Predictive Prospecting Using Remote Sensing in a Mountainous Terrestrial Volcanic Area, in Western Bangongco–Nujiang Mineralization Belt, Tibet
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Remote Sensing Data and Preprocessing
3.1.1. Landsat 8
3.1.2. GF-5
3.1.3. Radar Data
3.1.4. Global Digital Elevation Model
3.2. Alteration Information Extraction
3.2.1. Multispectral Alteration Anomaly Extraction
3.2.2. Mineral Identification Based on Hyperspectral
3.3. Volcanic Crater Interpretation
4. Results
4.1. Alteration Anomaly Extraction
4.2. Crater Identification Result
4.3. Geochemical Information Overlay
4.4. Synthesis Anomaly Zone Classification
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.X.; Tang, J.X.; Lin, B.; Wang, Q.; He, L.; Yan, G.; Shao, R.; Wu, Q.; Du, Q.; Zhaxi, P.C. Geochemistry of magnetite from the Mamupu Cu polymetallic deposit, Yulong belt, Tibet: Implications for magnetite genesis, stages and mechanism of formation. Ore Geol. Rev. 2023, 154, 105334. [Google Scholar]
- Song, Y.; Tang, J.X.; Qu, X.M.; Wang, D.H.; Xin, H.B.; Yang, C.; Lin, B.; Fan, S.F. Progress in the Study of Mineralization in the Bangongco-Nujiang Metallogenic Belt and Some New Recognition. Adv. Earth Sci. 2014, 29, 795–809. [Google Scholar]
- Yin, A.; Harrison, T.M. Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef]
- Plumlee, G.S. The environmental geology of mineral deposits. Soc. Econ. Geol. Rev. Econ. Geol. 1999, 6A, 71–116. [Google Scholar]
- Hedenquist, J.W.; Lowenstern, J.B. The role of magmas in the formation of hydrothermal ore deposits. Nature 1994, 370, 519–527. [Google Scholar] [CrossRef]
- Fang, X.; Tang, J.X.; Song, Y.; Beaudoin, G.; Yang, C.; Huang, X.W. Genesis of the Shangxu orogenic gold deposit, Bangong-Nujiang suture belt, central Tibet, China: Constraints from H, O, C, Si, He and Ar isotopes. Ore Geol. Rev. 2020, 127, 103810. [Google Scholar] [CrossRef]
- Li, G.M.; Qin, K.Z.; Li, J.X.; Evans, N.J.; Zhao, J.X.; Cao, M.J.; Zhang, X.N. Cretaceous magmatism and metallogeny in the Bangong–Nujiang metallogenic belt, central Tibet: Evidence from petrogeochemistry, zircon U–Pb ages, and Hf–O isotopic compositions. Gondwana Res. 2017, 41, 110–127. [Google Scholar] [CrossRef]
- Song, Y.; Yang, H.H.; Lin, B.; Liu, Z.B.; Wang, Q.; Gao, K.; Yang, C.; Fang, X. The preservation system of epithermal deposits in South Qiangtang terrane of central Tibetan Plateau and its significance: A case study of the tiegelongnan superlarge deposit. Acta Geosci. Sin. 2017, 38, 659–669. [Google Scholar]
- Sillitoe, R.H. Porphyry Copper Systems. Econo Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef]
- Kapp, P.; Murphy, M.A.; Yin, A.; Harrison, T.M.; Ding, L.; Guo, J.R. Mesozoic and cenozoic tectonic evolution of the shiquanhe area of Western Tibet. Tectonics 2003, 22, 1029. [Google Scholar] [CrossRef]
- Oggier, F.; Widiwijayanti, C.; Costa, F. Global volcanic rock classification of Holocene volcanoes. Sci. Data 2023, 10, 422. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.H.; Ji, W.Q.; Chen, H.B.; Kirstein, L.A.; Wu, F.Y. Linking rapid eruption of the Linzizong volcanic rocks and Early Eocene Climatic Optimum (EECO): Constraints from the Pana Formation in the Linzhou and Pangduo basins, southern Tibet. Lithos 2023, 446, 107159. [Google Scholar] [CrossRef]
