Salt Constructs in Paleo-Lake Basins as High-Priority Astrobiology Targets
Abstract
:1. Introduction
1.1. Why Salt Environments?
1.2. Geologic Context
1.3. Salt Construct Formation
1.3.1. Halite Nodules at Salar Grande
1.3.2. Gypsum Domes and Ridges at Salar de Pajonales
2. Materials and Methods
2.1. Terrestrial Datasets
2.1.1. Orbital
2.1.2. Field Datasets
2.2. Mars Datasets
3. Results
3.1. Regional Geologic Factors Controlling Local Salt Construct Formation
3.2. Martian Salars with Possible Salt Constructs
3.2.1. Analysis of HiRISE Data
Salars with Present-Day Deliquescence
Salars near Volcanic Features
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Cabrol, N.A.; Grin, E.A. The Evolution of Lacustrine Environments on Mars: Is Mars Only Hydrologically Dormant? Icarus 2001, 149, 291–328. [Google Scholar] [CrossRef]
- Cabrol, N.A.; Grin, E.A. (Eds.) Searching for lakes on Mars: Four decades of exploration. In Lakes on Mars; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1–29. [Google Scholar] [CrossRef]
- Cabrol, N.A.; Grin, E.A.; Hock, A.N. Mitigation of environmental extremes as a possible indicator of extended habitat sustainability for lakes on early Mars. In Proceedings of the SPIE Optical Engineering + Application, San Diego, CA, USA, 26–30 August 2007; Volume 6694, p. 669410. [Google Scholar] [CrossRef] [Green Version]
- Ehlmann, B.L.; John, F.M.; Caleb, I.F.; Samuel, C.S.; James, W.H.I.; David, J.D.M.; John, A.G.; Scott, L.M. Clay minerals in delta deposits and organic preservation potential on Mars. Nat. Geosci. 2008, 1, 355. [Google Scholar] [CrossRef]
- Di Achille, G.; Hynek, B.M. Ancient ocean on Mars supported by global distribution of deltas and valleys. Nat. Geosci. 2010, 3, 459–463. [Google Scholar] [CrossRef]
- Goudge, T.A.; Aureli, K.L.; Head, J.W.; Fassett, C.I.; Mustard, J.F. Classification and analysis of candidate impact crater-hosted closed-basin lakes on Mars. Icarus 2015, 260, 346–367. [Google Scholar] [CrossRef]
- Warren-Rhodes, K.; Phillips, M.; Davila, A.; McKay, C.P. Insights of Extreme Desert Ecology to the Habitats and Habitability of Mars. In Microbiology of Hot Deserts; Ramond, J.-B., Cowan, D.A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 235–291. [Google Scholar] [CrossRef]
- Osterloo, M.M.; Hamilton, V.E.; Bandfield, J.L.; Glotch, T.D.; Baldridge, A.M.; Christensen, P.R.; Tornabene, L.L.; Anderson, F.S. Chloride-bearing materials in the southern highlands of Mars. Science 2008, 319, 1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davila, A.F.; Duport, L.G.; Melchiorri, R.; Jänchen, J.; Valea, S.; de Los Rios, A.; Fairén, A.G.; Möhlmann, D.; McKay, C.P.; Ascaso, C.; et al. Hygroscopic salts and the potential for life on Mars. Astrobiology 2010, 10, 617. [Google Scholar] [CrossRef] [Green Version]
- Onstott, T.C.; Ehlmann, B.L.; Sapers, H.; Coleman, M.; Ivarsson, M.; Marlow, J.J.; Neubeck, A.; Niles, P. Paleo-Rock-Hosted Life on Earth and the Search on Mars: A Review and Strategy for Exploration. Astrobiology 2019, 19, 123–1262. [Google Scholar] [CrossRef]
- Ivarsson, M.; Lindgren, P. The Search for Sustainable Subsurface Habitats on Mars, and the Sampling of Impact Ejecta. Sustainability 2010, 2, 1969–1990. [Google Scholar] [CrossRef] [Green Version]
- Cushing, G.E. Mars Global Cave Candidate Catalog PDS4 Archive Bundle. In PDS Cartography Imaging Sciences Node (IMG); NASA: Washington, DC, USA, 2015. [Google Scholar] [CrossRef]
