [Google Scholar]
- Wilson, A.M.; Gorelick, S. The effects of pulsed pumping on land subsidence in the Santa Clara Valley, California. J. Hydrol. 1996, 174, 375–396. [Google Scholar] [CrossRef]
- Aobpaet, A.; Cuenca, M.C.; Hooper, A.; Trisirisatayawong, I. InSAR time-series analysis of land subsidence in Bangkok, Thailand. Int. J. Remote Sens. 2013, 34, 2969–2982. [Google Scholar] [CrossRef]
- Gao, M.; Gong, H.; Chen, B.; Li, X.; Zhou, C.; Shi, M.; Si, Y.; Chen, Z.; Duan, G. Regional land subsidence analysis in eastern Beijing plain by insar time series and wavelet transforms. Remote Sens. 2018, 10, 365. [Google Scholar] [CrossRef] [Green Version]
- Aimaiti, Y.; Yamazaki, F.; Liu, W. Multi-sensor InSAR analysis of progressive land subsidence over the Coastal City of Urayasu, Japan. Remote Sens. 2018, 10, 1304. [Google Scholar] [CrossRef] [Green Version]
- Amelung, F.; Galloway, D.L.; Bell, J.W.; Zebker, H.A.; Laczniak, R.J. Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology 1999, 27, 483–486. [Google Scholar] [CrossRef]
- Chaussard, E.; Wdowinski, S.; Cabral-Cano, E.; Amelung, F. Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens. Environ. 2014, 140, 94–106. [Google Scholar] [CrossRef]
- Motagh, M.; Djamour, Y.; Walter, T.R.; Wetzel, H.U.; Zschau, J.; Arabi, S. Land subsidence in Mashhad Valley, northeast Iran: Results from InSAR, levelling and GPS. Geophys. J. Int. 2007, 168, 518–526. [Google Scholar] [CrossRef]
- Libbrecht, M.W.; Noble, W.S. Machine learning applications in genetics and genomics. Nat. Rev. Genet. 2015, 16, 321–332. [Google Scholar] [CrossRef] [Green Version]
- Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 2015, 13, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Kan, A. Machine learning applications in cell image analysis. Immunol. Cell Biol. 2017, 95, 525–530. [Google Scholar] [CrossRef]
- Kwekha-Rashid, A.S.; Abduljabbar, H.N.; Alhayani, B. Coronavirus disease (COVID-19) cases analysis using machine-learning applications. Appl. Nanosci. 2021, 1–13. [Google Scholar] [CrossRef]
- Brengman, C.M.; Barnhart, W.D. Identification of surface deformation in InSAR using machine learning. Geochem. Geophys. Geosystems 2021, 22, e2020GC009204. [Google Scholar] [CrossRef]
- Anantrasirichai, N.; Biggs, J.; Albino, F.; Hill, P.; Bull, D. Application of machine learning to classification of volcanic deformation in routinely generated InSAR data. J. Geophys. Res. Solid Earth 2018, 123, 6592–6606. [Google Scholar] [CrossRef] [Green Version]
- Hakim, W.L.; Achmad, A.R.; Lee, C.W. Land subsidence susceptibility mapping in jakarta using functional and meta-ensemble machine learning algorithm based on time-series InSAR data. Remote Sens. 2020, 12, 3627. [Google Scholar] [CrossRef]
- Karevan, Z.; Suykens, J.A. Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Netw. 2020, 125, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liang, X.; Zhiyuli, A.; Zhang, S.; Xu, R.; Wu, B. AT-LSTM: An attention-based LSTM model for financial time series prediction. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 569, p. 052037. [Google Scholar]
- Yadav, A.; Jha, C.; Sharan, A. Optimizing LSTM for time series prediction in Indian stock market. Procedia Comput. Sci. 2020, 167, 2091–2100. [Google Scholar] [CrossRef]
- Kim, S.; Kang, M. Financial series prediction using Attention LSTM. arXiv 2019, arXiv:1902.10877. [Google Scholar]
