Simulation of CrIS Radiances Accounting for Realistic Properties of the Instrument Responsivity That Result in Spectral Ringing Features
Abstract
:1. Introduction
2. Characterization of CrIS Spectral Ringing Effects Using Calculated TOA Radiances
2.1. Methodology for Including Spectral Ringing in Calculated TOA Radiances
2.1.1. Sensor Responsivities
2.1.2. Monochromatic TOA Radiance Calculations
2.1.3. Simulation of CrIS Radiances
- Compute monochromatic upwelling infrared radiances for the altitude and satellite zenith angle of the sensor.
- Linearly interpolate the monochromatic radiance spectra to a constant wavenumber grid equal to the final CrIS user grid interval divided by 2N where N is such that the interpolation wavenumber interval is less than the monochromatic grid interval.
- Multiply the monochromatic radiances by the appropriate CrIS responsivity.
- Perform a discrete Fourier transform to the interferogram domain.
- Truncate the interferogram at the index corresponding to the CrIS maximum optical path difference, e.g., 0.8 cm for Full Spectral Resolution.
- Perform the inverse Fourier transform (including the normalization factor N).
- Divide out the CrIS responsivity at the CrIS user grid wavenumber scale.
- Extract out the portion of the spectrum that corresponds to the CrIS spectral band limits (LW, MW, and SW).
2.2. Results
2.2.1. Impact of Responsivities versus Artificial Rolloffs on Calculations
2.2.2. FOV and Sensor Dependence of Responsivities
2.2.3. Effects of Hamming Apodization
3. Comparisons of Observed and Calculated Clear Sky Radiances
3.1. Infrared Observations
3.2. Monochromatic Radiance Calculations
3.3. Impact on Observations—Calculations Differences
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Han, Y.; Revercomb, H.; Cromp, M.; Gu, D.; Johnson, D.; Mooney, D.; Scott, D.; Strow, L.; Bingham, G.; Borg, L.; et al. Suomi NPP CrIS measurements, sensor data record algorithm, calibration and validation activities, and record data quality. J. Geophys. Res. Atmos. 2013, 118, 12734–12748. [Google Scholar] [CrossRef]
- Goldberg, M.D.; Kilcoyne, H.; Cikanek, H.; Mehta, A. Joint Polar Satellite System: The United States next generation civilian polar-orbiting environmental satellite system. J. Geophys. Res. Atmos. 2013, 118, 13463–13475. [Google Scholar] [CrossRef]
- STAR JPSS Science Documents. Joint Polar Satellite System (JPSS) Cross Track Infrared Sounder (CrIS) Sensor Data Records (SDR) Algorithm Theoretical Basis Document (ATBD) for Full Spectral Resolution, Document D0001-M01-S01-002_JPSS_ATBD_CrIS-SDR_fsr_20180614, June 2018. Available online: https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/D0001-M01-S01-002_JPSS_ATBD_CRIS-SDR_fsr_20180614.pdf (accessed on 23 November 2022).
- Taylor, J.; Revercomb, H.; Tobin, C. An analysis and correction of polarization induced calibration errors for the cross-track infrared sounder (CrIS). In Sensor, Light, Energy and the Environment (E2, FTS, HISE, SOLAR, SSL); Paper FW2B.3; OSA Technical Digest (Optical Society of America): Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Taylor, J.; Revercomb, H.; Tobin, D.; Knuteson, R.; Loveless, M.; Malloy, R.; Suwinsky, L.; Iturbide-Snachez, F.; Chen, Y.; White, G.; et al. Assessment and Correction of View Angle Dependent Radiometric Modulation due to Polarization for the Cross-track Infrared Sounder (CrIS). Remote Sens. 2022. submitted for publication. [Google Scholar]
- Zavyalov, V.; Esplin, M.; Scott, D.; Esplin, B.; Bingham, G.; Hoffman, E.; Lietzke, C.; Predina, J.; Frain, R.; Suwinski, L.; et al. Noise performance of the CrIS instrument. J. Geophys. Res. Atmos. 2013, 118, 13108–13120. [Google Scholar] [CrossRef] [Green Version]
- Tobin, D.; Revercomb, H.; Knuteson, R.; Taylor, J.; Best, F.; Borg, L.; DeSlover, D.; Martin, G.; Buijs, H.; Esplin, M.; et al. Suomi-NPP CrIS radiometric calibration uncertainty. J. Geophys. Res. Atmos. 2013, 118, 10589–10600. [Google Scholar] [CrossRef]
- Strow, L.L.; Motteler, H.; Tobin, D.; Revercomb, H.; Hannon, S.; Buijs, H.; Predina, J.; Suwinski, L.; Glumb, R. Spectral calibration and validation of the Cross-track Infrared Sounder on the Suomi NPP satellite. J. Geophys. Res. Atmos. 2013, 118, 12486–12496. [Google Scholar] [CrossRef]
- Han, Y.; Chen, Y. Calibration algorithm for cross-track infrared sounder full spectral resolution measurements. IEEE Trans. Geosci. Remote Sens. 2017, 56, 1008–1016. [Google Scholar] [CrossRef]
- Han, Y. JCSDA Community Radiative Transfer Model (CRTM): Version 1; NOAA Technical Report NESDIS 122; U.S. Department of Commerce: Washington, DC, USA, 2006.