- Salese, F.; Pondrelli, M.; Neeseman, A.; Schmidt, G.; Ori, G.G. Geological Evidence of Planet-Wide Groundwater System on Mars. J. Geophys. Res. Planets 2019, 124, 374–395. [Google Scholar] [CrossRef] [Green Version]
- Hays, L.E.; Graham, H.V.; Des Marais, D.J.; Hausrath, E.M.; Horgan, B.; McCollom, T.M.; Parenteau, M.N.; Potter-McIntyre, S.L.; Williams, A.J.; Lynch, K.L. Biosignature Preservation and Detection in Mars Analog Environments. Astrobiology 2017, 17, 363–400. [Google Scholar] [CrossRef] [Green Version]
- Scheller, E.L.; Hollis, J.R.; Cardarelli, E.L.; Steele, A.; Beegle, L.W.; Bhartia, R.; Conrad, P.; Uckert, K.; Sharma, S.; Ehlmann, B. First-results from the Perseverance SHERLOC Investigation: Aqueous Alteration Processes and Implications for Organic Geochemistry in Jezero Crater, Mars. In Proceedings of the LPSC 2022, Woodlands, TX, USA, 7–11 March 2022. [Google Scholar]
- Haltigin, T.; Hauber, E.; Kminek, G.; Meyer, M.A.; Agee, C.B.; Busemann, H.; Carrier, B.L.; Glavin, D.P.; Hays, L.E.; Marty, B.; et al. Rationale and Proposed Design for a Mars Sample Return (MSR) Science Program. Astrobiology 2022, 22, S27–S56. [Google Scholar] [CrossRef]
- Warren-Rhodes, K.; Cabrol, N.; Phillips, M.; Tebes, C.; Hinman, N.W.; Rhodes, K.; Ayma, D.; Bishop, J.; Boyle, L.; Chong-díaz, G.; et al. Orbit to Ground Framework to Decode and Predict Biosignature Patterns from Terrestrial Analogues. Nat. Astron. 2023, in press. [Google Scholar]
- Sedell, J.R.; Reeves, G.H.; Hauer, F.R.; Stanford, J.A.; Hawkins, C.P. Role of refugia in recovery from disturbances: Modern fragmented and disconnected river systems. Environ. Manag. 1990, 14, 711–724. [Google Scholar] [CrossRef]
- Carrier, B.L.; Beaty, D.W.; Meyer, M.A.; Blank, J.G.; Chou, L.; DasSarma, S.; Des Marais, D.J.; Eigenbrode, J.L.; Grefenstette, N.; Lanza, N.L.; et al. Mars Extant Life: What’s Next? Conference Report. Astrobiology 2020, 20, 785–814. [Google Scholar] [CrossRef]
- Davila, A.F.; Schulze-Makuch, D. The Last Possible Outposts for Life on Mars. Astrobiology 2016, 16, 159. [Google Scholar] [CrossRef] [Green Version]
- Cabrol, N.A. Tracing a modern biosphere on Mars. Nat. Astron. 2021, 5, 210–212. [Google Scholar] [CrossRef]
- Osterloo, M.M.; Anderson, F.S.; Hamilton, V.E.; Hynek, B.M. Geologic context of proposed chloride-bearing materials on Mars. J. Geophys. Res. Planets 2010, 115, E10012. [Google Scholar] [CrossRef]
- Sánchez-García, L.; Aeppli, C.; Parro, V.; Fernández-Remolar, D.; García-Villadangos, M.; Chong-Diaz, G.; Blanco, Y.; Carrizo, D. Molecular biomarkers in the subsurface of the Salar Grande (Atacama, Chile) evaporitic deposits. Biogeochemistry 2018, 140, 31–52. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Remolar, D.C.; Chong-Díaz, G.; Ruíz-Bermejo, M.; Harir, M.; Schmitt-Kopplin, P.; Tziotis, D.; Gómez-Ortíz, D.; García-Villadangos, M.; Martín-Redondo, M.P.; Gómez, F.; et al. Molecular preservation in halite- and perchlorate-rich hypersaline subsurface deposits in the Salar Grande basin (Atacama Desert, Chile): Implications for the search for molecular biomarkers on Mars. J. Geophys. Res. Biogeosci. 2013, 118, 922–939. [Google Scholar] [CrossRef]
- Schreder-Gomes, S.I.; Benison, K.C.; Bernau, J.A. 830-million-year-old microorganisms in primary fluid inclusions in halite. Geology 2022, 50, 918–922. [Google Scholar] [CrossRef]
