On Some Challenges for National and Global Space Weather Services
Abstract
:1. Introduction
2. Ionospheric Storms to Report
3. The Role of the X-Class Intensity of the Flare
4. Role of Active Region Responsible for the X-Class Flare Event
5. Cosmic Rays Perspective
6. Conclusions
- (1)
- The answers for the SGXC and the national SW services may differ as the national services may have more than one user. Moreover, there is no obvious response on whether the regional SW thresholds should coincide with the global SW thresholds for the same user. For example, at present, the TEC thresholds used by the SCiESMEX are similar, but are not the same as those used by the SWXC.
- (2)
- It is important that the warning messages by the national SW services are user-targeted and that the parameter thresholds for each user are chosen individually (communications, national electricity companies, etc.). The only user of the SW information provided by the SWXC is the ICAO.
- (3)
- The application of the suggested statistical approach was illustrated for the low-latitude American sector (primarily the Mexican region). In particular, the intensity of the ionospheric storms (TEC threshold) and the intensity of the flares (X-class threshold) that should be reported were under analysis.
- -
- In regard to ionospheric storms, the regular (systematic) variation knowledge on a regional scale is important, as high TEC values exceeding thresholds can be not only the product of disturbance, but also a part of a regular trend. The absolute TEC value’s dependence on the calculation method is probably not very important for the detection of severe event (175 TECU threshold suggested by the ICAO). Still, it may play some role in a moderate event’s detection (125 TECU), especially during periods of high, regular TEC values due to TEC’s systematic variations at a particular observation point. The higher the thresholds, the lower the uncertainty about exceeding them.
- -
- For the example of Mexico, the suggested approach results in the severe flare’s threshold by the ICAO (X ≥ 10), if the possible number of issued messages is considered to be once in approximately five years. In addition, it was shown that, statistically, for the last two solar cycles, the more flares produced by the same AR, the greater the probability of a severe flare event. The AR already responsible for three flares of X-class seems promising in terms of a significant (X ≥ 10) for an SW service flare event.
- -
- The flare intensity defined in terms of the X-ray class of the flares is insufficient to estimate either the effects on HF communications or the SEP event’s occurrence. There also needs to have more than the Dst-index to estimate the possibility of a cosmic rays’ event caused by a geomagnetic storm.
- -
- It is suggested that the particle precipitation risk estimation by the national SW services is considered not regionally, but as a global event. In other words, in the case of cosmic rays, it is suggested that a national SW service assesses radiation risks globally, as the SWXC.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buonsanto, M.J. Ionospheric storms—A review. Space Sci. Rev. 1999, 88, 563–601. [Google Scholar] [CrossRef]
- Blagoveshchensky, D.V.; MacDougall, J.W.; Piatkova, A.V. Ionospheric effects preceding the October 2003 Halloween storm. J. Atmos. Sol. Terr. Phys. 2006, 68, 821–831. [Google Scholar] [CrossRef]
- Kutiev, I.; Tsagouri, I.; Perrone, L.; Pancheva, D.; Mukhtarov, P.; Mikhailov, A.; Lastovicka, J.; Jakowski, N.; Buresova, D.; Blanch, E.; et al. Solar activity impact on the Earth’s upper atmosphere. J. Space Weather Space Clim. 2013, 3, A06. [Google Scholar] [CrossRef]
- Laštovička, J. Lower ionosphere response to external forcing: A brief review. Adv. Space Res. 2009, 43, 1–14. [Google Scholar] [CrossRef]
- Karan, D.K.; Eastes, R.W.; Daniell, R.E.; Martinis, C.R.; McClintock, W.E. GOLD mission’s observation about the geomagnetic storm effects on the nighttime equatorial ionization anomaly (EIA) and equatorial plasma bubbles (EPB) during a solar minimum equinox. Space Weather 2023, 21, e2022SW003321. [Google Scholar] [CrossRef]
- Huang, C.-S.; Zhang, Y.; Wang, W.; Lin, D.; Wu, Q. Behaviors of ionospheric topside ion density, ion temperature, and electron temperature during the 20 November 2003 superstorm. J. Geophys. Res. Space. Phys. 2022, 127, e2022JA030468. [Google Scholar] [CrossRef]
- Yu, T.; Wang, W.; Ren, Z.; Yue, J.; Yue, X.; He, M. Middle-low latitude neutral composition and temperature responses to the 20 and 21 November 2003 superstorm from GUVI dayside Limb measurements. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028427. [Google Scholar] [CrossRef]
- Sergeeva, M.A. Space Weather General Concepts. In Space Weather Impact on GNSS Performance; Springer: Cham, Switzerland, 2022; pp. 89–150. [Google Scholar] [CrossRef]
- Cannon, P. Extreme Space Weather: Impacts on Engineered Systems and Infrastructure; Royal Academy of Engineering, Prince Philip House: London, UK, 2013; ISBN 1-903496-95-0. Available online: https://www.raeng.org.uk/spaceweather (accessed on 13 March 2023).
