Retrievals of Chlorophyll-a from GOCI and GOCI-II Data in Optically Complex Lakes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water Sampling and Measurements
2.3. Satellite Image Acquisition and Processing
2.4. Mask Determination and Match-Up Procedures
2.5. Chla Inversion Algorithms
2.6. Model Calibration and Validation
3. Results
3.1. Consistency in Rrc of the GOCI and GOCI-II Data
3.2. Establishment and Comparison of Chla Inversion Models
3.2.1. Correlation of Dominant Factors
3.2.2. Construction and Validation of Empirical Models
3.2.3. Development and Validation of the RF Model
3.3. Temporal and Spatial Variations in Chla in the Three Lakes
3.3.1. Interannual Variation in Chla
3.3.2. Monthly Variation in Chla
3.3.3. Diurnal Variation in Chla
4. Discussion
4.1. Performance and Stability of the Proposed Chla Models
4.2. Uncertainties and Limitations in Model Development
4.3. Potential Reasons for the Temporal and Spatial Distributions of Chla
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beck, R.; Zhan, S.; Liu, H.; Tong, S.; Yang, B.; Xu, M.; Ye, Z.; Huang, Y.; Shu, S.; Wu, Q.; et al. Comparison of satellite reflectance algorithms for estimating chlorophyll-a in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations. Remote Sens. Environ. 2016, 178, 15–30. [Google Scholar] [CrossRef]
- Huang, C.; Yang, H.; Zhu, A.; Zhang, M.; Lü, H.; Huang, T.; Zou, J.; Li, Y. Evaluation of the Geostationary Ocean Color Imager (GOCI) to monitor the dynamic characteristics of suspension sediment in Taihu Lake. Int. J. Remote Sens. 2015, 36, 3859–3874. [Google Scholar] [CrossRef]
- Palmer, S.C.J.; Kutser, T.; Hunter, P.D. Remote sensing of inland waters: Challenges, progress and future directions. Remote Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef]
- Cao, Z.; Ma, R.; Duan, H.; Pahlevan, N.; Melack, J.; Shen, M.; Xue, K. A machine learning approach to estimate chlorophyll-a from Landsat-8 measurements in inland lakes. Remote Sens. Environ. 2020, 248, 111974. [Google Scholar] [CrossRef]
- Duan, H.; Tao, M.; Loiselle, S.A.; Zhao, W.; Cao, Z.; Ma, R.; Tang, X. MODIS observations of cyanobacterial risks in a eutrophic lake: Implications for long-term safety evaluation in drinking-water source. Water Res. 2017, 122, 455–470. [Google Scholar] [CrossRef]
- Shen, M.; Luo, J.; Cao, Z.; Xue, K.; Qi, T.; Ma, J.; Liu, D.; Song, K.; Feng, L.; Duan, H. Random forest: An optimal chlorophyll-a algorithm for optically complex inland water suffering atmospheric correction uncertainties. J. Hydrol. 2022, 615, 128685. [Google Scholar] [CrossRef]
- Duan, H.; Ma, R.; Zhang, Y.; Loiselle, S.A.; Xu, J.; Zhao, C.; Zhou, L.; Shang, L. A new three-band algorithm for estimating chlorophyll concentrations in turbid inland lakes. Environ. Res. Lett. 2010, 5, 44009. [Google Scholar] [CrossRef]
- Huang, X.; Zhu, J.; Han, B.; Jamet, C.; Tian, Z.; Zhao, Y.; Li, J.; Li, T. Evaluation of Four Atmospheric Correction Algorithms for GOCI Images over the Yellow Sea. Remote Sens. 2019, 11, 1631. [Google Scholar] [CrossRef]
- Jiang, G.; Loiselle, S.A.; Yang, D.; Ma, R.; Su, W.; Gao, C. Remote estimation of chlorophyll a concentrations over a wide range of optical conditions based on water classification from VIIRS observations. Remote Sens. Environ. 2020, 241, 111735. [Google Scholar] [CrossRef]