- Thomas, N.H.; Ehlmann, B.L.; Meslin, P.-Y.; Rapin, W.; Anderson, D.E.; Rivera-Hernández, F.; Forni, O.; Schröder, S.; Cousin, A.; Mangold, N.; et al. Mars Science Laboratory Observations of Chloride Salts in Gale Crater, Mars. Geophys. Res. Lett. 2019, 46, 10754–10763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stromberg, J.M.; Parkinson, A.; Morison, M.; Cloutis, E.; Casson, N.; Applin, D.; Poitras, J.; Marti, A.M.; Maggiori, C.; Cousins, C.; et al. Biosignature detection by Mars rover equivalent instruments in samples from the CanMars Mars Sample Return Analogue Deployment. Planet. Space Sci. 2019, 176, 104683. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, R.; Stivaletta, N. Continental evaporites and the search for evidence of life on Mars. Geol. J. 2011, 46, 513–524. [Google Scholar] [CrossRef]
- Cabrol, N.A.; Wettergreen, D.; Warren-Rhodes, K.; Grin, E.A.; Moersch, J.; Diaz, G.C.; Cockell, C.S.; Coppin, P.; Demergasso, C.; Dohm, J.M.; et al. Life in the Atacama: Searching for life with rovers (science overview). J. Geophys. Res. Biogeosci. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Davila, A.F.; Gómez-Silva, B.; De Los Rios, A.; Ascaso, C.; Olivares, H.; McKay, C.P.; Wierzchos, J. Facilitation of endolithic microbial survival in the hyperarid core of the Atacama Desert by mineral deliquescence. J. Geophys. Res. Biogeosci. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Ruch, J.; Warren, J.K.; Risacher, F.; Walter, T.R.; Lanari, R. Salt lake deformation detected from space. Earth Planet. Sci. Lett. 2012, 331, 120–127. [Google Scholar] [CrossRef]
- Warren-Rhodes, K.; Cabrol, N.; Hinman, N.W.; Tebes, C.; Rodriguez, C.; Phillips, M.S.; Demergasso, C.; Chong-díaz, G.; Moersch, J. Landscape Ecology of Photosynthetic Communities in the Mars Analog Salar de Pajonales, Chile. In Proceedings of the 2019 Astrobiology Science Conference, Seattle, WA, USA, 24–28 June 2019. [Google Scholar]
- Hinman, N.W.; Hofmann, M.H.; Warren-Rhodes, K.; Phillips, M.S.; Noffke, N.; Cabrol, N.A.; Chong Diaz, G.; Demergasso, C.; Tebes-Cayo, C.; Cabestrero, O.; et al. Surface Morphologies in a Mars-Analog Ca-Sulfate Salar, High Andes, Northern Chile. Front. Astron. Space Sci. 2022, 8, 235. [Google Scholar] [CrossRef]
- Houston, J.; Hartley, A.J. The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. Int. J. Climatol. 2003, 23, 1453–1464. [Google Scholar] [CrossRef]
- Clarke, J.D.A. Antiquity of aridity in the Chilean Atacama Desert. Geomorphology 2006, 73, 101–114. [Google Scholar] [CrossRef]
- Chong-Díaz, G. The cenozoic saline deposits of the Chilean Andes between 18°00′ and 27°00′ south latitude. In The Southern Central Andes; Lecture Notes in Earth Sciences; Springer: Berlin/Heidelberg, Germany, 1988; Volume 17. [Google Scholar]
- Risacher, F.; Alonso, H.; Salazar, C. The origin of brines and salts in Chilean salars: A hydrochemical review. Earth Sci. Rev. 2003, 63, 249–293. [Google Scholar] [CrossRef]
- Cabrol, N.A.; Feister, U.; Häder, D.-P.; Piazena, H.; Grin, E.A.; Klein, A. Record solar UV irradiance in the tropical Andes. Front. Environ. Sci. 2014, 2, 19. [Google Scholar] [CrossRef] [Green Version]
