Contributions of Climate Variability and Anthropogenic Activities to Confined Groundwater Storage in Hengshui, North China Plain
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets Used in the Study
3. Methods
3.1. Multi-Temporal InSAR Analysis and Seasonal Signal Extraction
3.2. Estimation of the GWS Variations in Confined Aquifer Systems
3.3. Relationship between Precipitation and GWS Variations in Confined Aquifer Systems
4. Results
4.1. Land Deformation in Hengshui
4.2. Elastic Skeletal Storativity
4.3. Spatial and Temporal Patterns of GWS Variations in Confined Aquifer Systems
4.4. Spatial and Temporal Patterns of GWS Variations in Confined Aquifer Systems
4.5. Climatic and Anthropogenic Contribution Rates to the GWS Variations
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.; Fei, Y.; Chen, Z.; Zhao, Z.; Xie, Z.; Wang, Y.; Miao, J.; Yang, L.; Shao, J.; Jin, M.; et al. Investigation and Assessment of Sustainable Utilization of Groundwater Resources in the North China Plain; Geological Publishing House: Beijing, China, 2009. (In Chinese) [Google Scholar]
- Jiang, L.; Bai, L.; Zhao, Y.; Cao, G.; Wang, H.; Sun, Q. Combining InSAR and hydraulic head measurements to estimate aquifer parameters and storage variations of confined aquifer system in Cangzhou, North China Plain. Water Resour. Res. 2018, 54, 8234–8252. [Google Scholar] [CrossRef]
- Feng, W.; Zhong, M.; Lemoine, J.M.; Biancale, R.; Hsu, H.T.; Xia, J. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res. 2013, 49, 2110–2118. [Google Scholar] [CrossRef]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground water and climate change. Nature Clim. Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef]
- Asoka, A.; Gleeson, T.; Wada, Y.; Mishra, V. Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nat. Geosci. 2017, 10, 109–117. [Google Scholar] [CrossRef]
- Zhou, D. Spatio-Temporal Changes and the Cause Analysis of Meteorological Drought in North China from 1961 to 2013. Master’s Thesis, Northwest Normal University, Lanzhou, China, 2015. (In Chinese). [Google Scholar]
- Hebei Bureau of Geology and Mineral Resources Exploration. Investigation Report of Groundwater Resources Assessment and Rational Development & Utilization in Hebei Plain (Heilonggang Area); Hebei Bureau of Geology and Mineral Resources Exploration: Shijiazhuang, China, 1977. [Google Scholar]
- Xie, J.; Xu, Y.; Wang, Y.; Gu, H.; Wang, F.; Pan, S. Influences of climatic variability and human activities on terrestrial water storage variations across the yellow river basin in the recent decade. J. Hydrol. 2019, 579, 124218. [Google Scholar] [CrossRef]
- Yi, S.; Sun, W.; Feng, W.; Chen, J. Anthropogenic and climate-driven water depletion in Asia. Geophys. Res. Lett. 2016, 43, 9061–9069. [Google Scholar] [CrossRef]
- Larochelle, S.; Chanard, K.; Fleitout, L.; Fortin, J.; Gualandi, A.; Longuevergne, L.; Rebischung, P.; Violette, S.; Sophie, A.J. Understanding the geodetic signature of large aquifer systems: Example of the Ozark Plateaus in Central United States. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023097. [Google Scholar] [CrossRef]
- Russo, T.A.; Lall, U. Depletion and response of deep groundwater to climate-induced pumping variability. Nat. Geosci. 2017, 10, 105–108. [Google Scholar] [CrossRef]
- Hooper, A.; Bekaert, D.; Spaans, K.; Arıkan, M. Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 2012, 514, 1–13. [Google Scholar] [CrossRef]
- Chaussard, E.; Milillo, P.; Bürgmann, R.; Perissin, D.; Fielding, E.J.; Baker, B. Remote sensing of ground deformation for monitoring groundwater management practices: Application to the Santa Clara Valley during the 2012-2015 California drought. J. Geophys. Res. Solid Earth 2017, 122, 8566–8582. [Google Scholar] [CrossRef]
- Ojha, C.; Shirzaei, M.; Werth, S.; Argus, D.F.; Farr, T.G. Sustained groundwater loss in California’s Central Valley exacerbated by intense drought periods. Water Resour. Res. 2018, 54, 4449–4460. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.G.; Knight, R.; Chen, J.; Reeves, J.A.; Zebker, H.A.; Farr, T.; Liu, Z. Estimating the permanent loss of groundwater storage in the southern San Joaquin Valley, California. Water Resour. Res. 2017, 53, 2133–2148. [Google Scholar] [CrossRef]
- Smith, R.G.; Majumdar, S. Groundwater storage loss associated with land subsidence in Western United States mapped using machine learning. Water Resour. Res. 2020, 56, e2019WR026621. [Google Scholar] [CrossRef]
- Department of Water Resources of Hebei Province. Hebei Water Resources Bulletin; Department of Water Resources of Hebei Province: Shijiazhuang, China, 2020.
