Measuring Urban Poverty Spatial by Remote Sensing and Social Sensing Data: A Fine-Scale Empirical Study from Zhengzhou
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. Social Sensing Data
2.2.2. Remote Sensing Data
3. Methods
3.1. Construction of Measurement Indicators
3.1.1. Unit Rent
3.1.2. Block Vitality
3.1.3. Green Coverage
3.1.4. Accessibility
3.2. Modeling Urban Poverty Spaces
3.3. Self-Organizing Map (SOM) Clustering
- (1)
- Initialize the SOM. Each node randomly initializes its parameters. The number of parameters for each node is the same as the dimension of the input.
- (2)
- Finding the Best Matching Unit (BMU). Iterate through each node in the competing layer and calculate the similarity between them, and select the node with the smallest distance as the (BMU). The similarity is usually defaulted to Euclidean distance, which can be calculated below:
- (3)
- Learning Rate. The learning rate of the SOM decays as the number of iterations increases.
- (4)
- Neighborhood Function. The neighborhood function is used to determine the influence of the best matching unit on its nearest neighbor nodes.
- (5)
- Neighborhood Distance Weight. The neighborhood distance weights indicate the number of iterations and the distance between BMU and other nodes. The distance between BMU and nodes is Euclidean distance by default. Therefore, the neighborhood distance weights are defined as:
- (6)
- Adapting Weights. The weights of the SOM are adjusted according to the learning rate and the neighborhood distance weights.
3.4. SI Validation
4. Results
4.1. Structural Features of Urban Poverty Spaces
4.2. Classification Features of Urban Poverty Space
5. Discussions
5.1. Model Comparison and Validation
5.2. The Role of SI Methods in Mapping Urban Poverty Spatial
5.3. Strengths and Weaknesses
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wratten, E. Conceptualizing urban poverty. Environ. Urban. 1995, 7, 11–36. [Google Scholar] [CrossRef]
- Klopp, J.M.; Petretta, D.L. The urban sustainable development goal: Indicators, complexity and the politics of measuring cities. Cities 2017, 63, 92–97. [Google Scholar] [CrossRef]
- Lucci, P.; Bhatkal, T.; Khan, A. Are we underestimating urban poverty? World Dev. 2018, 103, 297–310. [Google Scholar] [CrossRef]
- UN-Habitat. UN Human Settlements Programme, Global Urban Indicators Database, Nairobi, Info on Population in Slums (% of Urban Population); United Nations Human Settlement Programme: Nairobi, Kenya, 2016.
- Des, U. World Economic and Social Survey 2013: Sustainable Development Challenges; United Nations, Department of Economic Social Affairs: New York, NY, USA, 2013; pp. 123–136.
- Un, D. Revision of the World Urbanization Prospects; United Nations Department of Economics and Social Affairs, Population Division: New York, NY, USA, 2014.
- Padda, I.U.; Hameed, A. Estimating multidimensional poverty levels in rural Pakistan: A contribution to sustainable development policies. J. Clean. Prod. 2018, 197, 435–442. [Google Scholar] [CrossRef]
- Neamtu, B. Measuring the Social Sustainability of Urban Communities: The Role of Local Authorities. Transylv. Rev. Adm. Sci. 2012, 8, 112–127. [Google Scholar]
- Li, X.; Kleinhans, R.; van Ham, M. Shantytown redevelopment projects: State-led redevelopment of declining neighbourhoods under market transition in Shenyang, China. Cities 2018, 73, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Xing, H.F.; Yuan, Y.; Wong, M.S.; Fan, K.X. Sensing urban poverty: From the perspective of human perception-based greenery and open-space landscapes. Comput. Environ. Urban 2020, 84, 101544. [Google Scholar] [CrossRef]
- Noble, M.; Wright, G.; Smith, G.; Dibben, C. Measuring multiple deprivation at the small-area level. Environ. Plann. A 2006, 38, 169–185. [Google Scholar] [CrossRef]
- Undp. Human Development Report 1997; Oxford University: Oxford, UK, 1997.