- Chen, Y.; He, Y.; Zhang, L.; Chen, Y.; Pu, H.; Chen, B.; Gao, L. Prediction of InSAR deformation time-series using a long short-term memory neural network. Int. J. Remote Sens. 2021, 42, 6919–6942. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Y.; Wei, J.; Wu, H.; Deng, M. HLSTM: Heterogeneous Long Short-Term Memory Network for Large-Scale InSAR Ground Subsidence Prediction. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8679–8688. [Google Scholar] [CrossRef]
- Li, H.; Zhu, L.; Dai, Z.; Gong, H.; Guo, T.; Guo, G.; Wang, J.; Teatini, P. Spatiotemporal modeling of land subsidence using a geographically weighted deep learning method based on PS-InSAR. Sci. Total Environ. 2021, 799, 149244. [Google Scholar] [CrossRef]
- Bandy, O.L.; Arnal, R.E. Middle Tertiary basin development, San Joaquin Valley, California. Geol. Soc. Am. Bull. 1969, 80, 783–820. [Google Scholar] [CrossRef]
- Smith, D.A.; Ralls, K.; Cypher, B.L.; Clark, H.O., Jr.; Kelly, P.A.; Williams, D.F.; Maldonado, J.E. Relative abundance of Endangered San Joaquin kit foxes (Vulpes macrotis mutica) based on scat–detection dog surveys. Southwest. Nat. 2006, 51, 210–219. [Google Scholar] [CrossRef]
- Galloway, D.; Riley, F.S. San Joaquin Valley, California. Land Subsid. United States US Geol. Surv. Circ. 1999, 1182, 23–34. [Google Scholar]
- Visser, A.; Moran, J.E.; Singleton, M.J.; Esser, B.K. Importance of river water recharge to the San Joaquin Valley groundwater system. Hydrol. Process. 2018, 32, 1202–1213. [Google Scholar] [CrossRef]
- Haugen, E.A.; Jurgens, B.C.; Arroyo-Lopez, J.A.; Bennett, G.L. Groundwater development leads to decreasing arsenic concentrations in the San Joaquin Valley, California. Sci. Total Environ. 2021, 771, 145223. [Google Scholar] [CrossRef]
- Jeanne, P.; Farr, T.G.; Rutqvist, J.; Vasco, D.W. Role of agricultural activity on land subsidence in the San Joaquin Valley, California. J. Hydrol. 2019, 569, 462–469. [Google Scholar] [CrossRef] [Green Version]
- Faunt, C.C.; Sneed, M.; Traum, J.; Brandt, J.T. Water availability and land subsidence in the Central Valley, California, USA. Hydrogeol. J. 2016, 24, 675–684. [Google Scholar] [CrossRef]
- Scudiero, E.; Skaggs, T.H.; Corwin, D.L. Regional scale soil salinity evaluation using Landsat 7, western San Joaquin Valley, California, USA. Geoderma Reg. 2014, 2, 82–90. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Friston, K.; Phillips, J.; Chawla, D.; Büchel, C. Revealing interactions among brain systems with nonlinear PCA. Hum. Brain Mapp. 1999, 8, 92–97. [Google Scholar] [CrossRef]
- Hogenson, K.; Arko, S.A.; Buechler, B.; Hogenson, R.; Herrmann, J.; Geiger, A. Hybrid Pluggable Processing Pipeline (HyP3): A cloud-based infrastructure for generic processing of SAR data. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 13 December 2016; Volume 2016, pp. IN21B–1740. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Cooley, S.S.; Landerer, F. Gravity Recovery and Climate Experiment Follow-on (GRACE-FO) Level-3 Data Product User Handbook; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2019; 57p. [Google Scholar]
- Rodell, M.; Houser, P.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Morishita, Y.; Lazecky, M.; Wright, T.J.; Weiss, J.R.; Elliott, J.R.; Hooper, A. LiCSBAS: An open-source InSAR time series analysis package integrated with the LiCSAR automated Sentinel-1 InSAR processor. Remote Sens. 2020, 12, 424. [Google Scholar] [CrossRef] [Green Version]
- Morishita, Y. Nationwide urban ground deformation monitoring in Japan using Sentinel-1 LiCSAR products and LiCSBAS. Prog. Earth Planet. Sci. 2021, 8, 1–23. [Google Scholar] [CrossRef]