- Zhang, J.; Zhang, X. Analysis on the Characteristics of Deep Groundwater Exploitation and Its Influence on Environment in HengShui City. Water Conserv. Sci. Technol. Econ. 2016, 22, 86–91. (In Chinese) [Google Scholar]
- Hebei Provincial Department of Land and Resources. Bulletin of Geological Environment of Hebei Province; Hebei Provincial Department of Land and Resources: Shijiazhuang, China, 2016.
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35, 16. [Google Scholar] [CrossRef]
- Hooper, A.; Segall, P.; Zebker, H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J. Geophys. Res. Solid Earth 2007, 112, B07407. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31, L23611. [Google Scholar] [CrossRef]
- Hu, X.; Lu, Z.; Wang, T. Characterization of hydrogeological properties in Salt Lake Valley, Utah, using InSAR. J. Geophys. Res. Earth Surf. 2018, 123, 1257–1271. [Google Scholar] [CrossRef]
- Chaussard, E.; Bürgmann, R.; Shirzaei, M.; Fielding, E.; Baker, B. Predictability of hydraulic head changes and characterization of aquifer-system and fault properties from InSAR-derived ground deformation. J. Geophys. Res. Solid Earth 2014, 119, 6572–6590. [Google Scholar] [CrossRef]
- Hoffmann, J.; Galloway, D.L.; Zebker, H.A. Inverse modeling of interbed storage parameters using land subsidence observations, Antelope Valley, California. Water Resour. Res. 2003, 39, 1031. [Google Scholar] [CrossRef]
- Bai, L.; Jiang, L.; Zhao, Y.; Li, Z.; Cao, G.; Zhao, C.; Liu, R.; Wang, H. Quantifying the influence of long-term overexploitation on deep groundwater resources across Cangzhou in the North China Plain using InSAR measurements. J. Hydrol. 2022, 605, 127368. [Google Scholar] [CrossRef]
- Miller, M.M.; Shirzaei, M. Spatiotemporal characterization of land subsidence and uplift in Phoenix using InSAR time series and wavelet transforms. J. Geophys. Res. Solid Earth 2015, 120, 5822–5842. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, J. Mechanism of confined groundwater recharge and release in the Middle-East Plain of Haihe River basin. Hydrology 2002, 22, 5–9. (In Chinese) [Google Scholar]
- Chen, Z.; Gao, H.; Wei, W.; Chen, J.; Zhang, F.; Wang, Y. Groundwater Renewal and Characteristics in the deep confined aquifer in North China Plain. Resour. Sci. 2009, 31, 388–393. (In Chinese) [Google Scholar]
- Hebei Provincial Bureau of Statistics. Hebei Statistical Yearbook; Hebei Provincial Bureau of Statistics: Shijiazhuang, China, 2021. [Google Scholar]
- Frigo, M.; Johnson, S.G. FFTW: An Adaptive Software Architecture for the FFT. In Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, Seattle, WA, USA, 15 May 1998; Volume 3, pp. 1381–1384. [Google Scholar] [CrossRef]
- Liu, R.; Cao, G.; Zhao, Y.; Lu, C.; Sun, Q.; Yan, L.; Peng, P. A study of the influence of land subsidence on hydraulic parameters and water supply capacity. Hydrogeol. Eng. Geol. 2019, 46, 47–54. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, C.; Duan, Q.; Yeh, P.J.F.; Pan, Y.; Gong, H.; Moradkhani, H.; Gong, W.; Lei, X.; Liao, W.; Xu, L.; et al. Sub-regional groundwater storage recovery in North China Plain after the South-to-North water diversion project. J. Hydrol. 2021, 597, 126156. [Google Scholar] [CrossRef]