- Zhang, F.; Li, J.; Wang, C.; Wang, S. Estimation of water quality parameters of GF-1 WFV in turbid water based on soft classification. Natl. Remote Sens. Bull. 2023, 27, 769–779. [Google Scholar] [CrossRef]
- Pan, Y.; Guo, Q.; Sun, J. Advances in remote sensing inversion method of chlorophyll a concentration. Sci. Surv. Mapp. 2017, 42, 43–48. [Google Scholar] [CrossRef]
- Kolluru, S.; Tiwari, S.P. Modeling ocean surface chlorophyll-a concentration from ocean color remote sensing reflectance in global waters using machine learning. Sci. Total Environ. 2022, 844, 157191. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Guo, H.; Huang, J.J.; Tian, S.; Xu, W.; Mai, Y. An ensemble machine learning model for water quality estimation in coastal area based on remote sensing imagery. J. Environ. Manag. 2022, 323, 116187. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Shen, M.; Kutser, T.; Liu, M.; Qi, T.; Ma, J.; Ma, R.; Duan, H. What water color parameters could be mapped using MODIS land reflectance products: A global evaluation over coastal and inland waters. Earth-Sci. Rev. 2022, 232, 104154. [Google Scholar] [CrossRef]
- Speiser, J.L.; Miller, M.E.; Tooze, J.; Ip, E. A comparison of random forest variable selection methods for classification prediction modeling. Expert Syst. Appl. 2019, 134, 93–101. [Google Scholar] [CrossRef]
- Li, Y.; Shi, K.; Zhang, Y.; Zhu, G.; Qin, B.; Zhang, Y.; Liu, M.; Zhu, M.; Dong, B.; Guo, Y. Remote sensing of column-integrated chlorophyll a in a large deep-water reservoir. J. Hydrol. 2022, 610, 127918. [Google Scholar] [CrossRef]
- Guo, Y.; Huang, C.; Zhang, Y.; Li, Y.; Chen, W. A Novel Multitemporal Image-Fusion Algorithm: Method and Application to GOCI and Himawari Images for Inland Water Remote Sensing. IEEE Trans. Geosci. Remote 2020, 58, 4018–4032. [Google Scholar] [CrossRef]
- Lei, S.; Xu, J.; Li, Y.; Du, C.; Liu, G.; Zheng, Z.; Xu, Y.; Lyu, H.; Mu, M.; Miao, S.; et al. An approach for retrieval of horizontal and vertical distribution of total suspended matter concentration from GOCI data over Lake Hongze. Sci. Total Environ. 2020, 700, 134524. [Google Scholar] [CrossRef]
- Qi, L.; Hu, C.; Visser, P.M.; Ma, R. Diurnal changes of cyanobacteria blooms in Taihu Lake as derived from GOCI observations. Limnol. Oceanogr. 2018, 63, 1711–1726. [Google Scholar] [CrossRef]
- Prak, M.; Jung, H.C.; Lee, S.; Ahn, J.; Bae, S.; Choi, J. The GOCI-II Early Mission Ocean Color Products in Comparison with the GOCI Toward the Continuity of Chollian Multi-satellite Ocean Color Data. Korean J. Remote Sens. 2021, 37, 1281–1293. [Google Scholar] [CrossRef]
- Xue, K.; Ma, R.; Duan, H.; Shen, M.; Boss, E.; Cao, Z. Inversion of inherent optical properties in optically complex waters using sentinel-3A/OLCI images: A case study using China's three largest freshwater lakes. Remote Sens. Environ. 2019, 225, 328–346. [Google Scholar] [CrossRef]
- Luo, J.; Li, X.; Ma, R.; Li, F.; Duan, H.; Hu, W.; Qin, B.; Huang, W. Applying remote sensing techniques to monitoring seasonal and interannual changes of aquatic vegetation in Taihu Lake, China. Ecol. Indic. 2016, 60, 503–513. [Google Scholar] [CrossRef]
- Cao, Z.; Duan, H.; Shen, M.; Ma, R.; Xue, K.; Liu, D.; Xiao, Q. Using VIIRS/NPP and MODIS/Aqua data to provide a continuous record of suspended particulate matter in a highly turbid inland lake. Int. J. Appl. Earth Obs. 2018, 64, 256–265. [Google Scholar] [CrossRef]
