An Effusive Lunar Dome Near Fracastorius Crater: Spectral and Morphometric Properties
Abstract
:1. Introduction
2. An Overview about Lunar Mare Domes
3. Methods and Materials
4. Dome Composition
5. Morphologic and Morphometric Dome Properties
6. Modeling of Rheological Properties and Dike Geometries
Dike Geometry
7. Discussion
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kaur, P.; Chauhan, P.; Rajawat, A.S.; Kumar, A.K. Study of olivine-rich dark halo crater–Beaumont L in Mare Nectaris using high resolution remote sensing data. Planet. Space Sci. 2015, 109, 92–105. [Google Scholar] [CrossRef]
- Kramer, G.Y.; Jolliff, B.L.; Neal, C.R. Distinguishing high-alumina mare basalts using Clementine UVVIS and Lunar Prospector GRS data: Mare Moscoviense and Mare Nectaris. J. Geophys. Res. Planets 2008, 113, 1–18. [Google Scholar] [CrossRef]
- Wilhelms, D. The Geologic History of the Moon; USGS Prof. Paper 1348; USGS: Reston, VA, USA, 1987. [Google Scholar]
- Morgan, G.A.; Campbell, B.A.; Campbell, D.B.; Hawke, B.R. Investigating the stratigraphy of Mare Imbrium flow emplacement with Earth-based radar. J. Geophys. Res. Planets 2016, 121, 1498–1513. [Google Scholar] [CrossRef] [Green Version]
- Fortezzo, C.M.; Spudis, P.D.; Harrel, S.L. Release of the Digital Unified Global Geologic Map of the Moon At 1:5,000,000- Scale. In Proceedings of the 51st Lunar and Planetary Science Conference, Houston, TX, USA, 16–20 March 2020; Lunar and Planetary Institute: Houston, TX, USA, 2020. Abstract #2760. [Google Scholar]
- Lena, R.; Wöhler, C.; Bregante, M.T.; Lazzarotti, P.; Lammel, S. Lunar domes in Mare Undarum: Spectral and morphometric properties, eruption conditions, and mode of emplacement. Planet. Space Sci. 2008, 56, 553–569. [Google Scholar] [CrossRef]
- Wilson, L.; Head, J.W. Lunar Gruithuisen and Mairan domes: Rheology and mode of emplacement. J. Geophys. Res. Planets 2003, 108, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Wood, J.A. Petrology of the lunar soil and geophysical implications. J. Geophys. Res. 1970, 75, 6497–6513. [Google Scholar] [CrossRef]
- Spudis, P.D.; McGovern, P.J.; Kiefer, W.S. Large shield volcanoes on the Moon. J. Geophys. Res. Planets 2013, 118, 1063–1081. [Google Scholar] [CrossRef]
- Head, J.W.; Gifford, A. Lunar mare domes: Classification and modes of origin. Moon Planets 1980, 22, 235–258. [Google Scholar] [CrossRef]
- Baldwin, R. The Measure of the Moon; Univ. Chicago Press: Chicago, IL, USA, 1963; pp. 390–394. [Google Scholar]
- Wilhelms, D.E.; McCauley, J.F. Geologic Map of the Near Side of the Moon; US Geological Survey: Washington, DC, USA, 1971. [Google Scholar]
- Guest, J.E.; Murray, J.B. Volcanic features of the nearside equatorial lunar maria. J. Geol. Soc. 1976, 132, 251–258. [Google Scholar] [CrossRef]
- Mursky, G. Introduction to Planetary Volcanism; Prentice-Hall: Bergen, Norway, 1996. [Google Scholar]
- Wöhler, C.; Lena, R.; Lazzarotti, P.; Phillips, J.; Wirths, M.; Pujic, Z.; Group, G.L.R.G. A combined spectrophotometric and morphometric study of the lunar mare dome fields near Cauchy, Arago, Hortensius, and Milichius. Icarus 2006, 183, 237–264. [Google Scholar] [CrossRef]