- Alkire, S.; Santos, M.E. Acute Multidimensional Poverty: A New Index for Developing Countries; University of Oxford: Oxford, UK, 2010. [Google Scholar]
- Langlois, A.; Kitchen, P. Identifying and measuring dimensions of urban deprivation in Montreal: An analysis of the 1996 census data. Urban Stud. 2001, 38, 119–139. [Google Scholar] [CrossRef]
- Mitlin, D.; Satterthwaite, D. Urban Poverty in the Global South: Scale and Nature, 1st ed.; Routledge: London, UK, 2012. [Google Scholar]
- Sabry, S. How poverty is underestimated in Greater Cairo, Egypt. Environ. Urban. 2010, 22, 523–541. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, P. Detecting Informal Settlements from IKONOS Image Data Using Methods of Object Oriented Image Analysis-an Example from Cape Town (South Africa). In Proceedings of the Remote Sensing of Urban Areas/Regensburger Geographische Schriften, Regensburg, Germany, 12–14 September 2001; pp. 107–118. [Google Scholar]
- Niebergall, S.; Loew, A.; Mauser, W. Integrative assessment of informal settlements using VHR remote sensing data—The Delhi case study. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2008, 1, 193–205. [Google Scholar] [CrossRef]
- Duque, J.C.; Patino, J.E.; Ruiz, L.A.; Pardo-Pascual, J.E. Measuring intra-urban poverty using land cover and texture metrics derived from remote sensing data. Landsc. Urban Plan. 2015, 135, 11–21. [Google Scholar] [CrossRef]
- Kit, O.; Ludeke, M.; Reckien, D. Texture-based identification of urban slums in Hyderabad, India using remote sensing data. Appl. Geogr. 2012, 32, 660–667. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Sutton, P.C.; Ghosh, T.; Tuttle, B.T.; Baugh, K.E.; Bhaduri, B.; Bright, E. A global poverty map derived from satellite data. Comput. Geosci. 2009, 35, 1652–1660. [Google Scholar] [CrossRef]
- Li, G.E.; Cai, Z.L.; Liu, X.J.; Liu, J.; Su, S.L. A comparison of machine learning approaches for identifying high-poverty counties: Robust features of DMSP/OLS night-time light imagery. Int. J. Remote Sens. 2019, 40, 5716–5736. [Google Scholar] [CrossRef]
- Keola, S.; Andersson, M.; Hall, O. Monitoring Economic Development from Space: Using Nighttime Light and Land Cover Data to Measure Economic Growth. World Dev. 2015, 66, 322–334. [Google Scholar] [CrossRef]
- Ebener, S.; Murray, C.; Tandon, A.; Elvidge, C.C. From wealth to health: Modelling the distribution of income per capita at the sub-national level using night-time light imagery. Int. J. Health Geogr. 2005, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Stark, T.; Wurm, M.; Zhu, X.X.; Taubenbock, H. Satellite-Based Mapping of Urban Poverty With Transfer-Learned Slum Morphologies. IEEE J.-Stars 2020, 13, 5251–5263. [Google Scholar] [CrossRef]
- Niu, T.; Chen, Y.M.; Yuan, Y. Measuring urban poverty using multi -source data and a random forest algorithm: A case study in Guangzhou. Sustain. Cities Soc. 2020, 54, 102014. [Google Scholar] [CrossRef]
- Ibrahim, M.R.; Haworth, J.; Cheng, T. URBAN-i: From urban scenes to mapping slums, transport modes, and pedestrians in cities using deep learning and computer vision. Environ. Plan B-Urban 2021, 48, 76–93. [Google Scholar] [CrossRef] [Green Version]
- Blumenstock, J.; Cadamuro, G.; On, R. Predicting poverty and wealth from mobile phone metadata. Science 2015, 350, 1073–1076. [Google Scholar] [CrossRef] [PubMed]
- Ta, N.; Kwan, M.P.; Lin, S.T.; Zhu, Q.Y. The activity space-based segregation of migrants in suburban Shanghai. Appl. Geogr. 2021, 133, 102499. [Google Scholar] [CrossRef]
- Goel, E.; Abhilasha, E.; Goel, E.; Abhilasha, E. Random forest: A review. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2017, 7, 251–257. [Google Scholar] [CrossRef]
- Wong, D.F.K.; Li, C.Y.; Song, H.X. Rural migrant workers in urban China: Living a marginalised life. Int. J. Soc. Welf. 2007, 16, 32–40. [Google Scholar] [CrossRef]
- Su, S.L.; Pi, J.H.; Xie, H.; Cai, Z.L.; Weng, M. Community deprivation, walkability, and public health: Highlighting the social inequalities in land use planning for health promotion. Land Use Policy 2017, 67, 315–326. [Google Scholar] [CrossRef]
- Chen, Y.M.; Liu, X.P.; Li, X.; Liu, Y.L.; Xu, X.C. Mapping the fine-scale spatial pattern of housing rent in the metropolitan area by using online rental listings and ensemble learning. Appl. Geogr. 2016, 75, 200–212. [Google Scholar] [CrossRef]
- Benevenuto, R.; Caulfield, B. Measuring access to urban centres in rural Northeast Brazil: A spatial accessibility poverty index. J. Transp. Geogr. 2020, 82, 102553. [Google Scholar] [CrossRef]