- National Research Council. Severe Space Weather Events—Understanding Societal and Economic Impacts, Workshop Report; National Academies Press: Washington, DC, USA, 2009; ISBN 13: 978-0-309-13811-6; Available online: https://nap.nationalacademies.org/read/12643/chapter/1 (accessed on 13 March 2023).
- Moldwin, M. The technological impacts of space storms. In An Introduction to Space Weather; Cambridge University Press: Cambridge, UK, 2008; pp. 79–94. [Google Scholar] [CrossRef]
- Baker, D.; Bodeau, J.M.; Cameron, E.; Fennell, J.F.; Fisher, G.M.; Forbes, K.F.; Kintner, P.L.; Leffler, L.G.; Lewis, W.S.; Reagan, J.B.; et al. Severe Space Weather Events—Understanding Societal and Economic Impacts; The National Academy Press: Washington, DC, USA, 2008. [Google Scholar]
- Bothmer, V.; Daglis, I.A. Space Weather—Physics and Effects; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Mann, I.R.; Di Pippo, S.; Opgenoorth, H.J.; Kuznetsova, M.; Kendall, D.J. International collaboration within the United Nations Committee on the Peaceful Uses of Outer Space: Framework for international space weather services (2018–2030). Space Weather 2018, 16, 428–433. [Google Scholar] [CrossRef]
- UNDRR. Hazard Definition and Classification Review (Technical Report). 2020. Available online: https://www.undrr.org/quick/12955 (accessed on 20 September 2023).
- UNDRR. Hazard Information Profiles (HIPs). 2020. Available online: https://www.undrr.org/quick/66872 (accessed on 20 September 2023).
- WMO. 2023. Available online: https://community.wmo.int/en/activity-areas/wmo-space-programme-wsp/space-weather-introduction (accessed on 20 September 2023).