- Goudge, T.A.; Milliken, R.E.; Head, J.W.; Mustard, J.F.; Fassett, C.I. Sedimentological evidence for a deltaic origin of the western fan deposit in Jezero crater, Mars and implications for future exploration. Earth Planet. Sci. Lett. 2017, 458, 357–365. [Google Scholar] [CrossRef]
- Bryan, S.E.; Peate, I.U.; Peate, D.W.; Self, S.; Jerram, D.A.; Mawby, A.R.; Marsh, J.S.; Miller, J.A. The largest volcanic eruptions on Earth. Earth-Sci. Rev. 2010, 102, 207–229. [Google Scholar] [CrossRef]
- Sillitoe, R.H.; Hedenquist, J.W. Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits. Soc. Econ. Geol. Spec. Publ. 2003, 10, 1–29. [Google Scholar]
- Basilevsky, A.T.; Head, J.W. Venus: Analysis of the degree of impact crater deposit degradation and assessment of its use for dating geological units and features. J. Geophys. Res. Planets 2002, 107, 5-1–5-38. [Google Scholar] [CrossRef]
- Tang, J.X.; Wang, Q.; Yang, H.H.; Gao, X.; Zhang, Z.B.; Zou, B. Mineralization, Exploration and Resource Potential of Porphyry-skarn-epithermal Copper Polymetallic Deposits in Tibet. Acta Geosci. Sin. 2017, 38, 571–613. [Google Scholar]
- Chen, W.; Song, Y.; Liu, Q.P.; Zhang, J.Z.; Sun, M.; Song, Z.Z.; Liu, T.F.; Wang, Q.; Yu, J.J.; Li, Y.; et al. Discovery and significance of Xinlong gold deposit in southern margin of Bangonghu-Nujiang metallogenic belt. Miner. Depos. 2022, 41, 1245–1257. [Google Scholar]
- Zheng, Y.Y.; Ci, Q.; Gao, S.B.; Wu, S.; Jiang, X.J.; Chen, X. The Ag-Sn-Cu polymetallic minerogenetic series and prospecting direction in the western Gangdese belt, Tibet. Earth Sci. Front. 2021, 28, 379–402. [Google Scholar]
- Castor, S.B.; Henry, C.D. Geology, geochemistry, and origin of volcanic rock-hosted uranium deposits in northwestern Nevada and southeastern Oregon, USA. Ore Geol. Rev. 2000, 16, 1–40. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Arribas, R.A.; Gonzalez, U.E. Exploration for epithermal gold deposits. Rev. Econ. Geol. 2000, 13, 245–277. [Google Scholar]
- Xu, W.; Li, C.; Wang, M.; Fan, J.J.; Wu, H.; Li, X. Suduction of a spreading ridge within the Bangong Co-Nujiang Tethys Ocean: Evidence from Early Cretaceous mafic dykes in the Duolong porphyry Cu-Au deposit, western Tibet. Gondwana Res. 2017, 41, 128–141. [Google Scholar] [CrossRef]
- Lin, B.; Zhang, X.G.; Tang, P.; Wang, L.Q.; Santosh, M.; Xi, Z.; Zhang, X.X.; Qi, J.; He, L. Geology and geochronology of the jinmuguo Mo polymetallic deposit: Implications for the metallogeny of the bangongco-Nujiang belt of Tibet. Ore Geol. Rev. 2021, 139, 104460. [Google Scholar] [CrossRef]
- Abdolmaleki, M.; Tabaei, M.; Fathianpour, N.; Gorte, B.G.H. Selecting Optimum Base Wavelet for Extracting Spectral Alteration Features Associated with Porphyry Copper Mineralization Using Hyperspectral Images. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 134–144. [Google Scholar] [CrossRef]
- Herrmann, W.; Blake, M.; Doyle, M.; Huston, D.; Kamprad, J.; Merry, N.; Pontual, S. Short wavelength infrared (SWIR) spectral analysis of hydrothermal alteration zones associated with base metal sulfide deposits at Rosebery and Western Tharsis, Tasmania and Highway Reward, Queensland. Econ. Geol. 2001, 96, 939–955. [Google Scholar] [CrossRef]
