LOS Deformation Correction Method for DInSAR in Mining Areas by Fusing Ground Data without Control Points
Abstract
:1. Introduction
2. Methods
2.1. Measurement of the Ground Data
- Grid nodes generated from the ground point clouds (for calculating subsidence)
- Corner points of building doors, windows, and walls (for calculating subsidence and horizontal displacements)
- Circle centers within cross-sections of the electric poles and tree trunks (for calculating horizontal displacements)
2.2. Fusion of the “Space–Ground” Data
2.2.1. BPM-EKTF Subsidence Prediction Model
2.2.2. Data Fusion Backgrounds and Steps
2.3. LOS Deformation Correction of the DInSAR
3. Engineering Experiment
3.1. Experimental Area and Data
3.2. Results and Analysis of the Correction
4. Discussion
4.1. Simulation Experiment Verification of the Data Fusion
4.2. Possibility Analysis of the Method Extensions
- Extension of the application scenarios
- Extension of the correction strategies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Q.; Tang, F.; Wang, F.; Tang, J.; Fan, Z.; Ma, T.; Su, Y.; Xue, J. A New Technical Pathway for Extracting High Accuracy Surface Deformation Information in Coal Mining Areas Using UAV LiDAR Data: An Example from the Yushen Mining Area in Western China. Measurement 2023, 218, 113220. [Google Scholar] [CrossRef]
- Zhang, L.; Cai, X.; Wang, Y.; Wei, W.; Liu, B.; Jia, S.; Pang, T.; Bai, F.; Wei, Z. Long-Term Ground Multi-Level Deformation Fusion and Analysis Based on a Combination of Deformation Prior Fusion Model and OTD-InSAR for Longwall Mining Activity. Measurement 2020, 161, 107911. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, C.; Tomás, R.; Chen, L.; Yang, C.; Zhang, Y. Retrieving the Kinematic Process of Repeated-Mining-Induced Landslides by Fusing SAR/InSAR Displacement, Logistic Model, and Probability Integral Method. Remote Sens. 2023, 15, 3145. [Google Scholar] [CrossRef]
- Chi, S.; Wang, L.; Yu, X.; Lv, W.; Fang, X. Research on Dynamic Prediction Model of Surface Subsidence in Mining Areas with Thick Unconsolidated Layers. Energy Explor. Exploit. 2021, 39, 927–943. [Google Scholar] [CrossRef]
- Kong, D.; Pu, S.; Cheng, Z.; Wu, G.; Liu, Y. Coordinated Deformation Mechanism of the Top Coal and Filling Body of Gob-Side Entry Retaining in a Fully Mechanized Caving Face. Int. J. Geomech. 2021, 21, 04021030. [Google Scholar] [CrossRef]
- Pengtao, Z.; Haiqiao, W.; Long, W.; Xinlei, W.; Hongyu, M. Parameter Optimization of Constant Pressure Grouting Technology for Borehole Sealing with Inorganic Noncondensable Material in Tectonic Coalbed of South China. Geofluids 2023, 2023, 6053318. [Google Scholar] [CrossRef]
- Ma, S.; Qiu, H.; Yang, D.; Wang, J.; Zhu, Y.; Tang, B.; Sun, K.; Cao, M. Surface Multi-Hazard Effect of Underground Coal Mining. Landslides 2023, 20, 39–52. [Google Scholar] [CrossRef]
- Sevil, J.; Benito-Calvo, A.; Gutiérrez, F. Sinkhole Subsidence Monitoring Combining Terrestrial Laser Scanner and High-precision Levelling. Earth Surf. Process. Landforms 2021, 46, 1431–1444. [Google Scholar] [CrossRef]