- Lazeckỳ, M.; Spaans, K.; González, P.J.; Maghsoudi, Y.; Morishita, Y.; Albino, F.; Elliott, J.; Greenall, N.; Hatton, E.; Hooper, A.; et al. LiCSAR: An automatic InSAR tool for measuring and monitoring tectonic and volcanic activity. Remote Sens. 2020, 12, 2430. [Google Scholar] [CrossRef]
- Wright, T.; Gonzalez, P.; Walters, R.; Hatton, E.; Spaans, K.; Hooper, A. LiCSAR: Tools for automated generation of Sentinel-1 frame interferograms. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 13 December 2016; Volume 2016, pp. G23A–1037. [Google Scholar]
- Lawrence, B.N.; Bennett, V.L.; Churchill, J.; Juckes, M.; Kershaw, P.; Pascoe, S.; Pepler, S.; Pritchard, M.; Stephens, A. Storing and manipulating environmental big data with JASMIN. In Proceedings of the 2013 IEEE International Conference on Big Data, Santa Clara, CA, USA, 6–9 October 2013; pp. 68–75. [Google Scholar]
- Zhao, L.; Bai, H.; Wang, A.; Zhao, Y. Multiple description convolutional neural networks for image compression. IEEE Trans. Circuits Syst. Video Technol. 2018, 29, 2494–2508. [Google Scholar] [CrossRef] [Green Version]
- Schlegl, T.; Waldstein, S.M.; Vogl, W.D.; Schmidt-Erfurth, U.; Langs, G. Predicting semantic descriptions from medical images with convolutional neural networks. In International Conference on Information Processing in Medical Imaging; Springer: Berlin/Heidelberg, Germany, 2015; pp. 437–448. [Google Scholar]
- Fukuoka, R.; Suzuki, H.; Kitajima, T.; Kuwahara, A.; Yasuno, T. Wind speed prediction model using LSTM and 1D-CNN. J. Signal Process. 2018, 22, 207–210. [Google Scholar] [CrossRef] [Green Version]
- Hussain, D.; Hussain, T.; Khan, A.A.; Naqvi, S.A.A.; Jamil, A. A deep learning approach for hydrological time-series prediction: A case study of Gilgit river basin. Earth Sci. Inform. 2020, 13, 915–927. [Google Scholar] [CrossRef]
- Hatami, N.; Gavet, Y.; Debayle, J. Classification of time-series images using deep convolutional neural networks. In Proceedings of the Tenth International Conference on Machine Vision (ICMV 2017), Vienna, Austria, 13–15 November 2017; SPIE: Bellingham, WA, USA, 2018; Volume 10696, pp. 242–249. [Google Scholar]
- Tang, W.; Long, G.; Liu, L.; Zhou, T.; Jiang, J.; Blumenstein, M. Rethinking 1d-cnn for time series classification: A stronger baseline. arXiv 2020, arXiv:2002.10061. [Google Scholar]
- Eren, L.; Ince, T.; Kiranyaz, S. A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier. J. Signal Process. Syst. 2019, 91, 179–189. [Google Scholar] [CrossRef]
- Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the IEEE 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6. [Google Scholar]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef] [Green Version]
- O’Shea, K.; Nash, R. An introduction to convolutional neural networks. arXiv 2015, arXiv:1511.08458. [Google Scholar]
- Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving neural networks by preventing co-adaptation of feature detectors. arXiv 2012, arXiv:1207.0580. [Google Scholar]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. {TensorFlow}: A system for {Large-Scale} machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
- Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef] [Green Version]
- Landerer, F.W.; Swenson, S. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Landerer, N.F. CSR TELLUS GRACE Level-3 Monthly Land Water-Equivalent-Thickness Surface Mass Anomaly Release 6.0 version 04 in netCDF/ASCII/GeoTIFF Formats. 2021. Available online: https://podaac.jpl.nasa.gov/dataset/TELLUS_GRAC_L3_CSR_RL06_LND_v04 (accessed on 12 September 2022).