- Saunders, R.; Hocking, J.; Turner, E.; Rayer, P.; Rundle, D.; Brunel, P.; Vidot, J.; Roquet, P.; Matricardi, M.; Geer, A.; et al. An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev. 2018, 11, 2717–2737. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zou, X. Bias characterization of CrIS radiances at 399 selected channels with respect to NWP model simulations 2-17. Atmos. Res. 2017, 196, 164–181. [Google Scholar] [CrossRef]
- Amato, U.; De Canditiis, D.; Serio, C. Effect of apodization on the retrieval of geophysical parameters from Fourier-transform spectrometers. Appl. Opt. 1998, 37, 6537–6543. [Google Scholar] [CrossRef]
- Clough, S.A.; Shephard, M.W.; Mlawer, E.J.; Delamere, J.S.; Iacono, M.J.; Cady-Pereira, K.; Boukabara, S.; Brown, P.D. Atmospheric radiative transfer modeling: A summary of the AER codes, Short Communication. J. Quant. Spectrosc. Radiat. Transf. 2005, 91, 233–244. [Google Scholar] [CrossRef]
- Rothman, L.S.; Gordon, I.E.; Babikov, Y.; Barbe, A.; Benner, D.C.; Bernath, P.F.; Birk, M.; Bizzocchi, L.; Boudon, V.; Brown, L.R.; et al. The HITRAN 2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2013, 130, 4–50. [Google Scholar] [CrossRef] [Green Version]
- Benner, D.C.; Devi, V.M.; Sung, K.; Brown, L.R.; Miller, C.E.; Payne, V.H.; Drouin, B.J.; Yu, S.; Crawford, T.J.; Mantz, A.W.; et al. Line parameters including temperature dependences of air-and self-broadened line shapes of 12C16O2: 2.06-μm region. J. Mol. Spectrosc. 2016, 326, 21–47. [Google Scholar] [CrossRef] [Green Version]
- Devi, V.M.; Benner, D.C.; Sung, K.; Brown, L.R.; Crawford, T.J.; Miller, C.E.; Drouin, B.J.; Payne, V.H.; Yu, S.; Smith, M.A.H.; et al. Line parameters including temperature dependences of self- and foreign-broadened line shapes of 12C16O2: 1.6 µm region. J. Quant. Spectrosc. Radiat. Transf. 2016, 177, 117–144. [Google Scholar] [CrossRef] [Green Version]
- Drouin, B.J.; Benner, D.C.; Brown, L.R.; Cich, M.J.; Crawford, T.J.; Devi, V.M.; Guillaume, A.; Hodges, J.T.; Mlawer, E.J.; Robichaud, D.J.; et al. Multispectrum analysis of the oxygen A-band. J. Quant. Spectrosc. Radiat. Transf. 2017, 186, 118–138. [Google Scholar] [CrossRef] [Green Version]
- Oyafuso, F.; Payne, V.H.; Drouin, B.J.; Devi, V.M.; Benner, D.C.; Sung, K.; Yu, S.; Gordon, I.E.; Kochanov, R.; Tan, Y.; et al. High accuracy absorption coefficients for the Orbiting Carbon Observatory-2 (OCO-2) mission: Validation of updated carbon dioxide cross-sections using atmospheric spectra absorption coefficients for the OCO-2 mission. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 213–223. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Berrisford, P.; Kållberg, P.; Kobayashi, S.; Dee, D.; Uppala, S.; Simmons, A.J.; Poli, P.; Sato, H. Atmospheric conservation properties in ERA-Interim. Q. J. R. Meteorol. Soc. 2011, 137, 1381–1399. [Google Scholar] [CrossRef]