- Schrijver, C.J.; Kauristie, K.; Aylward, A.D.; Denardini, C.M.; Gibson, S.E.; Glover, A.; Gopalswamy, N.; Grande, M.; Hapgood, M.; Heynderickx, D.; et al. Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS. Adv. Space Res. 2015, 15, 2745–2807. [Google Scholar] [CrossRef]
- Simpson, S. Europe to develop new space weather services. Space Weather 2003, 1-2, 1–2. [Google Scholar] [CrossRef]
- Belehaki, A.; Watermann, J.; Lilensten, J.; Glover, A.; Hapgood, M.; Messerotti, M.; Van der Linden, R.; Lundstedt, H. Renewed support dawns in Europe: An action to develop space weather products and services. Space Weather 2009, 7. [Google Scholar] [CrossRef]
- Onsager, T. Advancing space weather services through international coordination. Space Weather 2012, 10. [Google Scholar] [CrossRef]
- Kotzé, P.B.; Cilliers, P.J.; Sutcliffe, P.R. The role of SANSA’s geomagnetic observation network in space weather monitoring: A review. Space Weather 2015, 13, 656–664. [Google Scholar] [CrossRef]
- Lanabere, V.; Dasso, S.; Gulisano, A.M.; López, V.E.; Niemelä-Celeda, A.E. Space weather service activities and initiatives at LAMP (Argentinean Space Weather Laboratory group). Adv. Space Res. 2020, 65, 2223–2234. [Google Scholar] [CrossRef]
- Lam, H.-L. From Early Exploration to Space Weather Forecasts: Canada’s Geomagnetic Odyssey. Space Weather 2011, 9. [Google Scholar] [CrossRef]
- Ahn, B.-H. South Korea’s renewed focus on Space Weather. Space Weather 2011, 9. [Google Scholar] [CrossRef]
- Nagatsuma, T. New Ages of Operational Space Weather Forecast in Japan. Space Weather 2013, 11, 207–210. [Google Scholar] [CrossRef]
- Wilkinson, P. Space Weather Studies in Australia. Space Weather 2009, 7. [Google Scholar] [CrossRef]
- Ishii, M.; Shiota, D.; Tao, C.; Ebihara, Y.; Fujiwara, H.; Ishii, T.; Ichimoto, K.; Kataoka, R.; Koga, K.; Kubo, Y.; et al. Space weather benchmarks on Japanese society. Earth Planets Space 2021, 73, 108. [Google Scholar] [CrossRef]
- Jones, J.B.L.; Bentley, R.D.; Hunter, R.; Iles, R.H.A.; Taylor, G.C.; Thomas, D.J. Space weather and commercial airlines. Adv. Space Res. 2005, 36, 2258–2267. [Google Scholar] [CrossRef]
- Doc 10100. Manual on Space Weather Information in Support of International Air Navigation, 1st ed.; ICAO Publications: Montreal, QB, Canada, 2019; ISBN 978-92-9258-784-0. [Google Scholar]
- Geomagnetic Storms. As a Contribution to the OECD Project―Future Global Shocks; Centra Technology, Inc.: Burlington, MA, USA, 2011; 69p, Available online: http://www.oecd.org/gov/risk/46891645.pdf (accessed on 13 March 2023).
- Service Assessment. Intense Space Weather Storms 19 October–7 November 2003; NOAA, National Weather Service: Silver Spring, MD, USA, 2004; 50p. Available online: http://www.weather.gov/media/publications/assessments/SWstorms_assessment.pdf (accessed on 13 March 2023).
- Koskinen, H.; Tanskanen, E.; Pirjola, A.E.R.; Pulkkinen, A.; Dyer, C.; Rodgers, D.; Cannon, P.; Mandeville, J.-C.; Boscher, D. Space Weather Effects Catalogue, 2001, ESWS-FMI-RP-0001 (2.2). Available online: http://www.spaceweather.org/ISES/swxeff/1.pdf (accessed on 13 March 2023).
- Oughton, E.J. The Economic Impact of Critical National Infrastructure Failure Due to SPACE weather. In Oxford Research Encyclopedia of Natural Hazard Science; Oxford University Press: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Eastwood, J.P.; Biffis, E.; Hapgood, M.A.; Green, L.; Bisi, M.M.; Bentley, R.D.; Wicks, R.; McKinnell, L.-A.; Gibbs, M.; Burnett, C. The economic impact of space weather: Where do we stand? Risk Anal. 2017, 37, 206–218. [Google Scholar] [CrossRef]
- Annex 3: Meteorological Service for International Air Navigation, 20th ed.; ICAO Publications: Montreal, QB, Canada, 2018.
- Dissemination of Space Weather Advisories. ICAO Publications. 2019. Available online: https://www.icao.int/airnavigation/METP/Panel%20Documents/SWXA_Additional%20Information.pdf (accessed on 13 March 2023).