- Wang, H.; Jia, L.; Steffen, H.; Wu, P.; Jiang, L.; Hsu, H.; Xiang, L.; Wang, Z.; Hu, B. Increased water storage in North America and Scandinavia from GRACE gravity data. Nat. Geosci. 2013, 6, 38–42. [Google Scholar] [CrossRef]
Data | Date Range | Purposes |
---|---|---|
Envisat/ASAR | 2003~2010 | Estimating surface displacements and GWS variations in confined aquifer systems. |
Sentinel-1A | 2015~2020 | |
Monthly hydraulic head measurements | 2000~2017 | Investigating the response of land deformation to head change and estimating elastic skeletal storativity and the recoverable GWS variations. |
Region-average hydraulic heads across Hengshui | 2018~2020 | Investigating the response of land deformation to head change. |
Daily precipitation observations | 1975~2020 | Quantifying the climatic and anthropogenic contribution to GWS variations. |
Date | GWS Variations | Recoverable GWS Variations | Irreversible GWS Variations |
---|---|---|---|
2004 | −0.15 ± 0.05 | −0.06 ± 0.04 | −0.09 ± 0.06 |
2007 | −0.32 ± 0.07 | 0.02 ± 0.03 | −0.34 ± 0.08 |
2008 | −0.06 ± 0.04 | 0.05 ± 0.04 | −0.11 ± 0.05 |
2009 | −0.36 ± 0.08 | −0.01 ± 0.03 | −0.35 ± 0.09 |
2010 | −0.61 ± 0.13 | −0.13 ± 0.05 | −0.48 ± 0.14 |
2016 | −0.38 ± 0.09 | 0.04 ± 0.03 | −0.42 ± 0.09 |
2017 | −0.76 ± 0.16 | 0.00 ± 0.03 | −0.76 ± 0.16 |
2018 | −0.54 ± 0.11 | -- | -- |
2019 | −0.84 ± 0.17 | -- | -- |
2020 | −0.57 ± 0.12 | -- | -- |
Year | GWS Variations | Recoverable GWS Variations | Irreversible GWS Variations | |||
---|---|---|---|---|---|---|
(%) | (%) | (%) | (%) | (%) | (%) | |
2004 | 26.2 | −73.8 | 16.4 | −83.6 | 32.7 | −67.3 |
2007 | −43.8 | −56.2 | −34.3 | 65.7 | −41.1 | −58.9 |
2008 | 45.0 | −55.0 | 81.3 | 18.7 | 41.0 | −59.0 |
2009 | 10.4 | −89.6 | 41.6 | −58.4 | 10.5 | −89.5 |
2010 | −38.1 | −61.9 | −33.3 | −66.7 | −48.4 | −51.6 |
2016 | 14.6 | −85.4 | 37.1 | 62.9 | 13.8 | −86.2 |
2017 | −29.7 | −70.3 | −50.1 | 49.9 | −30.0 | −70.0 |
2018 | 22.2 | −77.8 | -- | -- | -- | -- |
2019 | −28.9 | −71.1 | -- | -- | -- | -- |
2020 | −22.1 | −77.9 | -- | -- | -- | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, L.; Li, Z.; Bürgmann, R.; Zhao, Y.; Jiang, L.; Cao, G.; Zhao, C.; Zhang, Q.; Peng, J. Contributions of Climate Variability and Anthropogenic Activities to Confined Groundwater Storage in Hengshui, North China Plain. Remote Sens. 2023, 15, 4827. https://doi.org/10.3390/rs15194827
Bai L, Li Z, Bürgmann R, Zhao Y, Jiang L, Cao G, Zhao C, Zhang Q, Peng J. Contributions of Climate Variability and Anthropogenic Activities to Confined Groundwater Storage in Hengshui, North China Plain. Remote Sensing. 2023; 15(19):4827. https://doi.org/10.3390/rs15194827
Chicago/Turabian StyleBai, Lin, Zhenhong Li, Roland Bürgmann, Yong Zhao, Liming Jiang, Guoliang Cao, Chaoying Zhao, Qin Zhang, and Jianbing Peng. 2023. "Contributions of Climate Variability and Anthropogenic Activities to Confined Groundwater Storage in Hengshui, North China Plain" Remote Sensing 15, no. 19: 4827. https://doi.org/10.3390/rs15194827
APA StyleBai, L., Li, Z., Bürgmann, R., Zhao, Y., Jiang, L., Cao, G., Zhao, C., Zhang, Q., & Peng, J. (2023). Contributions of Climate Variability and Anthropogenic Activities to Confined Groundwater Storage in Hengshui, North China Plain. Remote Sensing, 15(19), 4827. https://doi.org/10.3390/rs15194827