- Jeffrey, S.W.; Humphrey, G.F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 1975, 167, 191–194. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.; Han, X.; Chen, X.; Qi, L. Long-Term Distribution Patterns of Chlorophyll-a Concentration in China's Largest Freshwater Lake: MERIS Full-Resolution Observations with a Practical Approach. Remote Sens. 2015, 7, 275–299. [Google Scholar] [CrossRef]
- Ahn, J.; Park, Y.; Ryu, J.; Lee, B.; Oh, I.S. Development of atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI). Ocean Sci. J. 2012, 47, 247–259. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, L. Atmospheric Correction Using the Information From the Short Blue Band. IEEE Trans. Geosci. Remote 2018, 56, 6224–6237. [Google Scholar] [CrossRef]
- Liang, Q.; Zhang, Y.; Ma, R.; Loiselle, S.; Li, J.; Hu, M. A MODIS-Based Novel Method to Distinguish Surface Cyanobacterial Scums and Aquatic Macrophytes in Lake Taihu. Remote Sens. 2017, 9, 133. [Google Scholar] [CrossRef]
- Xu, J.; Liu, H.; Lin, J.; Lyu, H.; Dong, X.; Li, Y.; Guo, H.; Wang, H. Long-term monitoring particulate composition change in the Great Lakes using MODIS data. Water Res. 2022, 222, 118932. [Google Scholar] [CrossRef]
- Xue, K.; Ma, R.H.; Cao, Z.G.; Hu, M.; Li, J. Applicability evaluation and method selection in detecting cyanobacterial bloom using HY-1C/D CZI data for inland lakes. Natl. Remote Sens. Bull. 2023, 27, 171–186. [Google Scholar] [CrossRef]
- Qi, L.; Hu, C.; Duan, H.; Barnes, B.; Ma, R. An EOF-Based Algorithm to Estimate Chlorophyll a Concentrations in Taihu Lake from MODIS Land-Band Measurements: Implications for Near Real-Time Applications and Forecasting Models. Remote Sens. 2014, 6, 10694–10715. [Google Scholar] [CrossRef]
- Le, C.; Li, Y.; Zha, Y.; Sun, D.; Huang, C.; Lu, H. A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China. Remote Sens. Environ. 2009, 113, 1175–1182. [Google Scholar] [CrossRef]
- Kim, W.; Moon, J.; Park, Y.; Ishizaka, J. Evaluation of chlorophyll retrievals from Geostationary Ocean Color Imager (GOCI) for the North-East Asian region. Remote Sens. Environ. 2016, 184, 482–495. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Y.; Zhou, Y.; Liu, X.; Zhu, G.; Qin, B.; Gao, G. Long-term MODIS observations of cyanobacterial dynamics in Lake Taihu: Responses to nutrient enrichment and meteorological factors. Sci. Rep. 2017, 7, 40326. [Google Scholar] [CrossRef]
- Son, Y.B.; Min, J.; Ryu, J. Detecting massive green algae (Ulva prolifera) blooms in the Yellow Sea and East China Sea using Geostationary Ocean Color Imager (GOCI) data. Ocean Sci. J. 2012, 47, 359–375. [Google Scholar] [CrossRef]
- Hu, M.; Zhang, Y.; Ma, R.; Xue, K.; Cao, Z.; Chu, Q.; Jing, Y. Optimized remote sensing estimation of the lake algal biomass by considering the vertically heterogeneous chlorophyll distribution: Study case in Lake Chaohu of China. Sci. Total Environ. 2021, 771, 144811. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhao, G.; Chang, C.; Yuan, X.; Wang, Z. Random Forest Classifier in Remote Sensing Information Extraction:A Review of Applications and Future Development. Remote Sens. Inf. 2019, 34, 8–14. [Google Scholar] [CrossRef]