- The Establishment of China/Russian Federation Consortium for ICAO Designated Space Weather Center; Assembly—40th Session; ICAO Publications: Montreal, QB, Canada, 2019; Available online: https://www.icao.int/Meetings/a40/Documents/WP/wp_336_en.pdf (accessed on 13 March 2023).
- ACFJ Services for Aviation. Available online: https://www.swpc.noaa.gov/sites/default/files/images/u59/05%20David%20Boteler%20Official.pdf (accessed on 13 March 2023).
- Kauristie, K.; Andries, J.; Beck, P.; Berdermann, J.; Berghmans, D.; Cesaroni, C.; De Donder, E.; de Patoul, J.; Dierckxsens, M.; Doornbos, E.; et al. Space weather services for civil aviation—Challenges and solutions. Remote Sens. 2021, 13, 3685. [Google Scholar] [CrossRef]
- Bain, H.M.; Steenburgh, R.A.; Onsager, T.G.; Stitely, E.M. A summary of national oceanic and atmospheric administration space weather prediction center proton event forecast performance and skill. Space Weather 2021, 19, e2020SW002670. [Google Scholar] [CrossRef]
- Crown, M.D. Validation of the NOAA space weather prediction center’s solar flare forecasting look-up table and forecaster-issued probabilities. Space Weather 2012, 10, 760. [Google Scholar] [CrossRef]
- Kholodkov, K.; Aleshin, I.; Arakelov, A.; Burov, V.; Vasiliev, A.; Ivanov, S. Sino-Russian space weather effort for global air navigation safety. Russ. J. Earth Sci. 2021, 21, 77. [Google Scholar] [CrossRef]
- Aleshin, I.M.; Arakelov, A.S.; Bruevich, E.A.; Burov, V.A.; Ivanov, S.D.; Ochelkov, Y.P.; Repin, A.Y.; Kholodkov, K.I. Methods for monitoring strong space weather disturbances to support international air navigation. Russ. Meteorol. Hydrol. 2021, 46, 205–211. [Google Scholar] [CrossRef]
- Davies, K.; Hartmann, G.K. Studying the ionosphere with the global positioning system. Radio. Sci. 1997, 199732, 1695–1703. [Google Scholar] [CrossRef]
- Afraimovich, E.L.; Perevalova, N.P. GPS-Monitoring of Earth Upper Atmosphere; Russian Academy of Sciences, Siberian Branch: Irkutsk, Russia, 2006; p. 460. ISBN 5-98277-033-7.
- Blagoveshchensky, D.V.; Maltseva, O.A.; Sergeeva, M.A. Impact of magnetic storms on the global TEC distribution. Ann. Geophys. 2018, 36, 1071. [Google Scholar] [CrossRef]
- Mendillo, M. Storms in the ionosphere: Patterns and processes for total electron content. Rev. Geophys. 2006, 44, 1114. [Google Scholar] [CrossRef]
- Tsagouri, I.; Koutroumbas, K.; Elias, P. A new short-term forecasting model for the total electron content storm time disturbances. J. Space Weather Space Clim. 2018, 8, A33. [Google Scholar] [CrossRef]
- Klobuchar, J.A. Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans. Aerosp. Electron. Syst. 1987, 3, 325–331. [Google Scholar] [CrossRef]
- Prieto-Cerdeira, R.; Orús-Pérez, R.; Breeuwer, E.; Lucas-Rodriguez, R.; Falcone, M. Performance of the Galileo single-frequency ionospheric correction during in-orbit validation. GPS World 2014, 25, 53–58. [Google Scholar]