- Yildiz, S.; Kivrak, S.; Gultekin, A.B.; Arslan, G. Built environment design-social sustainability relation in urban renewal. Sustain. Cities Soc. 2020, 60, 102173. [Google Scholar] [CrossRef]
- Leandro-Reguillo, P.; Stuart, A.L. Healthy Urban Environmental Features for Poverty Resilience: The Case of Detroit, USA. Int. J. Environ. Res. Public Health 2021, 18, 6982. [Google Scholar] [CrossRef]
- Heyman, A.V.; Sommervoll, D.E. House prices and relative location. Cities 2019, 95, 102373. [Google Scholar] [CrossRef]
- Jin, X.B.; Long, Y.; Sun, W.; Lu, Y.Y.; Yang, X.H.; Tang, J.X. Process funding Evaluating cities’ vitality and identifying ghost cities in China with emerging geographical data. Cities 2017, 63, 98–109. [Google Scholar] [CrossRef]
- Delclos-Alio, X.; Miralles-Guasch, C. Looking at Barcelona through Jane Jacobs’s eyes: Mapping the basic conditions for urban vitality in a Mediterranean conurbation. Land Use Policy 2018, 75, 505–517. [Google Scholar] [CrossRef]
- Zeng, C.; Song, Y.; He, Q.S.; Shen, F.X. Spatially explicit assessment on urban vitality: Case studies in Chicago and Wuhan. Sustain. Cities Soc. 2018, 40, 296–306. [Google Scholar] [CrossRef]
- La Rosa, D.; Takatori, C.; Shimizu, H.; Privitera, R. A planning framework to evaluate demands and preferences by different social groups for accessibility to urban greenspaces. Sustain. Cities Soc. 2018, 36, 346–362. [Google Scholar] [CrossRef]
- Jennings, V.; Larson, L.; Yun, J. Advancing Sustainability through Urban Green Space: Cultural Ecosystem Services, Equity, and Social Determinants of Health. Int. J. Environ. Res. Public Health 2016, 13, 196. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.; Bramley, G.; Watkins, D. Urban Green Nation: Building the Evidence Base; Heriot-Watt University: Dubai, United Arab Emirates, 2010. [Google Scholar]
- Roe, J.J.; Aspinall, P.A.; Thompson, C.W. Coping with Stress in Deprived Urban Neighborhoods: What Is the Role of Green Space According to Life Stage? Front. Psychol. 2017, 8, 1760. [Google Scholar] [CrossRef] [Green Version]
- Pares, M.; Blanco, I.; Fernandez, C. Facing the Great Recession in Deprived Urban Areas: How Civic Capacity Contributes to Neighborhood Resilience. City Community 2018, 17, 65–86. [Google Scholar] [CrossRef]
- Kuo, F.E. Coping with poverty-Impacts of environment and attention in the inner city. Environ. Behav. 2001, 33, 5–34. [Google Scholar] [CrossRef]
- Zeng, W.; Xiang, L.L.; Zhang, X.L. Research in spatial pattern of accessibility to community service facilities and spatial deprivation of low income communities in Nanjing. Hum. Geogr. 2017, 32, 79–87. [Google Scholar]
- Doust, K. Toward a typology of sustainability for cities. J. Traffic Transp. Eng. 2014, 1, 180–195. [Google Scholar] [CrossRef] [Green Version]
- Wong, W.S.; Chan, E.H. Building Hong Kong: Environmental Considerations; Hong Kong University Press: Hong Kong, China, 2000; Volume 1. [Google Scholar]
- Macintyre, S.; Macdonald, L.; Ellaway, A. Do poorer people have poorer access to local resources and facilities? The distribution of local resources by area deprivation in Glasgow, Scotland. Soc. Sci. Med. 2008, 67, 900–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrington, J.; Farrington, C. Rural accessibility, social inclusion and social justice: Towards conceptualisation. J. Transp. Geogr. 2005, 13, 1–12. [Google Scholar] [CrossRef]
- Brelsford, C.; Lobo, J.; Hand, J.; Bettencourt, L.M.A. Heterogeneity and scale of sustainable development in cities. Proc. Natl. Acad. Sci. USA 2017, 114, 8963–8968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrero, C.; Martinez, R.; Villar, A. Multidimensional Social Evaluation: An Application To the Measurement of Human Development. Rev. Income Wealth 2010, 56, 483–497. [Google Scholar] [CrossRef]
- Riese, F.M.; Keller, S.; Hinz, S. Supervised and Semi-Supervised Self-Organizing Maps for Regression and Classification Focusing on Hyperspectral Data. Remote Sens. 2020, 12, 7. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Liu, J.; Chen, Y.M.; You, Z.Y. Poverty measurement of urban internal space based on remote sensing images and online rental information: A case study of the city core of Guangzhou. Hum. Geogr. 2018, 33, 60–67. [Google Scholar] [CrossRef]
- Fuller, M.; Moore, R. An Analysis of Jane Jacobs’s: The Death and Life of Great American Cities; Macat Library: London, UK, 2017. [Google Scholar]
- UN. High-Level Political Forum on Sustainable Development, Convened under the Auspices of the Economic and Social Council; Report of the Secretary-General; United Nations: New York, NY, USA, 2021.