- Jiang, N.; Li, H.; Hu, Y.; Zhang, J.; Dai, W.; Li, C.; Zhou, J.-W. A Monitoring Method Integrating Terrestrial Laser Scanning and Unmanned Aerial Vehicles for Different Landslide Deformation Patterns. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10242–10255. [Google Scholar] [CrossRef]
- Pawłuszek-Filipiak, K.; Wielgocka, N.; Tondaś, D.; Borkowski, A. Monitoring Nonlinear and Fast Deformation Caused by Underground Mining Exploitation Using Multi-Temporal Sentinel-1 Radar Interferometry and Corner Reflectors: Application, Validation and Processing Obstacles. Int. J. Digit. Earth 2023, 16, 251–271. [Google Scholar] [CrossRef]
- Gojković, Z.; Kilibarda, M.; Brajović, L.; Marjanović, M.; Milutinović, A.; Ganić, A. Ground Surface Subsidence Monitoring Using Sentinel-1 in the “Kostolac” Open Pit Coal Mine. Remote Sens. 2023, 15, 2519. [Google Scholar] [CrossRef]
- Manconi, A. How Phase Aliasing Limits Systematic Space-Borne DInSAR Monitoring and Failure Forecast of Alpine Landslides. Eng. Geol. 2021, 287, 106094. [Google Scholar] [CrossRef]
- Jiang, X.; Min, X.; Ye, T.; Li, X.; Hu, X. Monitoring the Subsidence at Different Periods in High Underground Water Level Coal Mine Areas Using Differential Interferometric Synthetic Aperture Radar (D-InSAR). Geocarto Int. 2023, 38, 2215730. [Google Scholar] [CrossRef]
- Monika; Govil, H.; Guha, S. Underground Mine Deformation Monitoring Using Synthetic Aperture Radar Technique: A Case Study of Rajgamar Coal Mine of Korba Chhattisgarh, India. J. Appl. Geophys. 2023, 209, 104899. [Google Scholar] [CrossRef]
- Kermarrec, G.; Lösler, M.; Guerrier, S.; Schön, S. The Variance Inflation Factor to Account for Correlations in Likelihood Ratio Tests: Deformation Analysis with Terrestrial Laser Scanners. J. Geod. 2022, 96, 86. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.; Huang, J. Wall Length-Based Deformation Monitoring Method of Brick-Concrete Buildings in Mining Area Using Terrestrial Laser Scanning. J. Civil Struct. Health Monit. 2023, 1–14. [Google Scholar] [CrossRef]
- Diao, X.; Wu, K.; Hu, D.; Li, L.; Zhou, D. Combining Differential SAR Interferometry and the Probability Integral Method for Three-Dimensional Deformation Monitoring of Mining Areas. Int. J. Remote Sens. 2016, 37, 5196–5212. [Google Scholar] [CrossRef]
- Yang, Z.F.; Li, Z.W.; Zhu, J.J.; Preusse, A.; Yi, H.W.; Wang, Y.J.; Papst, M. An Extension of the InSAR-Based Probability Integral Method and Its Application for Predicting 3-D Mining-Induced Displacements Under Different Extraction Conditions. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3835–3845. [Google Scholar] [CrossRef]
- Wang, L.; Shangjun, Z.; Chuang, J.; Jingyu, L.; Kegui, J.; Chaoqun, T.; Tao, W.; Qing-biao, G. Research on 3D Laser Scanning Monitoring Method for Mining Subsidence Based on the Auxiliary for Probability Integral Method. KSCE J. Civ. Eng. 2021, 25, 4403–4416. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, L.; Yu, X.; Wei, T.; Chi, S.; Guo, Q. Prediction of 3D Deformation Due to Large Gradient Mining Subsidence Based on InSAR and Constraints of IDPIM Model. Int. J. Remote Sens. 2021, 42, 208–239. [Google Scholar] [CrossRef]
- Li, J.; Wang, L. Mining Subsidence Monitoring Model Based on BPM-EKTF and TLS and Its Application in Building Mining Damage Assessment. Environ. Earth Sci. 2021, 80, 396. [Google Scholar] [CrossRef]