- Cabrol, N.A.; Grin, E.A.; Chong, G.; Minkley, E.; Hock, A.N.; Yu, Y.; Bebout, L.; Fleming, E.; Häder, D.P.; Demergasso, C.; et al. The High-Lakes Project. J. Geophys. Res. Biogeosci. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Piatek, J.L.; Hardgrove, C.; Moersch, J.E.; Drake, D.M.; Wyatt, M.B.; Rampey, M.; Carlisle, O.; Warren-Rhodes, K.; Dohm, J.M.; Hock, A.N.; et al. Surface and subsurface composition of the Life in the Atacama field sites from rover data and orbital image analysis. J. Geophys. Res. Biogeosci. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- El-Maarry, M.R.; Pommerol, A.; Thomas, N. Analysis of polygonal cracking patterns in chloride-bearing terrains on Mars: Indicators of ancient playa settings. J. Geophys. Res. Planets 2013, 118, 2263–2278. [Google Scholar] [CrossRef] [Green Version]
- Glotch, T.D.; Bandfield, J.L.; Wolff, M.J.; Arnold, J.A.; Che, C. Constraints on the composition and particle size of chloride salt-bearing deposits on Mars. J. Geophys. Res. Planets 2016, 121, 454–471. [Google Scholar] [CrossRef] [Green Version]
- Hudec, M.R.; Jackson, M.P.A. Terra infirma: Understanding salt tectonics. Earth-Sci. Rev. 2007, 82, 1–28. [Google Scholar] [CrossRef]
- Artieda, O.; Davila, A.; Wierzchos, J.; Buhler, P.; Rodríguez-Ochoa, R.; Pueyo, J.; Ascaso, C. Surface evolution of salt-encrusted playas under extreme and continued dryness. Earth Surf. Process. Landf. 2015, 40, 1939–1950. [Google Scholar] [CrossRef]
- Warren, J.K. Evaporites: A Geological Compendium; Springer International Publishing AG: Cham, Switzerland, 2016. [Google Scholar]
- Farías, M.; Contreras, M.; Rasuk, M.; Kurth, D.; Flores, M.; Poiré, D.; Novoa, F.; Visscher, P. Characterization of bacterial diversity associated with microbial mats, gypsum evaporites and carbonate microbialites in thalassic wetlands: Tebenquiche and La Brava, Salar de Atacama, Chile. Extremophiles 2014, 18, 311–329. [Google Scholar] [CrossRef]
- D’Almeida, R.E.; García, M.E.; Pérez, M.F.; Farías, M.E.; Dib, J.R. Novel nematode species in living stromatolites in the Andean Puna. Invertebr. Zool. 2019, 16, 211–218. [Google Scholar] [CrossRef]
- Ecrilla, O. Origen and evolution of gypsum stromatolites in salars of the Andes highlands, northern Chile. Andean Geol. 2019, 46, 211–222. [Google Scholar]
- Gutiérrez, F.; Cooper, A. 6.33 Surface Morphology of Gypsum Karst. Treatise Geomorphol. 2013, 6, 425–437. [Google Scholar]
- Rasuk, M.; Kurth, D.; Flores, M.; Contreras, M.; Novoa, F.; Poire, D.; Farias, M. Microbial Characterization of Microbial Ecosystems Associated to Evaporites Domes of Gypsum in Salar de Llamara in Atacama Desert. Microb. Ecol. 2014, 68, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Szynkiewicz, A.; Moore, C.H.; Glamoclija, M.; Bustos, D.; Pratt, L.M. Origin of coarsely crystalline gypsum domes in a saline playa environment at the White Sands National Monument, New Mexico. J. Geophys. Res. 2010, 115, F02021. [Google Scholar] [CrossRef] [Green Version]
- McEwen, A.S.; Eliason, E.M.; Bergstrom, J.W.; Bridges, N.T.; Hansen, C.J.; Delamere, W.A.; Grant, J.A.; Gulick, V.C.; Herkenhoff, K.E.; Keszthelyi, L.; et al. Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). J. Geophys. Res. Planets 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Werner, C. GAMMA SAR and interferometric processing software. In Proceedings of the ERS-Envisat Symposium, Gothenburg, Sweden, 16–20 October 2000; Available online: https://cir.nii.ac.jp/crid/1573387450588271232 (accessed on 14 September 2022).
- ASF DAAC. Contains Modified Copernicus Sentinel Data 2022, Processed by ESA. 2022. Available online: https://sentinels.copernicus.eu/web/sentinel/sentinel-data-access (accessed on 14 September 2022).