- Peters, W.; Jacobson, A.R.; Sweeney, C.; Andrews, A.E.; Conway, T.J.; Masarie, K.; Miller, J.B.; Bruhwiler, L.M.P.; Pétron, G.; Hirsch, A.I.; et al. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc. Natl. Acad. Sci. USA 2007, 104, 18925–18930. [Google Scholar] [CrossRef] [Green Version]
- Nalli, N.R.; Minnett, P.J.; van Delst, P. Emissivity and reflection model for calculating unpolarized isotropic water surface leaving radiance in the infrared. 1: Theoretical development and calculations. Appl. Opt. 2008, 47, 3701–3721. [Google Scholar] [CrossRef]
- Nalli, N.R.; Minnett, P.J.; Maddy, E.; McMillan, W.W.; Goldberg, M.D. Emissivity and reflection model for calculating unpolarized isotropic water surface leaving radiance in the infrared. 2: Validation using Fourier transform spectrometers. Appl. Opt. 2008, 47, 4649–4671. [Google Scholar] [CrossRef] [PubMed]
- Nalli, N.R.; Smith, W.L.; Huang, B. Quasi-specular model for calculating the reflection of atmospheric-emitted infrared radiation from a rough water surface. Appl. Opt. 2001, 40, 1343–1353. [Google Scholar] [CrossRef]
- Cox, C.; Munk, W. Measurements of the roughness of the sea surface from photographs of the sun’s glitter. J. Opt. Soc. Am. 1954, 44, 838–850. [Google Scholar] [CrossRef]
- Hale, G.M.; Querry, M.R. Optical Constants of Water in the 200-nm to 200-μm Wavelength Region. Appl. Opt. 1973, 12, 555–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, G.P.; Clough, S.A.; Kneizys, F.X.; Chetwynd, J.H.; Shettle, E.P. AFGL Atmospheric Constituent Profiles (0.120 km); No. AFGL-TR-86-0110; Air Force Geophysics Lab, Hanscom AFB: Lexington, MA, USA, 1986. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borg, L.; Loveless, M.; Knuteson, R.; Revercomb, H.; Taylor, J.; Chen, Y.; Iturbide-Sanchez, F.; Tobin, D. Simulation of CrIS Radiances Accounting for Realistic Properties of the Instrument Responsivity That Result in Spectral Ringing Features. Remote Sens. 2023, 15, 334. https://doi.org/10.3390/rs15020334
Borg L, Loveless M, Knuteson R, Revercomb H, Taylor J, Chen Y, Iturbide-Sanchez F, Tobin D. Simulation of CrIS Radiances Accounting for Realistic Properties of the Instrument Responsivity That Result in Spectral Ringing Features. Remote Sensing. 2023; 15(2):334. https://doi.org/10.3390/rs15020334
Chicago/Turabian StyleBorg, Lori, Michelle Loveless, Robert Knuteson, Hank Revercomb, Joe Taylor, Yong Chen, Flavio Iturbide-Sanchez, and David Tobin. 2023. "Simulation of CrIS Radiances Accounting for Realistic Properties of the Instrument Responsivity That Result in Spectral Ringing Features" Remote Sensing 15, no. 2: 334. https://doi.org/10.3390/rs15020334
APA StyleBorg, L., Loveless, M., Knuteson, R., Revercomb, H., Taylor, J., Chen, Y., Iturbide-Sanchez, F., & Tobin, D. (2023). Simulation of CrIS Radiances Accounting for Realistic Properties of the Instrument Responsivity That Result in Spectral Ringing Features. Remote Sensing, 15(2), 334. https://doi.org/10.3390/rs15020334