- Wang, J.; Xiaodan, W.; Dujuan, M.; Jianguang, W.; Qing, X. Remote sensing retrieval based on machine learning algorithm: Uncertainty analysis. Natl. Remote Sens. Bull. 2023, 27, 790–801. [Google Scholar] [CrossRef]
- Lary, D.J.; Alavi, A.H.; Gandomi, A.H.; Walker, A.L. Machine learning in geosciences and remote sensing. Geosci. Front. 2016, 7, 3–10. [Google Scholar] [CrossRef]
- Xue, K.; Ma, R.; Cao, Z.; Shen, M.; Hu, M.; Xiong, J. Monitoring Fractional Floating Algae Cover Over Eutrophic Lakes Using Multisensor Satellite Images: MODIS, VIIRS, GOCI, and OLCI. IEEE Trans. Geosci. Remote 2022, 60, 4211715. [Google Scholar] [CrossRef]
- Lin, J.; Huang, T.; Zhao, X.; Chen, Y.; Zhang, Q.; Yuan, Q. Robust Thick Cloud Removal for Multitemporal Remote Sensing Images Using Coupled Tensor Factorization. IEEE Trans. Geosci. Remote 2022, 60, 5406916. [Google Scholar] [CrossRef]
- Kim, S.; Yoon, H. Application of classification coupled with PCA and SMOTE, for obtaining safety factor of landslide based on HRA. Bull. Eng. Geol. Environ. 2023, 82, 381. [Google Scholar] [CrossRef]
- Xue, K.; Ma, R.; Wang, D.; Shen, M. Optical Classification of the Remote Sensing Reflectance and Its Application in Deriving the Specific Phytoplankton Absorption in Optically Complex Lakes. Remote Sens. 2019, 11, 184. [Google Scholar] [CrossRef]
- Yuan, J.; Cao, Z.G.; Ma, J.; Shen, M.; Qi, T.; Duan, H. Remote sensed analysis of spatial and temporal variation in phenology of algal blooms in Lake Chaohu since 1980s. J. Lake Sci. 2023, 35, 57–72. [Google Scholar]
- Liu, G.; Li, Y.; Lv, H.; Mu, M.; Lei, S.; Wen, S.; Bi, S.; Ding, X. Remote Sensing of Chlorophyll-a Concentrations in Lake Hongze Using Long Time Series MERIS Observations. Environ. Sci. 2017, 38, 3645–3656. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Cheng, J.; Zou, L.; Zhang, Q.; Zhang, M.; Gong, Z.; Xie, S.; Cai, Y. Water quality change and driving forces of Lake Hongze from 2012 to 2018. J. Lake Sci. 2021, 33, 715–726. [Google Scholar] [CrossRef]
- Wu, D.; Jia, G.; Wu, H. Chlorophyll-a concentration variation characteristics of the algae-dominant and macro-phyte-dominant areas in Lake Taihu and its driving factors, 2007–2019. J. Lake Sci. 2021, 33, 1364–1375. [Google Scholar] [CrossRef]
- Qin, Z.; Ruan, B.; Yang, J.; Wei, Z.; Song, W.; Sun, Q. Long-Term Dynamics of Chlorophyll-a Concentration and Its Response to Human and Natural Factors in Lake Taihu Based on MODIS Data. Sustainability 2022, 14, 16874. [Google Scholar] [CrossRef]
ID | Model Name | Algorithm Form | Study Area | Data Source | R2 | Reference |
---|---|---|---|---|---|---|
1 | Four band algorithms (FBA) | Lake Taihu, China | In situ data | 0.97 | Le (2009) [32] | |
2 | Three band algorithms (TBA) | Lake Taihu, China | GOCI | 0.35 | Duan (2010) [7] | |
3 | Fluorescence line height (FLH) | Clear and turbid watersaround Korea and Japan | GOCI | 0.90 | Kim (2016) [33] | |
4 | Band ratio (BR) | Lake Taihu, China | GOCI | 0.71 | Guo (2020) [17] | |
5 | Normalized difference chlorophyll index (NDCI) | 4 estuaries and bays, USA | MERIS | 0.90 | Mishra (2012) [34] | |
6 | Normalized green–red difference index (NGRDI) | Lake Poyang, China | MERIS | 0.70 | Feng (2015) [25] | |
7 | Spectral index (SI) | Lake Taihu, China | MODIS | 0.72 | Shi (2017) [35] | |
8 | RF | Rrs | 228 lakes, Global | MODIS | 0.51 | Cao (2022) [14] |