- Hou, Z.; Yang, K.; Li, Y.; Gao, W.; Wang, S.; Ding, X.; Li, Y. Dynamic Prediction Model of Mining Subsidence Combined with D-InSAR Technical Parameter Inversion. Environ. Earth Sci. 2022, 81, 307. [Google Scholar] [CrossRef]
- Ding, X.; Yang, K.; Zhang, C.; Wang, S.; Hou, Z.; Zhao, H. Dynamic Prediction of Displacement and Deformation of Any Point on Mining Surface Based on B-Normal Model. Environ. Sci. Pollut. Res. 2023, 30, 78569–78597. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Li, M.; Dai, L.; Guo, J.; Dai, H.; Tang, W. Construction of “Space-Sky-Ground” Integrated Collaborative Monitoring Framework for Surface Deformation in Mining Area. Remote Sens. 2022, 14, 840. [Google Scholar] [CrossRef]
- Jiang, K.; Yang, K.; Zhang, Y.; Li, Y.; Li, T.; Zhao, X. An Extraction Method for Large Gradient Three-Dimensional Displacements of Mining Areas Using Single-Track InSAR, Boltzmann Function, and Subsidence Characteristics. Remote Sens. 2023, 15, 2946. [Google Scholar] [CrossRef]
- Zhu, Y.; Yan, Y.; Zhang, Y.; Zhang, W.; Kong, J.; Dai, A. Study on the Evolution Law of Overlying Strata Structure in Stope Based on “Space–Air–Ground” Integrated Monitoring Network and Discrete Element. Drones 2023, 7, 309. [Google Scholar] [CrossRef]
- Cheng, X.; Cheng, X.; Li, Q.; Ma, L. Automatic Registration of Terrestrial and Airborne Point Clouds Using Building Outline Features. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 628–638. [Google Scholar] [CrossRef]
- Zeng, F.; Li, L.; Wu, K. Extraction of Topographic Deformation Based on the 3D Information of Individual Trees. Int. J. Remote Sens. 2019, 40, 8668–8682. [Google Scholar] [CrossRef]
- Gu, Y.; Zhou, D.; Zhang, D.; Wu, K.; Zhou, B. Study on Subsidence Monitoring Technology Using Terrestrial 3D Laser Scanning without a Target in a Mining Area: An Example of Wangjiata Coal Mine, China. Bull. Eng. Geol. Environ. 2020, 79, 3575–3583. [Google Scholar] [CrossRef]
- Wang, X. GlobalMatch: Registration of Forest Terrestrial Point Clouds by Global Matching of Relative Stem Positions. ISPRS J. Photogramm. Remote Sens. 2023, 197, 71–86. [Google Scholar] [CrossRef]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Chen, C.; Chang, B.; Li, Y.; Shi, B. Filtering Airborne LiDAR Point Clouds Based on a Scale-Irrelevant and Terrain-Adaptive Approach. Measurement 2021, 171, 108756. [Google Scholar] [CrossRef]
- Lian, X.; Dai, H.; Ge, L.; Cai, Y. Assessment of a House Affected by Ground Movement Using Terrestrial Laser Scanning and Numerical Modeling. Environ. Earth Sci. 2020, 79, 190. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Z.; Zhu, J.; Preusse, A.; Hu, J.; Feng, G.; Wang, Y.; Papst, M. An InSAR-Based Temporal Probability Integral Method and Its Application for Predicting Mining-Induced Dynamic Deformations and Assessing Progressive Damage to Surface Buildings. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 472–484. [Google Scholar] [CrossRef]
- Hu, Q.; Cui, X.; Liu, W.; Feng, R.; Ma, T.; Li, C. Quantitative and Dynamic Predictive Model for Mining-Induced Movement and Deformation of Overlying Strata. Eng. Geol. 2022, 311, 106876. [Google Scholar] [CrossRef]