- Li, B.; Beaudoing, H.; Rodell, M. GLDAS Catchment Land Surface Model L4 Daily 0.25 × 0.25 Degree GRACE-DA1 V2.2. 2020. Available online: https://disc.gsfc.nasa.gov/datasets/GLDAS_CLSM025_DA1_D_2.2/summary (accessed on 18 September 2022).
- Acker, J.G.; Leptoukh, G. Online analysis enhances use of NASA earth science data. Eos Trans. Am. Geophys. Union 2007, 88, 14–17. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Wang, G.; Li, P.; Li, Z.; Liang, C.; Wang, H. Coastal subsidence detection and characterization caused by brine mining over the Yellow River Delta using time series InSAR and PCA. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103077. [Google Scholar] [CrossRef]
- Chen, Y.; Tan, K.; Yan, S.; Zhang, K.; Zhang, H.; Liu, X.; Li, H.; Sun, Y. Monitoring land surface displacement over Xuzhou (China) in 2015–2018 through PCA-based correction applied to SAR interferometry. Remote Sens. 2019, 11, 1494. [Google Scholar] [CrossRef] [Green Version]
- Radman, A.; Akhoondzadeh, M.; Hosseiny, B. Integrating InSAR and deep-learning for modeling and predicting subsidence over the adjacent area of Lake Urmia, Iran. GIScience Remote Sens. 2021, 58, 1413–1433. [Google Scholar] [CrossRef]
- Yun, K.; Adams, K.; Reager, J.; Liu, Z.; Chavez, C.; Turmon, M.; Lu, T. Remote estimation of geologic composition using interferometric synthetic-aperture radar in California’s Central Valley. arXiv 2022, arXiv:2212.04813. [Google Scholar]
- Osmanoğlu, B.; Sunar, F.; Wdowinski, S.; Cabral-Cano, E. Time series analysis of InSAR data: Methods and trends. ISPRS J. Photogramm. Remote Sens. 2016, 115, 90–102. [Google Scholar] [CrossRef]
- Neves, M.C.; Nunes, L.M.; Monteiro, J.P. Evaluation of GRACE data for water resource management in Iberia: A case study of groundwater storage monitoring in the Algarve region. J. Hydrol. Reg. Stud. 2020, 32, 100734. [Google Scholar] [CrossRef]
Interferogram Number | Image Date | Absolute Orbit Number | (m) | Temporal Baseline (Days) |
---|---|---|---|---|
1 | 16 May 2019 | 16,263 | 36.16 | 12 |
2 | 28 May 2019 | 16,438 | 0.80 | 24 |
3 | 9 June 2019 | 16,613 | 4.34 | 36 |
4 | 21 June 2019 | 16,788 | 14.71 | 48 |
5 | 3 July 2019 | 16,963 | 32.44 | 60 |
6 | 15 July 2019 | 17,138 | 37.30 | 72 |
7 | 27 July 2019 | 17,313 | 45.79 | 84 |
8 | 8 August 2019 | 17,488 | 74.57 | 96 |
9 | 20 August 2019 | 17,663 | 10.04 | 108 |
10 | 1 September 2019 | 17,838 | 83.41 | 120 |
11 | 13 September 2019 | 18,013 | 9.62 | 132 |
12 | 25 September 2019 | 18,188 | 35.49 | 144 |
13 | 7 October 2019 | 18,363 | 40.44 | 156 |
14 | 19 October 2019 | 18,538 | 31.57 | 168 |