- Leask, E.K.; Ehlmann, B.L. Evidence for Deposition of Chloride on Mars From Small-Volume Surface Water Events Into the Late Hesperian-Early Amazonian. AGU Adv. 2022, 3, e2021AV000534. [Google Scholar] [CrossRef]
- Hartley, A.J.; Chong, G. Late Pliocene age for the Atacama Desert: Implications for the desertification of western South America. Geology 2002, 30, 43–46. [Google Scholar] [CrossRef]
- Houston, J. Evaporation in the Atacama Desert: An empirical study of spatio-temporal variations and their causes. J. Hydrol. 2006, 330, 402–412. [Google Scholar] [CrossRef]
- Meyer, F. Spaceborne Synthetic Aperture Radar: Principles, data access, and basic processing techniques. In Synthetic Aperture Radar (SAR) Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation; SERVIR Global Science Coordination Office: Huntsville, AL, USA, 2019; pp. 21–64. [Google Scholar]
- Phillips, M. Supplementary files for “Salt constructs in paleo-lake basins as high-priority astrobiology targets” published in Remote Sensing. Zenodo 2022. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Batlivala, P.P.; Dobson, M.C. Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part I-Bare Soil. IEEE Trans. Geosci. Electron. 1978, 16, 286–295. [Google Scholar] [CrossRef]
- Behari, J. Microwave Dielectric Behaviour of Wet Soils; Springer: Dordrecht, The Netherlands, 2006; Available online: https://books.google.com/books?id=dsM4wfFaa7AC (accessed on 9 August 2022).
- Rodríguez-Albornoz, C. Geología de salar de Pajonales (7.209.000-7.226.500 N.-510.000-530.000 E) y antecedentes de su microbiota, Antofagasta, norte de Chile. Master’s Thesis, Universidad Católica del Norte, Antofagasta, Chile, 2018. [Google Scholar]
- DeCelles, P.; Zandt, G.; Beck, S.; Currie, C.; Ducea, M.; Kapp, P.; Gehrels, G.; Carrapa, B.; Quade, J.; Schoenbohm, L. Cyclical orogenic processes in the Cenozoic central Andes. Geol. Soc. Am. Mem. 2014, 212, 459–490. [Google Scholar]
- Rivera-Valentín, E.G.; Chevrier, V.F.; Soto, A.; Martínez, G. Distribution and habitability of (meta)stable brines on present-day Mars. Nat. Astron. 2020, 4, 756–761. [Google Scholar] [CrossRef]
- Hargitai, H.; Leone, G. Volcanic Channels and Volcanic Features on Mars. In Mars: A Volcanic World; Leone, G., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 95–110. [Google Scholar] [CrossRef]
- Sholes, S.F.; Dickeson, Z.I.; Montgomery, D.R.; Catling, D.C. Where are Mars’ Hypothesized Ocean Shorelines? Large Lateral and Topographic Offsets Between Different Versions of Paleoshoreline Maps. J. Geophys. Res. Planets 2021, 126, e2020JE006486. [Google Scholar] [CrossRef]
- Rivera-Valentín, E.G. Distribution and Habitability of Meta-Stable Brines on Present-Day Mars (Figures and Data) 2020. Available online: https://figshare.com/articles/dataset/DISTRIBUTION_AND_HABITABILITY_OF_META_STABLE_BRINES_ON_PRESENT-DAY_MARS_/11907984 (accessed on 6 September 2022).
- Levy, J.S.; Head, J.W.; Marchant, D.R. Concentric crater fill in Utopia Planitia: History and interaction between glacial ‘brain terrain’ and periglacial mantle processes. Icarus 2009, 202, 462–476. [Google Scholar] [CrossRef]
- Fanale, F.P.; Salvail, J.R.; Zent, A.P.; Postawko, S.E. Global distribution and migration of subsurface ice on mars. Icarus 1986, 67, 1–18. [Google Scholar] [CrossRef]
- Paige, D.A. The thermal stability of near-surface ground ice on Mars. Nature 1992, 356, 43–45. [Google Scholar] [CrossRef]
- Malin, M.C.; Edgett, K.S. Evidence for Recent Groundwater Seepage and Surface Runoff on Mars. Science 2000, 288, 2330–2335. [Google Scholar] [CrossRef] [Green Version]
- Grimm, R.E.; Harrison, K.P.; Stillman, D.E.; Kirchoff, M.R. On the secular retention of ground water and ice on Mars. J. Geophys. Res. Planets 2017, 122, 94–109. [Google Scholar] [CrossRef]
- Tanaka, K.L.; Robbins, S.J.; Fortezzo, C.M.; Skinner, J.A.; Hare, T.M. The digital global geologic map of Mars: Chronostratigraphic ages, topographic and crater morphologic characteristics, and updated resurfacing history. Planet. Space Sci. 2014, 95, 11. [Google Scholar] [CrossRef]
- Mellon, M.T.; Arvidson, R.E.; Marlow, J.J.; Phillips, R.J.; Asphaug, E. Periglacial landforms at the Phoenix landing site and the northern plains of Mars. J. Geophys. Res. Planets 2008, 113. [Google Scholar] [CrossRef]
- Kessler, M.A.; Werner, B.T. Self-Organization of Sorted Patterned Ground. Science 2003, 299, 380–383. [Google Scholar] [CrossRef]
- Noe Dobrea, E.Z.; Asphaug, E.; Grant, J.A.; Kessler, M.A.; Mellon, M.T. Patterned Ground as an Alternative Explanation for the Formation of Brain Coral Textures in the Mid Latitudes of Mars: HiRISE Observations of Lineated Valley Fill Textures. In Proceedings of the Seventh International Conference on Mars, Pasadena, CA, USA, 9–13 July 2007; Volume 1353, p. 3358. Available online: https://ui.adsabs.harvard.edu/abs/2007LPICo1353.3358N (accessed on 10 October 2022).