- Maghsoudi, Y.; Hooper, A.J.; Wright, T.J.; Lazecky, M.; Ansari, H. Characterizing and Correcting Phase Biases in Short-Term, Multilooked Interferograms. Remote Sens. Environ. 2022, 275, 113022. [Google Scholar] [CrossRef]
- Olsen, K.M.; Calef, M.T.; Agram, P.S. Contextual Uncertainty Assessments for InSAR-Based Deformation Retrieval Using an Ensemble Approach. Remote Sens. Environ. 2023, 287, 113456. [Google Scholar] [CrossRef]
- Piotrowski, A.P.; Napiorkowski, J.J.; Piotrowska, A.E. Particle Swarm Optimization or Differential Evolution—A Comparison. Eng. Appl. Artif. Intell. 2023, 121, 106008. [Google Scholar] [CrossRef]
- Sun, W.; Wang, J.; Jin, F.; Li, Y.; Yang, Y. An Adaptive Cross-Section Extraction Algorithm for Deformation Analysis. Tunn. Undergr. Space Technol. 2022, 121, 104332. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, L.; Yu, X. Retrieving 3D Large Gradient Deformation Induced to Mining Subsidence Based on Fusion of Boltzmann Prediction Model and Single-Track InSAR Earth Observation Technology. IEEE Access 2021, 9, 87156–87172. [Google Scholar] [CrossRef]
Number | Date | Orbital Direction | Polarization Mode | Model | Incidence Angle |
---|---|---|---|---|---|
1 | 09 July 2019 | Ascending | VV | IW | 36~37 |
2 | 21 July 2019 | Ascending | VV | IW | 36~37 |
3 | 02 August 2019 | Ascending | VV | IW | 36~37 |
4 | 14 August 2019 | Ascending | VV | IW | 36~37 |
5 | 26August 2019 | Ascending | VV | IW | 36~37 |
6 | 07 September 2019 | Ascending | VV | IW | 36~37 |
7 | 19 September 2019 | Ascending | VV | IW | 36~37 |
8 | 01 October 2019 | Ascending | VV | IW | 36~37 |
9 | 13 October 2019 | Ascending | VV | IW | 36~37 |
10 | 25 October 2019 | Ascending | VV | IW | 36~37 |
Working Face and Geology | Subsidence Prediction Model | |||
---|---|---|---|---|
A | B | |||
Trend length | =600 m | Subsidence factor | =0.85 | |
Tendency length | =300 m | Tangent of major influence angle | =1.8 | =2.0 |
Mined velocity | =3.4 m/day | Horizontal displacement factor | =0.3 | |
Mined depth | =400 m | Angle of maximum subsidence | =87° | |
Thickness of the coal seam | =4.3 | Deviation of inflection point | =0 m | |
Dip angle of the coal seam | =5° | Time influence factor | c = 0.3 and k = 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Yan, Y.; Cai, J. LOS Deformation Correction Method for DInSAR in Mining Areas by Fusing Ground Data without Control Points. Remote Sens. 2023, 15, 4862. https://doi.org/10.3390/rs15194862
Li J, Yan Y, Cai J. LOS Deformation Correction Method for DInSAR in Mining Areas by Fusing Ground Data without Control Points. Remote Sensing. 2023; 15(19):4862. https://doi.org/10.3390/rs15194862
Chicago/Turabian StyleLi, Jingyu, Yueguan Yan, and Jinchi Cai. 2023. "LOS Deformation Correction Method for DInSAR in Mining Areas by Fusing Ground Data without Control Points" Remote Sensing 15, no. 19: 4862. https://doi.org/10.3390/rs15194862
APA StyleLi, J., Yan, Y., & Cai, J. (2023). LOS Deformation Correction Method for DInSAR in Mining Areas by Fusing Ground Data without Control Points. Remote Sensing, 15(19), 4862. https://doi.org/10.3390/rs15194862