- Faria, J.R.; Ogura, L.M.; Sachsida, A. Crime in a planned city: The case of Brasília. Cities 2013, 32, 80–87. [Google Scholar] [CrossRef]
- Manoochehri, J. Social sustainability and the housing problem. In Building Sustainable Futures; Springer: Berlin/Heidelberg, Germany, 2016; pp. 325–347. [Google Scholar]
- UN. The Sustainable Development Goals Report 2021; United Nations: New York, NY, USA, 2021.
- Dodman, D.; Archer, D.; Satterthwaite, D. Editorial: Responding to climate change in contexts of urban poverty and informality. Environ. Urban. 2019, 31, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Tao, Y.H.; Kwan, M.P.; Chai, Y.W. Assessing Mobility-Based Real-Time Air Pollution Exposure in Space and Time Using Smart Sensors and GPS Trajectories in Beijing. Ann. Am. Assoc. Geogr. 2020, 110, 434–448. [Google Scholar] [CrossRef]
- Lin, L.; Di, L.P.; Zhang, C.; Guo, L.Y.; Di, Y.H. Remote Sensing of Urban Poverty and Gentrification. Remote Sens. 2021, 13, 4022. [Google Scholar] [CrossRef]
Component | Eigenvalue | Loading Sum of Squares | ||||
---|---|---|---|---|---|---|
Total | Variance (%) | Accumulative % | Total | Variance (%) | Accumulative % | |
1 | 6.121 | 61.211 | 61.211 | 6.121 | 61.211 | 61.211 |
2 | 1.262 | 12.624 | 73.835 | 1.262 | 12.624 | 73.835 |
3 | 1.003 | 10.027 | 83.862 | 1.003 | 10.027 | 83.862 |
4 | 0.784 | 7.835 | 91.697 | |||
5 | 0.521 | 5.206 | 96.903 | |||
6 | 0.229 | 2.289 | 99.192 | |||
7 | 0.052 | 0.519 | 99.711 | |||
8 | 0.023 | 0.229 | 99.94 | |||
9 | 0.005 | 0.051 | 99.991 | |||
10 | 0.001 | 0.009 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Zhang, L.; Cai, M.; Liu, L.; Wu, H.; Peng, Z. Measuring Urban Poverty Spatial by Remote Sensing and Social Sensing Data: A Fine-Scale Empirical Study from Zhengzhou. Remote Sens. 2023, 15, 381. https://doi.org/10.3390/rs15020381
Wang K, Zhang L, Cai M, Liu L, Wu H, Peng Z. Measuring Urban Poverty Spatial by Remote Sensing and Social Sensing Data: A Fine-Scale Empirical Study from Zhengzhou. Remote Sensing. 2023; 15(2):381. https://doi.org/10.3390/rs15020381
Chicago/Turabian StyleWang, Kun, Lijun Zhang, Meng Cai, Lingbo Liu, Hao Wu, and Zhenghong Peng. 2023. "Measuring Urban Poverty Spatial by Remote Sensing and Social Sensing Data: A Fine-Scale Empirical Study from Zhengzhou" Remote Sensing 15, no. 2: 381. https://doi.org/10.3390/rs15020381
APA StyleWang, K., Zhang, L., Cai, M., Liu, L., Wu, H., & Peng, Z. (2023). Measuring Urban Poverty Spatial by Remote Sensing and Social Sensing Data: A Fine-Scale Empirical Study from Zhengzhou. Remote Sensing, 15(2), 381. https://doi.org/10.3390/rs15020381