- Fu, M.H.; Dai, J.J.; Wang, X.G.; Hu, Z.H.; Peng, B.; Wan, X.; Zhang, Z.X.; Zhao, L.X. A study on the Thermal Infrared Spectroscopy Characteristic of the Skarn Minerals in Zhuxi Tungsten Deposit, Jiangxi Province. Spectrosc. Spectr. Anal. 2023, 43, 70–77. [Google Scholar]
- Kopylov, I.S.; Kovin, O.N.; Konoplev, A.V. Forecasting of geodynamic hazards at potash mines using remote sensing data: Acase study of the Tubegatan deposit, Uzbekistan. Int. Multidiscip. Sci. GeoConference SGEM 2015, 3, 305. [Google Scholar]
- Pour, A.B.; Hashim, M. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geol. Rev. 2012, 44, 1–9. [Google Scholar] [CrossRef]
- Dai, J.J. Application of PALSAR and RADARSAT2 Quad-Polar Data to Study of Geological Structure. Geol. Prospect. 2011, 47, 719–725. [Google Scholar]
- Cheng, J.W.; Liu, X.X.; Zhang, J.; Wang, Y.X.; Lu, K.X.; Wang, M. Alternation and Mineralization Characteristics of the Duobuza Porphyry Cu-Au Deposit in Tibet Based on Infrared Spectroscopy Technology: An Example of the Drill Hole ZK3112. Geol. Explor. 2023, 59, 259–270. [Google Scholar]
- Yang, X.; Chen, J.; Chen, Z. Classification of Alteration Zones Based on Drill Core Hyperspectral Data Using Semi-Supervised Adversarial Autoencoder: A Case Study in Pulang Porphyry Copper Deposit, China. Remote Sens. 2023, 15, 1059. [Google Scholar] [CrossRef]
- Yang, K.; Huntington, J.F.; Gemmell, J.B.; Scott, K.M. Variations in composition and abundance of white mica in the hydrothermal alteration system at Hellyer, Tasmania, as revealed by infrared reflectance spectroscopy. J. Geochem. Explor. 2011, 108, 143–156. [Google Scholar] [CrossRef]
- Lobo, A.; Garcia, E.; Barroso, G.; Martí, D.; Fernandez-Turiel, J.-L.; Ibáñez-Insa, J. Machine Learning for Mineral Identification and Ore Estimation from Hyperspectral Imagery in Tin–Tungsten Deposits: Simulation under Indoor Conditions. Remote Sens. 2021, 13, 3258. [Google Scholar] [CrossRef]
- Kruse, F.A. Integrated visible and near-infrared, shortwave infrared, and longwave infrared full-range hyperspectral data analysis for geologic mapping. J. Appl. Remote Sens. 2015, 9, 1–17. [Google Scholar] [CrossRef]
- Abbaszadeh, M.; Hezarkhani, A.; Soltani-Mohammadi, S. An SVM-based machine learning method for the separation of alteration zones in Sungun porphyry copper deposit. Geochemistry 2013, 73, 545–554. [Google Scholar] [CrossRef]
- De La Rosa, R.; Tolosana-Delgado, R.; Kirsch, M.; Gloaguen, R. Automated Multi-Scale and Multivariate Geological Logging from Drill-Core Hyperspectral Data. Remote Sens. 2022, 14, 2676. [Google Scholar] [CrossRef]
- Dai, J.J.; Wang, D.H.; Dai, H.Z.; Liu, L.J.; Wu, Y.N. Geological mapping and ore-prospecting study using remote sensing technology in Jiajika area of Western Sichuan Province. Geol. China 2017, 44, 389–398. [Google Scholar]
- Zadeh, M.H.; Tangestani, M.H.; Roldan, F.V.; Yusta, I. Mineral Exploration and Alteration Zone Mapping Using Mixture Tuned Matched Filtering Approach on ASTER Data at the Central Part of Dehaj-Sarduiyeh Copper Belt, SE Iran. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 284–289. [Google Scholar] [CrossRef]
- Azizi, H.; Tarverdi, M.A.; Akbarpour, A. Extraction of hydrothermal alterations from ASTER SWIR data from east Zanjan, northern Iran. Adv. Space Res. 2010, 46, 99–109. [Google Scholar] [CrossRef]