- Yuan, Y.; Wang, N.; Li, Z.; Huo, X. The BeiDou global broadcast ionospheric delay correction model (BDGIM) and its preliminary performance evaluation results. Navigation 2019, 66, 55–69. [Google Scholar] [CrossRef]
- Nikitina, L.; Fiori, R.A.D.; Ghoddousi-Fard, R.; Waddington, G.H. Statistical analysis of large and extreme global ionospheric total electron content. J. Atm. Sol-Ter. Phys. 2022, 229, 105841. [Google Scholar] [CrossRef]
- Goodman, J.M. Operational communication systems and relationships to the ionosphere and Space Weather. Adv. Space Res. 2005, 36, 2241–2252. [Google Scholar] [CrossRef]
- Demyanov, V.; Yasyukevich, Y. Space weather: Risk factors for Global Navigation Satellite Systems. Sol-Terr. Phys. 2021, 7, 28–47. [Google Scholar] [CrossRef]
- Gonzalez, W.D.; Joselyn, J.A.; Kamide, D.; Kroehl, H.W.; Rostoker, G.; Tsurutani, B.T.; Vasyliunas, V.M. What is a geomagnetic storm? J. Geophys. Res. 1994, 99, 5771–5792. [Google Scholar] [CrossRef]
- Loewe, C.A.; Prölss, G.W. Classification and mean behavior of magnetic storms. J. Geophys. Res. 1997, 102, 14209–14213. [Google Scholar] [CrossRef]
- Poppe, B.; Onsager, T.G.; Murtagh, W. Halloween storms star in space weather week 2004 meeting. Space Weather 2004, 2. [Google Scholar] [CrossRef]
- Sugiura, M.; Kamei, T. Equatorial Dst Index 1957–1986. In IAGA Bulletin; IUGG: Paris, France, 1991; p. 40. [Google Scholar]
- Sugiura, M. Hourly Values of Equatorial Dst for the IGY, Annual International Geophysics Year; Pergamon Press: Oxford, UK, 1964; Volume 35, p. 9. [Google Scholar]
- Sergeeva, M.A.; Maltseva, O.A.; Gonzalez-Esparza, J.A.; De la Luz, V.; Corona-Romero, P. Features of TEC behaviour over the low-latitude North-American region during the period of medium solar activity. Adv. Space Res. 2017, 60, 1594–1605. [Google Scholar] [CrossRef]
- Gonzalez-Esparza, J.A.; De la Luz, V.; Corona-Romero, P.; Mejia-Ambriz, J.C.; Gonzalez, L.X.; Sergeeva, M.A.; Romero-Hernandez, E.; Aguilar-Rodriguez, E. Mexican space weather service (SCIESMEX). Space Weather 2017, 15, 3–11. [Google Scholar] [CrossRef]
- Li, W.; Wang, K.; Yuan, K. Performance and Consistency of Final Global Ionospheric Maps from Different IGS Analysis Centers. Remote Sens. 2023, 15, 1010. [Google Scholar] [CrossRef]
- Chen, P.; Liu, H.; Ma, Y.; Zheng, N. Accuracy and consistency of different global ionospheric maps released by IGS ionosphere associate analysis centers. Adv. Space Res. 2020, 65, 163–174. [Google Scholar] [CrossRef]
- Hernández-Pajares, M.; Juan, J.M.; Sanz, J.; Orus, R.; Garcia-Rigo, A.; Feltens, J.; Komjathy, A.; Schaer, S.C.; Krankowski, A. The IGS VTEC maps: A reliable source of ionospheric information since 1998. J. Geod. 2009, 83, 263–275. [Google Scholar] [CrossRef]