15 | 12 November 2019 | 18,888 | 72.28 | 192 |
16 | 24 November 2019 | 19,063 | 71.72 | 204 |
17 | 6 December 2019 | 19,238 | 12.76 | 216 |
18 | 18 December 2019 | 19,413 | 17.19 | 228 |
19 | 30 December 2019 | 19,588 | 22.84 | 240 |
20 | 11 January 2020 | 19,763 | 90.51 | 252 |
21 | 23 January 2020 | 19,938 | 65.01 | 264 |
22 | 4 February 2020 | 20,113 | 22.62 | 276 |
23 | 16 February 2020 | 20,288 | 28.68 | 288 |
24 | 28 February 2020 | 20,463 | 64.78 | 300 |
25 | 11 March 2020 | 20,638 | 15.26 | 312 |
26 | 23 March 2020 | 20,813 | 25.97 | 324 |
27 | 4 April 2020 | 20,988 | 10.65 | 336 |
28 | 16 April 2020 | 21,163 | 51.48 | 348 |
29 | 28 April 2020 | 21,338 | 65.07 | 360 |
30 | 10 May 2020 | 21,513 | 5.16 | 372 |
31 | 22 May 2020 | 21,688 | 51.22 | 384 |
32 | 3 June 2020 | 21,863 | 31.26 | 396 |
33 | 15 June 2020 | 22,038 | 19.43 | 408 |
34 | 27 June 2020 | 22,213 | 21.73 | 420 |
35 | 9 July 2020 | 22,388 | 59.76 | 432 |
36 | 21 July 2020 | 22,563 | 87.06 | 444 |
37 | 2 August 2020 | 22,738 | 13.17 | 456 |
38 | 14 August 2020 | 22,913 | 83.75 | 468 |
39 | 7 September 2020 | 23,263 | 27.15 | 492 |
40 | 19 September 2020 | 23,438 | 62.61 | 504 |
41 | 1 October 2020 | 23,613 | 97.90 | 516 |
42 | 13 October 2020 | 23,788 | 0.71 | 528 |
43 | 25 October 2020 | 23,963 | 28.76 | 540 |
44 | 6 November 2020 | 24,138 | 9.21 | 552 |
45 | 18 November 2020 | 24,313 | 8.28 | 564 |
46 | 30 November 2020 | 24,488 | 100.42 | 576 |
47 | 12 December 2020 | 24,663 | 94.06 | 588 |
48 | 24 December 2020 | 24,838 | 89.79 | 600 |
Principal Component | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Explained Variance (%) | 67.3 | 13.4 | 5.8 | 2.8 | 2.2 | 1.4 |
Baseline | CNN | LSTM | |
---|---|---|---|
Train MSE | 11.89 | 0.64 ± 0.12 | 0.47 ± 0.13 |
Test MSE | 19.85 | 0.86 ± 0.15 | 0.72 ± 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yazbeck, J.; Rundle, J.B. Predicting Short-Term Deformation in the Central Valley Using Machine Learning. Remote Sens. 2023, 15, 449. https://doi.org/10.3390/rs15020449
Yazbeck J, Rundle JB. Predicting Short-Term Deformation in the Central Valley Using Machine Learning. Remote Sensing. 2023; 15(2):449. https://doi.org/10.3390/rs15020449
Chicago/Turabian StyleYazbeck, Joe, and John B. Rundle. 2023. "Predicting Short-Term Deformation in the Central Valley Using Machine Learning" Remote Sensing 15, no. 2: 449. https://doi.org/10.3390/rs15020449
APA StyleYazbeck, J., & Rundle, J. B. (2023). Predicting Short-Term Deformation in the Central Valley Using Machine Learning. Remote Sensing, 15(2), 449. https://doi.org/10.3390/rs15020449