- Hu, P.Y.; Zhai, Q.G.; Jahn, B.M.; Wang, J.; Li, C.; Chung, S.L.; Lee, H.Y.; Tang, S.H. Late Early Cretaceous magmatic rocks (118–113 Ma) in the middle segment of the Bangong–Nujiang suture zone, Tibetan Plateau: Evidence of lithospheric delamination. Gondwana Res. 2017, 44, 116–138. [Google Scholar] [CrossRef]
- Song, Y.; Tang, J.; Lin, B.; Yang, C.; Sun, H. Metallogeny in the Bangong-Nujiang belt, central Tibet, China: A review. Front. Earth Sci. 2023, 11, 1139941. [Google Scholar] [CrossRef]
- Ingall, M. Reconstructing carbonate alteration histories in orogenic sedimentary basins: Xigaze forearc, southern Tibet. Geochim. Et. Cosmochim. Acta 2019, 251, 284–300. [Google Scholar] [CrossRef]
- Yan, Q.S.; Zhang, Z.P.; Wang, H.T.; Cao, Y.G.; Bao, G.Z. Volcanic Facies and Volcanic Mechanism of Dianzhong Formation of Linzizong Group in Zedang Area, Southern Margin of Gangdese. Acta Geol. Gansu 2022, 31, 13–23. [Google Scholar]
- Dong, G.C.; Mo, X.X.; Zhao, Z.D.; Wang, L.; Zhou, S. A new understanding of the stratigraphic successions of the Linzizong volcanic rocks in the Lhunzhub basin, northern Lhasa, Tibet, China. Geol. Bull. China 2005, 24, 549–557. [Google Scholar]
- Fernandes, F.; Rasol, M.; Schirinzi, G.; Zhou, F. Editorial for the Special Issue “Radar Techniques for Structures Characterization and Monitoring”. Remote Sens. 2023, 15, 3382. [Google Scholar] [CrossRef]
- Abd El-Wahed, M.; Kamh, S.; Abu Anbar, M.; Zoheir, B.; Hamdy, M.; Abdeldayem, A.; Lebda, E.M.; Attia, M. Multisensor Satellite Data and Field Studies for Unravelling the Structural Evolution and Gold Metallogeny of the Gerf Ophiolitic Nappe, Eastern Desert, Egypt. Remote Sens. 2023, 15, 1974. [Google Scholar] [CrossRef]
- Siddiqui, A.; Chauhan, P.; Kumar, V.; Jain, G.; Deshmukh, A.; Kumar, P. Characterization of urban materials in AVIRIS-NG data using a mixture tuned matched filtering (MTMF) approach. Geocarto Int. 2022, 37, 332–347. [Google Scholar] [CrossRef]
- Rangzan, K. Compression classification methods (MLC, SAM and SID) to provide the best geologic map and using A Spectral Analysis and MTMF Method for enhancing of alteration zones. Adv. Appl. Geol. 2019, 8, 77–87. [Google Scholar]
- Tayebi, M.H.; Tangestani, M.H.; Vincent, R.K. Sub-pixel mapping of iron-bearing minerals using ALI data and MTMF algorithm, Masahim volcano, SE Iran. Arab. J. Geosci. 2015, 8, 3799–3810. [Google Scholar] [CrossRef]
- Routh, D.; Seegmiller, L.; Bettigole, C.; Kuhn, C.; Oliver, C.D.; Glick, H.B. Improving the reliability of mixture tuned matched filtering remote sensing classification results using supervised learning algorithms and cross-validation. Remote Sens. 2018, 10, 1675. [Google Scholar] [CrossRef]
- Qu, L.; Han, W.; Lin, H.; Zhu, Y.; Zhang, L.P. Estimating vegetation fraction using hyperspectral pixel unmixing method: A case study of a karst area in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4559–4565. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.M.; Chanussot, J. Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [Google Scholar] [CrossRef]