- Weitz, C.M.; Head, J.W., III. Spectral properties of the Marius Hills volcanic complex and implications for the formation of lunar domes and cones. J. Geophys. Res. Planets 1999, 104, 18933–18956. [Google Scholar] [CrossRef]
- Griffiths, R.W. The dynamics of lava flows. Annu. Rev. Fluid Mech. 2000, 32, 477–518. [Google Scholar] [CrossRef]
- Diniega, S.; Smrekar, S.E.; Anderson, S.; Stofan, E.R. The influence of temperature-dependent viscosity on lava flow dynamics. J. Geophys. Res. Earth Surf. 2013, 118, 1516–1532. [Google Scholar] [CrossRef] [Green Version]
- Wilson, L.; Head, J.W. Lunar linear rilles as surface manifestations of dikes: Theoretical considerations. In Proceedings of the Lunar and Planetary Science Conference; Houston, TX, USA, 18–22 March 1996; Volume 27. [Google Scholar]
- Jackson, P.A.; Wilson, L.; Head, J.W. The use of magnetic signatures in identifying shallow intrusions on the moon. In Proceedings of the Lunar and Planetary Science Conference, Houston, TX, USA, 17–21 March 1997; Volume 28, p. 649. [Google Scholar]
- Eliason, E.; Isbell, C.; Lee, E.; Becker, T.; Gaddis, L.; McEwen, A.; Robinson, M. The Clementine UVVIS Global Lunar Mosaic; PDS volumes USA NASA PDS CL 4001 4078; Lunar and Planetary Institute: Houston, TX, USA, 1999. [Google Scholar]
- Pieters, C.M.; Boardman, J.; Buratti, B.; Chatterjee, A.; Clark, R.; Glavich, T.; White, M.; Varanasi, P.; Tompkins, S.; Taylor, L.; et al. The Moon mineralogy mapper (M³) on chandrayaan-1. Curr. Sci. 2009, 96, 500–505. [Google Scholar]
- Lena, R.; Wöhler, C.; Phillips, J.; Chiocchetta, M.T. Determination of Spectral Properties. In Lunar Domes; Springer: Milano, Italy, 2013; pp. 39–48. [Google Scholar]
- Lena, R.; Wöhler, C.; Phillips, J.; Sellini, M.; Zompatori, D.; Group, G.L.R.G. A lunar cryptomare dome near Mee H and Drebbel F. Planet. Space Sci. 2009, 57, 267–275. [Google Scholar] [CrossRef]
- Charette, M.P.; McCord, T.B.; Pieters, C.; Adams, J.B. Application of remote spectral reflectance measurements to lunar geology classification and determination of titanium content of lunar soils. J. Geophys. Res. 1974, 79, 1605–1613. [Google Scholar] [CrossRef]
- Lucey, P.G.; Blewett, D.T.; Hawke, B.R. Mapping the FeO and TiO2 content of the lunar surface with multispectral imagery. J. Geophys. Res. Planets 1998, 103, 3679–3699. [Google Scholar] [CrossRef]
- Besse, S.; Sunshine, J.M.; Gaddis, L.R. Volcanic glass signatures in spectroscopic survey of newly proposed lunar pyroclastic deposits. J. Geophys. Res. Planets 2014, 119, 355–372. [Google Scholar] [CrossRef]
- Barker, M.K.; Mazarico, E.; Neumann, G.A.; Zuber, M.T.; Haruyama, J.; Smith, D.E. A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera. Icarus 2016, 273, 346–355. [Google Scholar] [CrossRef] [Green Version]
- Wöhler, C.; Lena, R.; Phillips, J. Formation of lunar mare domes along crustal fractures: Rheologic conditions, dimensions of feeder dikes, and the role of magma evolution. Icarus 2007, 189, 279–307. [Google Scholar] [CrossRef] [Green Version]
- Lena, R.; Wöhler, C.; Phillips, J.; Wirths, M.; Bregante, M.T. Lunar domes in the Doppelmayer region: Spectrophotometry, morphometry, rheology, and eruption conditions. Planet. Space Sci. 2007, 55, 1201–1217. [Google Scholar] [CrossRef]