- Arikan, F.; Erol, C.B.; Arikan, O. Regularized estimation of vertical total electron content from Global Positioning System data. J. Geophys. Res. 2003, 108, 1469. [Google Scholar] [CrossRef]
- Syrovatskiy, S.V.; Yasyukevich, Y.V.; Vesnin, A.M.; Edemskiy, I.K.; Voeykov, S.V.; Zhivetiev, I.V. The effect of solar flares on the ionosphere of the Earth during 24th cycle of solar activity. Mem. Fac. Phys. Mosc. Univ. 2018, 4. [Google Scholar]
- Dmitriev, A.V.; Yeh, H.-C.; Chao, J.-K.; Veselovsky, I.S.; Su, S.-Y.; Fu, C.C. Top-side ionosphere response to extreme solar events. Ann. Geophys. 2006, 24, 1469–1477. [Google Scholar] [CrossRef]
- Kunitsyn, V.E.; Nazarenko, M.O.; Nesterov, I.A.; Padokhin, A.M. Solar Flare Forcing on Ionization of Upper Atmosphere. Comparative Study of Several Major X_Class Events of 23rd and 24th Solar Cycles. Phys. Earth Atmos. Hydrosphere. Mosc. Univ. Phys. Bull. 2015, 70, 312–318. [Google Scholar] [CrossRef]
- Le, H.; Liu, L.; Chen, Y.; Wan, W. Statistical analysis of ionospheric responses to solar flares in the solar cycle 23. J. Geophys. Res. Space 2013, 118, 576–582. [Google Scholar] [CrossRef]
- Sergeeva, M.A.; Maltseva, O.A.; Vesnin, A.M.; Blagoveshchensky, D.V.; Gatica-Acevedo, V.J.; Gonzalez-Esparza, J.A.; Chernov, A.G.; Orrala-Legorreta, I.D.; Melgarejo-Morales, A.; Gonzalez, L.X.; et al. Solar flare effects observed over Mexico during March. Remote Sens. 2023, 15, 397. [Google Scholar] [CrossRef]
- Machol, J.L.; Eparvier, F.G.; Viereck, R.A.; Woodraska, D.L.; Snow, M.; Thiemann, E.; Woods, T.N.; Mc Clintock, W.E.; Mueller, S.; Eden, T.D.; et al. GOES-R Series Solar X-ray and Ultraviolet Irradiance. In GOES-R Series; Elsevier: Amsterdam, The Netherlands, 2020; pp. 233–242. [Google Scholar]
- Gaisser, T.; Engel, R.; Resconi, E. Cosmic rays. In Cosmic Rays and Particle Physics; Cambridge University Press: Cambridge, UK, 2016; pp. 1–11. [Google Scholar] [CrossRef]
- Valdés-Galicia, J.F.; González, L.X. Solar modulation of low energy galactic cosmic rays in the near-earth space environment. Adv. Space Res. 2016, 57, 1294–1306. [Google Scholar] [CrossRef]
- Sako, T.; Watanabe, K.; Muraki, Y.; Matsubara, Y.; Tsujihara, H.; Yamashita, M.; Sakai, T.; Shibata, S.; Valdés-Galicia, J.F.; González, L.X.; et al. Long-lived Solar Neutron Emission in Comparison with Electron-produced Radiation in the 2005 September 7 Solar Flare. Astrophys. J. 2006, 651, L69–L72. [Google Scholar] [CrossRef]
- González, L.X.; Valdés-Galicia, J.F.; Sánchez, F.; Muraki, Y.; Sako, T.; Watanabe, K.; Matsubara, Y.; Nagai, Y.; Shibata, S.; Sakai, T.; et al. Re-evaluation of the neutron emission from the solar flare of 7 September 2005, detected by the Solar Neutron Telescope at Sierra Negra. Astrophys. J. 2015, 814, 136. [Google Scholar] [CrossRef]
- Muraki, Y.; López, D.; Koga, K.; Kakimoto, F.; Goka, T.; González, L.X.; Masuda, S.; Matsumoto, H.; Mastubara, Y.; Miranda, P.; et al. Simultaneous Observation of Solar Neutrons from the ISS and High Mountain Observatories in Association with a Flare on 8 July 2014. Sol. Phys. 2016, 291, 1241–1265. [Google Scholar] [CrossRef]