- Cheng, R.-L.; He, H.; Michalski, J.R.; Li, Y.-L.; Li, L. Brain-terrain-like features in the Qaidam Basin: Implications for various morphological features on Mars. Icarus 2021, 363, 114434. [Google Scholar] [CrossRef]
- Williams, R.M.E.; Irwin, R.P.; Noe Dobrea, E.Z.; Howard, A.D.; Dietrich, W.E.; Cawley, J.C. Inverted channel variations identified on a distal portion of a bajada in the central Atacama Desert, Chile. Geomorphology 2021, 393, 107925. [Google Scholar] [CrossRef] [PubMed]
- Sager, C.; Airo, A.; Arens, F.L.; Schulze-Makuch, D. Eolian erosion of polygons in the Atacama Desert as a proxy for hyper-arid environments on Earth and beyond. Sci. Rep. 2022, 12, 12394. [Google Scholar] [CrossRef] [PubMed]
- Hibbard, S.M.; Osinski, G.R.; Godin, E. Vermicular Ridge Features on Dundas Harbour, Devon Island, Nunavut. Geomorphology 2021, 395, 107947. [Google Scholar] [CrossRef]
- Dang, Y.N.; Xiao, L.; Xu, Y.; Zhang, F.; Huang, J.; Wang, J.; Zhao, J.N.; Komatsu, G.; Yue, Z. The Polygonal Surface Structures in the Dalangtan Playa, Qaidam Basin, NW China: Controlling Factors for Their Formation and Implications for Analogous Martian Landforms. J. Geophys. Res. Planets 2018, 123, 1910–1933. [Google Scholar] [CrossRef]
- Bishop, J.L.; Yeşilbaş, M.; Hinman, N.W.; Burton, Z.F.M.; Englert, P.A.J.; Toner, J.D.; McEwen, A.S.; Gulick, V.C.; Gibson, E.K.; Koeberl, C. Martian subsurface cryosalt expansion and collapse as trigger for landslides. Sci. Adv. 2021, 7, eabe4459. [Google Scholar] [CrossRef]
- Sato, M.; Hattanji, T. A laboratory experiment on salt weathering by humidity change: Salt damage induced by deliquescence and hydration. Prog. Earth Planet. Sci. 2018, 5, 84. [Google Scholar] [CrossRef]
- Levy, J.S.; Head, J.W.; Marchant, D.R. Gullies, polygons and mantles in Martian permafrost environments: Cold desert landforms and sedimentary processes during recent Martian geological history. In Ice-Marginal and Periglacial Processes and Sediments; Martini, I.P., French, H.M., Alberti, A.P., Eds.; Geological Society of London: London, UK, 2011; Volume 354, pp. 167–182. [Google Scholar] [CrossRef] [Green Version]
- Glotch, T.D.; Bandfield, J.L.; Tornabene, L.L.; Jensen, H.B.; Seelos, F.P. Distribution and formation of chlorides and phyllosilicates in Terra Sirenum, Mars. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Ruesch, O.; Poulet, F.; Vincendon, M.; Bibring, J.; Carter, J.; Erkeling, G.; Gondet, B.; Hiesinger, H.; Ody, A.; Reiss, D. Compositional investigation of the proposed chloride-bearing materials on Mars using near-infrared orbital data from OMEGA/MEx. J. Geophys. Res. Planets 2012, 117, E00J13. [Google Scholar] [CrossRef]
- Melwani Daswani, M.; Kite, E.S. Paleohydrology on Mars constrained by mass balance and mineralogy of pre-Amazonian sodium chloride lakes. J. Geophys. Res. Planets 2017, 122, 1802–1823. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Remolar, D.; Altermann, W.; Gomez-Ortiz, D. Formation of chloride deposits on Early Mars under acidic and reducing crustal conditions. Research Square 2022. Preprint. [Google Scholar] [CrossRef]
- Malin, M.C. Salt weathering on Mars. J. Geophys. Res. 1974, 79, 3888–3894. [Google Scholar] [CrossRef]
- Wang, A.; Ling, Z. Ferric sulfates on Mars: A combined mission data analysis of salty soils at Gusev crater and laboratory experimental investigations. J. Geophys. Res. Planets 2011, 116, E00F17. [Google Scholar] [CrossRef] [Green Version]