- Wilson, L.; Head, J.W., III. Ascent and eruption of basaltic magma on the Earth and Moon. J. Geophys. Res. Solid Earth 1981, 86, 2971–3001. [Google Scholar] [CrossRef] [Green Version]
- Spudis, P.D.; Hawke, B.R.; Lucey, P. Composition of Orientale basin deposits and implications for the lunar basin-forming process. J. Geophys. Res. Solid Earth 1984, 89, C197–C210. [Google Scholar] [CrossRef]
- Rubin, A.M. Dikes vs. diapirs in viscoelastic rock. Earth Planet. Sci. Lett. 1993, 117, 653–670. [Google Scholar] [CrossRef]
- Wieczorek, M.A.; Zuber, M.T.; Phillips, R.J. The role of magma buoyancy on the eruption of lunar basalts. Earth Planet. Sci. Lett. 2001, 185, 71–83. [Google Scholar] [CrossRef]
- Thompson, T.J.; Robinson, M.S.; Watters, T.R.; Johnson, M.B. Global lunar wrinkle ridge identification and analysis. In Proceedings of the 48th Annual Lunar and Planetary Science Conference, The Woodlands, TX, USA, 20–24 March 2017; No. 1964. p. 2665. [Google Scholar]
- Pike, R.J. Volcanoes on the inner planets-Some preliminary comparisons of gross topography. In Lunar and Planetary Science Conference Proceedings; Lunar and Planetary Science Institute: Houston, TX, USA, 1978; Volume 9, pp. 3239–3273. [Google Scholar]
- Lena, R.; Wöhler, C.; Phillips, J.; Chiocchetta, M.T. Lunar Domes Classification Scheme. In Lunar Domes; Springer: Milano, Italy, 2013; pp. 59–65. [Google Scholar]
Dome Name | W (m) | L (km) | Reference |
---|---|---|---|
Fracastorius | 11.8 | 234 | This study |
Gruithuisen γ | 119 | 24 | [7] |
Gruithuisen δ | 203 | 41 | [7] |
Mairan T | 201 | 40 | [7] |
South Mairan | 82 | 16 | [7] |
M2 | 66 | 183 | [24] |
Pe1 | 37 | 168 | [24] |
Mee 1 | 32 | 144 | [24] |
Morphometric Parameter | 1600 kg/m3 | 2000 kg/m3 | 2400 kg/m3 | 3000 kg/m3 |
---|---|---|---|---|
Magma rise speed (U) [m/s] | 2.9 × 10−4 | 2.1 × 10−4 | 1.1 × 10−4 | 3.8 × 10−5 |
Dike width (W) [m] | 10.02 | 11.8 | 16.8 | 27.86 |
Dike length (L) [km] | 200 | 234 | 330 | 559 |
Dome Name | η (Pa s) | E (m3/s) | V (km3) | Time (years) | Reference |
---|---|---|---|---|---|
Fracastorius | 3.1 × 105 | 591 | 77.4 | 4.15 | This study |
Gruithuisen γ | 3.2 × 108 | 119 | 135.9 | 38 | [7] |
Gruithuisen δ | 11.8 × 108 | 48 | 57.7 | 38.7 | [7] |
Mairan T | 11.5 × 108 | 24 | 59.7 | 41.5 | [7] |
South Mairan | 1.3 × 108 | 51 | 19.6 | 12.8 | [7] |
M2 | 2.8 × 106 | 219 | 50.9 | 7.2 | [24] |
Pe1 | 7.4 × 105 | 417 | 18.8 | 1.4 | [24] |
Mee 1 | 5.1 × 105 | 869 | 44 | 1.6 | [24] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahrens, C.; Lena, R. An Effusive Lunar Dome Near Fracastorius Crater: Spectral and Morphometric Properties. Remote Sens. 2022, 14, 6135. https://doi.org/10.3390/rs14236135
Ahrens C, Lena R. An Effusive Lunar Dome Near Fracastorius Crater: Spectral and Morphometric Properties. Remote Sensing. 2022; 14(23):6135. https://doi.org/10.3390/rs14236135
Chicago/Turabian StyleAhrens, Caitlin, and Raffaello Lena. 2022. "An Effusive Lunar Dome Near Fracastorius Crater: Spectral and Morphometric Properties" Remote Sensing 14, no. 23: 6135. https://doi.org/10.3390/rs14236135
APA StyleAhrens, C., & Lena, R. (2022). An Effusive Lunar Dome Near Fracastorius Crater: Spectral and Morphometric Properties. Remote Sensing, 14(23), 6135. https://doi.org/10.3390/rs14236135