MEXICO | BRAZIL | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dstmin, nT | Geomagnetic Storm | >100 a TECU | TECmax, TECU | TEC Response | Near Regular | >100 a TECU | TECmax, TECU | TEC Response | Near Regular |
−205 | 4–6 May 1998 | no data | no data | no data | no data | no data | no data | no data | no data |
−207 | 25–26 September 1998 | 68.3 | ↑↓ | 85 | - | v | |||
−237 | 22–24 October 1999 | 80.2 | ↑↓ | v | + | 109.1 | ↓ | v | |
−292 | 6–8 April 2000 | + | 165.3 | ↑ | + | 143.7 | ↑ | v | |
−300 | 15–17 July 2000 | + | 116.1 | ↑↓ | 83.5 | ↑ | |||
−234 | 12–13 August 2000 | 78.2 | ↑↓ | 87 | ↑ | ||||
−201 | 17–19 September 2000 | (+) | 96.1 | ↑ | 91.3 | ↑ | v | ||
−284 | 31–1 March 2001 | + | 123.4 | ↑ | v | + | 147.5 | ↑ | |
−271 | 11–13 April 2001 | + | 143.4 | ↑↓ | + | 122.7 | ↓ | v | |
−292 | 6–8 November 2001 | + | 105.3 | ↑ | v | + | 122.8 | ↓ | v |
−221 | 24–26 November 2001 | (+) | 95.9 | ↑↓ | v | + | 106.3 | ↓ | v |
−383 | 28–3 October 2003 | + | 208.4 | ↑ | + | 99.2 | ↑↓ | ||
−422 | 20–23 November 2003 | + | 107.8 | ↑ | 81.6 | ↑↓ | v | ||
−374 | 6–12 November 2004 | 53.8 | ↑ | v | 64.4 | ↓ | |||
−247 | 15–16 May 2005 | 46.1 | ↓ | v | 61.2 | ↑ | |||
−225 | 17–19 March 2015 | 71.5 | ↑↓ | v | 93.6 | ↑↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sergeeva, M.A.; Gonzalez-Esparza, J.A.; Gatica-Acevedo, V.J.; Gonzalez, L.X.; Corona-Romero, P.; Aguilar-Rodriguez, E.; Melgarejo-Morales, A.; Orrala-Legorreta, I.D.; Mejia-Ambriz, J.C.; Gonzalez-Aviles, J.J. On Some Challenges for National and Global Space Weather Services. Remote Sens. 2023, 15, 4839. https://doi.org/10.3390/rs15194839
Sergeeva MA, Gonzalez-Esparza JA, Gatica-Acevedo VJ, Gonzalez LX, Corona-Romero P, Aguilar-Rodriguez E, Melgarejo-Morales A, Orrala-Legorreta ID, Mejia-Ambriz JC, Gonzalez-Aviles JJ. On Some Challenges for National and Global Space Weather Services. Remote Sensing. 2023; 15(19):4839. https://doi.org/10.3390/rs15194839
Chicago/Turabian StyleSergeeva, Maria A., Juan Americo Gonzalez-Esparza, Victor Jose Gatica-Acevedo, Luis Xavier Gonzalez, Pedro Corona-Romero, Ernesto Aguilar-Rodriguez, Angela Melgarejo-Morales, Isaac David Orrala-Legorreta, Julio Cesar Mejia-Ambriz, and Jose Juan Gonzalez-Aviles. 2023. "On Some Challenges for National and Global Space Weather Services" Remote Sensing 15, no. 19: 4839. https://doi.org/10.3390/rs15194839
APA StyleSergeeva, M. A., Gonzalez-Esparza, J. A., Gatica-Acevedo, V. J., Gonzalez, L. X., Corona-Romero, P., Aguilar-Rodriguez, E., Melgarejo-Morales, A., Orrala-Legorreta, I. D., Mejia-Ambriz, J. C., & Gonzalez-Aviles, J. J. (2023). On Some Challenges for National and Global Space Weather Services. Remote Sensing, 15(19), 4839. https://doi.org/10.3390/rs15194839