- Martínez-Alonso, S.; Jakosky, B.M.; Mellon, M.T.; Putzig, N.E. A volcanic interpretation of Gusev Crater surface materials from thermophysical, spectral, and morphological evidence. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Hörz, F.; Ostertag, R.; Rainey, D.A. Bunte Breccia of the Ries: Continuous deposits of large impact craters. Rev. Geophys. 1983, 21, 1667–1725. [Google Scholar] [CrossRef]
- Seltmann, R.; Porter, T.M.; Pirajno, F. Geodynamics and metallogeny of the central Eurasian porphyry and related epithermal mineral systems: A review. J. Asian Earth Sci. 2014, 79, 810–841. [Google Scholar] [CrossRef]
- Voudouris, P.C.; Melfos, V.; Spry, P.G.; Kartal, T.; Schleicher, H.; Moritz, R.; Ortelli, M. The Pagoni Rachi/Kirki Cu-Mo±Re±Au deposit, northern Greece: Mineralogical and fluid inclusion constraints on the evolution of a telescoped porphyry-epithermal system. Can. Mineral. 2013, 51, 253–284. [Google Scholar] [CrossRef]
- Wenyuan, L.; Cook, N.J.; Ciobanu, C.L.; Yu, L.; Xiaoping, Q.; Yuchuan, C. Mineralogy of tin-sulfides in the Zijinshan porphyry–epithermal system, Fujian Province, China. Ore Geol. Rev. 2016, 72, 682–698. [Google Scholar] [CrossRef]
- Nadeau, O.; Stix, J.; Williams-Jones, A.E. Links between arc volcanoes and porphyry-epithermal ore deposits. Geology 2016, 44, 11–14. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Epithermal paleosurfaces. Miner. Depos. 2015, 50, 767–793. [Google Scholar] [CrossRef]
Eigenvectors | 0.43~0.45 μm (OLI1) | 0.64~0.67 μm (OLI4) | 0.85~0.88 μm (OLI5) | 1.57~1.65 μm (OLI6) | 2.11~2.29 μm (OLI7) |
---|---|---|---|---|---|
PC1 | −0.229980 | −0.419167 | −0.486871 | −0.557026 | −0.473378 |
PC2 | −0.638981 | −0.468476 | −0.173184 | 0.443823 | 0.381133 |
PC3 | −0.539593 | 0.027693 | 0.748602 | −0.152697 | −0.352633 |
PC4 | −0.236694 | 0.244266 | 0.002245 | −0.658537 | 0.671293 |
PC5 | −0.437752 | 0.737832 | −0.415396 | 0.189094 | −0.235937 |
Eigenvectors | 0.45~0.51 μm (OLI2) | 0.85~0.88 μm (OLI5) | 1.57~1.65 μm (OLI6) | 2.11~2.29 μm (OLI7) |
---|---|---|---|---|
PC1 | 0.220602 | 0.526306 | 0.630266 | 0.526404 |
PC2 | 0.719766 | 0.479502 | −0.407723 | −0.292877 |
PC3 | 0.576713 | −0.635927 | −0.092173 | 0.504483 |
PC4 | −0.317292 | 0.297787 | −0.654240 | 0.618562 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, L.; Dai, J.; Song, Y.; Liu, Z.; Chen, W.; Wang, N.; Wu, C. Predictive Prospecting Using Remote Sensing in a Mountainous Terrestrial Volcanic Area, in Western Bangongco–Nujiang Mineralization Belt, Tibet. Remote Sens. 2023, 15, 4851. https://doi.org/10.3390/rs15194851
Bai L, Dai J, Song Y, Liu Z, Chen W, Wang N, Wu C. Predictive Prospecting Using Remote Sensing in a Mountainous Terrestrial Volcanic Area, in Western Bangongco–Nujiang Mineralization Belt, Tibet. Remote Sensing. 2023; 15(19):4851. https://doi.org/10.3390/rs15194851
Chicago/Turabian StyleBai, Longyang, Jingjing Dai, Yang Song, Zhibo Liu, Wei Chen, Nan Wang, and Changyu Wu. 2023. "Predictive Prospecting Using Remote Sensing in a Mountainous Terrestrial Volcanic Area, in Western Bangongco–Nujiang Mineralization Belt, Tibet" Remote Sensing 15, no. 19: 4851. https://doi.org/10.3390/rs15194851
APA StyleBai, L., Dai, J., Song, Y., Liu, Z., Chen, W., Wang, N., & Wu, C. (2023). Predictive Prospecting Using Remote Sensing in a Mountainous Terrestrial Volcanic Area, in Western Bangongco–Nujiang Mineralization Belt, Tibet. Remote Sensing, 15(19), 4851. https://doi.org/10.3390/rs15194851