9 | Extreme gradient boosting tree (BST) | Rrc | 67 lakes, China | Landsat 8-Operational Land Imager (OLI) | 0.79 | Cao (2020) [4] |
10 | IGAG | Yellow Sea and East China Sea | GOCI | / | Son (2012) [36] | |
11 | AFAI | Lake Taihu, China | GOCI | / | Qi (2018) [19] | |
12 | ABI | Lake Chaohu, China | MODIS | / | Hu (2021) [37] |
Single-Band Factor | R2 | Index Factor | R2 | Index Factor | R2 |
---|---|---|---|---|---|
B1 | 0.13 | AFAI (B7, B5, B8) | 0.78 | FLH (B6, B5, B7) | 0.66 |
B2 | 0.04 | ABI (B5, B3, B4, B8) | 0.58 | IGAG (B4, B5, B7) | 0.47 |
B3 | 0.06 | B6/B5 | 0.34 | NDCI1 (B6, B5) | 0.34 |
B4 | 0.08 | B7/B5 | 0.70 | NDCI2 (B7, B3) | 0.40 |
B5 | 0.27 | B7/B6 | 0.74 | NGRDI (B4, B6) | 0.41 |
B6 | 0.29 | B8/B7 | 0.26 | SI (B5, B8) | 0.68 |
B7 | 0.18 | FBA1 (B4, B5, B7, B6) | 0.32 | TBA1 (B5, B4, B6) | 0.40 |
B8 | 0.21 | FBA2 (B5, B6, B8, B7) | 0.48 | TBA2 (B6, B7, B8) | 0.59 |
Model Equation | AFAI | B7/B5 | B7/B6 | FLH | SI |
---|---|---|---|---|---|
y = a × x + b | 0.600 | 0.487 | 0.544 | 0.405 | 0.443 |
y = a × x2 + b × x + c | 0.764 | 0.668 | 0.675 | 0.485 | 0.589 |
y = a × exp(b × x) | 0.782 | 0.678 | 0.690 | 0.505 | 0.618 |
y = a × exp(b × x) + c | 0.781 | 0.694 | 0.696 | 0.402 | 0.425 |
y = a × exp(b × x + c) | 0.068 | 0.677 | 0.689 | 0.023 | 0.087 |
y = 100/(1 + exp(a × x + b)) | 0.655 | 0.522 | 0.562 | 0.452 | 0.509 |
ID | Factor | Training (R2) | Validation (R2) |
---|---|---|---|
1 | B1–B8 | 0.90 | 0.63 |
B4–B8 | 0.90 | 0.67 | |
B5–B8 | 0.88 | 0.66 | |
2 | B4–B8, AFAI | 0.92 | 0.82 |
B4–B8, B7/B5 | 0.91 | 0.79 | |
B4–B8, B7/B6 | 0.92 | 0.79 | |
B4–B8, FLH | 0.90 | 0.75 | |
B4–B8, SI | 0.90 | 0.77 | |
3 | B4–B8, AFAI, B7/B5 | 0.93 | 0.81 |
B4–B8, AFAI, B7/B6 | 0.93 | 0.81 | |
B4–B8, AFAI, FLH | 0.93 | 0.81 | |
B4–B8, AFAI, SI | 0.94 | 0.84 | |
4 | B4–B8, AFAI, SI, B7/B5 | 0.92 | 0.82 |
B4–B8, AFAI, SI, B7/B6 | 0.92 | 0.82 | |
B4–B8, AFAI, SI, FLH | 0.92 | 0.83 | |
B4–B8, AFAI, SI, FLH, B7/B5 | 0.91 | 0.81 | |
B4–B8, AFAI, SI, FLH, B7/B6 | 0.91 | 0.82 | |
All | 0.91 | 0.81 |
Lake | Class | Number of Class | Day of the Year |
---|---|---|---|
Lake Chaohu | Class 1 | 25 | 228 ± 82 |
Class 2 | 54 | 163 ± 70 | |
Class 3 | 86 | 211 ± 69 | |
Lake Taihu | Class 1 | 31 | 207 ± 99 |
Class 2 | 35 | 169 ± 73 | |
Class 3 | 106 | 190 ± 69 | |
Lake Hongze | Class 1 | 26 | 179 ± 71 |
Class 2 | 28 | 175 ± 75 | |
Class 3 | 43 | 176 ± 55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Wei, X.; Huang, Z.; Li, H.; Ma, R.; Cao, Z.; Shen, M.; Xue, K. Retrievals of Chlorophyll-a from GOCI and GOCI-II Data in Optically Complex Lakes. Remote Sens. 2023, 15, 4886. https://doi.org/10.3390/rs15194886
Guo Y, Wei X, Huang Z, Li H, Ma R, Cao Z, Shen M, Xue K. Retrievals of Chlorophyll-a from GOCI and GOCI-II Data in Optically Complex Lakes. Remote Sensing. 2023; 15(19):4886. https://doi.org/10.3390/rs15194886
Chicago/Turabian StyleGuo, Yuyu, Xiaoqi Wei, Zehui Huang, Hanhan Li, Ronghua Ma, Zhigang Cao, Ming Shen, and Kun Xue. 2023. "Retrievals of Chlorophyll-a from GOCI and GOCI-II Data in Optically Complex Lakes" Remote Sensing 15, no. 19: 4886. https://doi.org/10.3390/rs15194886
APA StyleGuo, Y., Wei, X., Huang, Z., Li, H., Ma, R., Cao, Z., Shen, M., & Xue, K. (2023). Retrievals of Chlorophyll-a from GOCI and GOCI-II Data in Optically Complex Lakes. Remote Sensing, 15(19), 4886. https://doi.org/10.3390/rs15194886