- Ruff, S.W.; Farmer, J.D. Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile. Nat. Commun. 2016, 7, 13554. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.; Bell, J.F., III; Cloutis, E.; Staid, M.; Farrand, W.; McCoy, T.; Rice, M.; Wang, A.; Yen, A. Mineralogic constraints on sulfur-rich soils from Pancam spectra at Gusev crater, Mars. Geophys. Res. Lett. 2007, 34, L13202. [Google Scholar] [CrossRef]
- Kronyak, R.; Kah, L.; Edgett, K.; VanBommel, S.; Thompson, L.; Wiens, R.; Sun, V.; Nachon, M. Mineral-filled fractures as indicators of multigenerational fluid flow in the Pahrump Hills member of the Murray formation, Gale crater, Mars. Earth Space Sci. 2019, 6, 238–265. [Google Scholar] [CrossRef] [Green Version]
- Lewis, J.M.T.; Eigenbrode, J.L.; Wong, G.M.; McAdam, A.C.; Archer, P.D.; Sutter, B.; Millan, M.; Williams, R.H.; Guzman, M.; Das, A.; et al. Pyrolysis of Oxalate, Acetate, and Perchlorate Mixtures and the Implications for Organic Salts on Mars. J. Geophys. Res. Planets 2021, 126, e2020JE006803. [Google Scholar] [CrossRef]
- Hollis, J.R.; Moore, K.R.; Sharma, S.; Beegle, L.; Grotzinger, J.P.; Allwood, A.; Abbey, W.; Bhartia, R.; Brown, A.J.; Clark, B.; et al. The power of paired proximity science observations: Co-located data from SHERLOC and PIXL on Mars. Icarus 2022, 387, 115179. [Google Scholar] [CrossRef]
- Brooker, L.M.; Balme, M.R.; Conway, S.J.; Hagermann, A.; Barrett, A.M.; Collins, G.S.; Soare, R.J. Clastic polygonal networks around Lyot crater, Mars: Possible formation mechanisms from morphometric analysis. Icarus 2018, 302, 386–406. [Google Scholar] [CrossRef]
- Bina, A.; Osinski, G.R. Decameter-scale rimmed depressions in Utopia Planitia: Insight into the glacial and periglacial history of Mars. Planet. Space Sci. 2021, 204, 105253. [Google Scholar] [CrossRef]
- Ye, C.; Glotch, T.D. Spectral Properties of Chloride Salt-Bearing Assemblages: Implications for Detection Limits of Minor Phases in Chloride-Bearing Deposits on Mars. J. Geophys. Res. Planets 2019, 124, 209–222. [Google Scholar] [CrossRef] [Green Version]
- Das, E.; Glotch, T.; Edwards, C.; Ye, C.; Milliken, R. Hapke-Based Laboratory and Remote Determination of Martian Chloride Salt Abundances. In Proceedings of the 53rd Lunar and Planetary Science Conference, Woodlands, TX, USA, 7–11 March 2022. [Google Scholar]
- Malin, M.C.; Edgett, K.S. Mars global surveyor Mars orbiter camera: Interplanetary cruise through primary mission. J. Geophys. Res. Planets 2001, 106, 23429–23570. [Google Scholar] [CrossRef]
- Thomas, N.; Cremonese, G.; Ziethe, R.; Gerber, M.; Brändli, M.; Bruno, G.; Erismann, M.; Gambicorti, L.; Gerber, T.; Ghose, K.; et al. The colour and stereo surface imaging system (CaSSIS) for the ExoMars trace gas orbiter. Space Sci. Rev. 2017, 212, 1897–1944. [Google Scholar] [CrossRef] [Green Version]
- Phillips, M.S.; Moersch, J.E.; Cabrol, N.A.; Candela, A.; Wettergreen, D.S.; Warren-Rhodes, K.; Hinman, N.W. Planetary Mapping using Deep Learning: A method to evaluate feature identification confidence applied to habitats in Mars-analog terrain. Astrobiology 2022, 23. [Google Scholar] [CrossRef]
Chl FID | HiRISE ID | Lat | Lon | Present-Day Deliquescence? | Positive Topographic Features? | Interpretation? |
---|---|---|---|---|---|---|
178 | ESP_047559_1255_RED | −54.421 | 200.273 | Yes | N/A | Possible salt-encrusted mounds and/or boulders. Possible flat patches of effloresced salt. |
325 | ESP_037181_1395_RED | −40.067 | 194.046 | Yes | Yes | Possible salt constructs or deposits formed on pre-existing polygonal terrain. |
637 | ESP_028578_1300_RED | −49.558 | 352.68 | Yes | No | Possible salt deposits eroding from beneath a cap rock. |
129 | ESP_012700_1375_RED | −42.076 | 34.085 | Yes | Yes | Possible salt constructs or deposits formed on pre-existing polygonal terrain. |
179 | ESP_040221_1325_RED | −47.089 | 12.833 | Yes | Yes | Possible salt constructs or deposits formed on pre-existing polygonal terrain. |
461 | ESP_031070_1350_RED | −44.795 | 355.019 | Yes | Yes | Possible salt constructs forming rims of polygonal features. |
539 | ESP_048637_1340_RED | −45.664 | 283.864 | Yes | Yes | Possible salt constructs or deposits formed on pre-existing polygonal terrain. |
71 | ESP_023055_1315_RED | −48.41 | 291.211 | Yes | Yes | Possible salt constructs or deposits formed on pre-existing polygonal terrain. |
84 | ESP_023699_1390_RED | −40.468 | 347.518 | Yes | Yes | Possible salt constructs or deposits formed on pre-existing polygonal terrain. |
85 | ESP_011660_1390_RED | −40.627 | 347.225 | Yes | Yes | Possible salt constructs or deposits formed on pre-existing polygonal terrain. |
9 | ESP_028356_1445_RED | −35.212 | 291.033 | Yes | Yes | Possible salt constructs forming in relation to polygonal fractures or on top of boulders. |
131 | ESP_016831_1435_RED | −36.214 | 293.631 | Yes | Yes | Possible salt constructs forming in relation to polygonal fractures or on top of boulders. |
108 | ESP_020169_1365_RED | −43.284 | 242.885 | Yes | Yes | Possible salt constructs forming in relation to polygonal hummocky terrain. |
467 | ESP_045905_1425_RED | −37.104 | 355.096 | Yes | Yes | Sublimation-formed polygons are possibly modified by salt deposition. |
545 | ESP_023392_1825_RED | 2.542 | 83.298 | No | Yes | Possible salt-formed raised polygon rim features. |
136 | ESP_012864_1405_RED | −39.35 | 235.49 | No | Yes | Evidence for salt constructs is weak. |
333 | ESP_035115_1710_RED | −8.839 | 73.852 | No | Yes | Possible salt-formed raised polygon rim features. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phillips, M.S.; McInenly, M.; Hofmann, M.H.; Hinman, N.W.; Warren-Rhodes, K.; Rivera-Valentín, E.G.; Cabrol, N.A. Salt Constructs in Paleo-Lake Basins as High-Priority Astrobiology Targets. Remote Sens. 2023, 15, 314. https://doi.org/10.3390/rs15020314
Phillips MS, McInenly M, Hofmann MH, Hinman NW, Warren-Rhodes K, Rivera-Valentín EG, Cabrol NA. Salt Constructs in Paleo-Lake Basins as High-Priority Astrobiology Targets. Remote Sensing. 2023; 15(2):314. https://doi.org/10.3390/rs15020314
Chicago/Turabian StylePhillips, Michael S., Michael McInenly, Michael H. Hofmann, Nancy W. Hinman, Kimberley Warren-Rhodes, Edgard G. Rivera-Valentín, and Nathalie A. Cabrol. 2023. "Salt Constructs in Paleo-Lake Basins as High-Priority Astrobiology Targets" Remote Sensing 15, no. 2: 314. https://doi.org/10.3390/rs15020314
APA StylePhillips, M. S., McInenly, M., Hofmann, M. H., Hinman, N. W., Warren-Rhodes, K., Rivera-Valentín, E. G., & Cabrol, N. A. (2023). Salt Constructs in Paleo-Lake Basins as High-Priority Astrobiology Targets. Remote Sensing, 15(2), 314. https://doi.org/10.3390/rs15020314