Spatiotemporal Variation and Stability of Rice Planting Using Landsat–MODIS Fusion Images from 1990 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Methods
2.3.1. Image Preprocessing
2.3.2. Mapping of Single-Cropping and Double-Cropping Rice
2.3.3. Accuracy Verification
2.3.4. Variation and Stability
3. Results
3.1. Variation of Rice Planting
3.1.1. Spatiotemporal Variation of Rice Planting and Multiple Crop Index
3.1.2. Conversion Characteristics of Single-Crop Rice and Double-Crop Rice
3.1.3. Spatiotemporal Variation in STID
3.1.4. Spatiotemporal Variation in Rice Planting Frequency
3.2. Stability of Rice Planting
3.2.1. Stability of Rice Planting with 5-Year Intervals
3.2.2. Stability of Rice Planting with 7 Consecutive Periods
4. Discussion
4.1. Agricultural Production Conditions
4.2. Cost and Profit of Rice Cultivation
4.3. Comparison with Existing Research and Prospects
4.4. Impact Mechanism and Suggestions of Rice Planting
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galanakis, C.M. The Food Systems in the Era of the Coronavirus (COVID-19) Pandemic Crisis. Foods 2020, 9, 523. [Google Scholar] [CrossRef] [PubMed]
- Dijk, M.V.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2021, 7, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Winkler, K.; Fuchs, R.; Rounsevell, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Y.; Glendinning, A.; Xu, Y. Land-use changes and land policies evolution in China’s urbanization processes. Land Use Policy 2018, 75, 375–387. [Google Scholar] [CrossRef]
- Guneralp, B.G.; Reba, M.; Hales, B.U.; Wentz, E.A.; Seto, K.C. Trends in urban land expansion, density, and land transitions from 1970 to 2010: A global synthesis. Environ. Res. Lett. 2020, 15, 044015. [Google Scholar] [CrossRef]
- Kuang, B.; Lu, X.; Zhou, M.; Chen, D. Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered. Technol. Forecast. Soc. Chang. 2020, 151, 119874. [Google Scholar] [CrossRef]
- Tu, Y.; Chen, B.; Yu, L.; Xin, Q.; Xu, B. How does urban expansion interact with cropland loss? A comparison of 14 Chinese cities from 1980 to 2015. Landsc. Ecol. 2021, 36, 243–263. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Liu, Y. Cultivated land protection and rational use in China. Land Use Policy 2021, 106, 105454. [Google Scholar] [CrossRef]
- Zhou, X. Rural land system reforms in China: History, issues, measures and prospects. Land Use Policy 2020, 91, 104330. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhong, Z.; Cheng, G. Cultivated land loss and construction land expansion in China: Evidence from national land surveys in 1996, 2009 and 2019. Land Use Policy 2023, 125, 106496. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Zhou, C. Quantifying embodied cultivated land-use change and its socioeconomic driving forces in China. Appl. Geogr. 2021, 137, 102601. [Google Scholar] [CrossRef]
- Jin, X.; Zhang, Z.; Wu, X.; Xiang, X.; Sun, W.; Bai, Q. Co-ordination of land exploitation, exploitable farmland reserves and national planning in China. Land Use Policy 2016, 57, 682–693. [Google Scholar] [CrossRef]
- Song, W.L.M. Farmland conversion decreases regional and national land quality in China. Land Degrad. Dev. 2017, 28, 459–471. [Google Scholar] [CrossRef]
- Chen, C.; van Groenigen, K.J.; Yang, H.; Hungate, B.A.; Yang, B.; Tian, Y.; Chen, J.; Dong, W.; Huang, S.; Deng, A.; et al. Global warming and shifts in cropping systems together reduce China’s rice production. Glob. Food Secur. 2020, 24, 100359. [Google Scholar] [CrossRef]
- Zhang, N.; Qian, H.; Li, H.; Tang, J.; Yang, T.; Liu, Z.; Liu, Y.; Zhang, B.; Ding, Y.; Jiang, Y. Effect of warming on rice yield and methane emissions in a Chinese tropical double-rice cropping system. Agric. Ecosyst. Environ. 2023, 348, 108409. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Chen, X.; Wang, Y.; Niu, B.; Liu, D.L.; He, J.; Pulatov, B.; Hassan, I.; Meng, Q. Impact of climate change and planting date shifts on growth and yields of double cropping rice in southeastern China in future. Agric. Syst. 2023, 205, 103581. [Google Scholar] [CrossRef]
- Pan, B.; Zheng, Y.; Shen, R.; Ye, T.; Zhao, W.; Dong, J.; Ma, H.; Yuan, W. High Resolution Distribution Dataset of Double-Season Paddy Rice in China. Remote Sens. 2021, 13, 4609. [Google Scholar] [CrossRef]
- Waha, K.; Dietrich, J.P.; Portmann, F.T.; Siebert, S.; Herrero, M. Multiple cropping systems of the world and the potential for increasing cropping intensity. Glob. Environ. Chang. 2020, 64, 102131. [Google Scholar] [CrossRef]
- Min, J.; Xin, L.; Li, X.; Tan, M.; Wang, R. Decreasing Rice Cropping Intensity in Southern China from 1990 to 2015. Remote Sens. 2018, 11, 35. [Google Scholar]
- Yang, R.; Luo, X.; Xu, Q.; Zhang, X.; Wu, J. Measuring the Impact of the Multiple Cropping Index of Cultivated Land during Continuous and Rapid Rise of Urbanization in China: A Study from 2000 to 2015. Land 2021, 10, 491. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Liu, Y. Spatial shifts in grain production increases in China and implications for food security. Land Use Policy 2018, 74, 204–213. [Google Scholar] [CrossRef]
- Chu, L.; Jiang, C.; Wang, T.; Li, Z.; Cai, C. Mapping and forecasting of rice cropping systems in central China using multiple data sources and phenology-based time-series similarity measurement. Adv. Space Res. 2021, 68, 3594–3609. [Google Scholar] [CrossRef]
- Han, J.; Zhang, Z.; Luo, Y.; Cao, J.; Zhang, L.; Zhuang, H.; Cheng, F.; Zhang, J.; Tao, F. Annual paddy rice planting area and cropping intensity datasets and their dynamics in the Asian monsoon region from 2000 to 2020. Agric. Syst. 2022, 200, 103437. [Google Scholar] [CrossRef]
- Mishra, B.; Busetto, L.; Boschetti, M.; Laborte, A.; Nelson, A. RICA: A rice crop calendar for Asia based on MODIS multiyear data. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102471. [Google Scholar] [CrossRef]
- Soriano-González, J.; Angelats, E.; Martínez-Eixarch, M.; Alcaraz, C. Monitoring rice crop and yield estimation with Sentinel-2 data. Field Crops Res. 2022, 281, 108507. [Google Scholar] [CrossRef]
- Assefa, Y.; Yadav, S.; Mondal, M.K.; Bhattacharya, J.; Parvin, R.; Sarker, S.R.; Rahman, M.; Sutradhar, A.; Prasad, P.V.; Bhandari, H.; et al. Crop diversification in rice-based systems in the polders of Bangladesh: Yield stability, profitability, and associated risk. Agric. Syst. 2021, 187, 102986. [Google Scholar] [CrossRef]
- Luo, Y.C.; Zhang, Z.; Li, Z.Y. Identifying the spatiotemporal changes of annual harvesting areas for three staple crops in China by integrating multi-data sources. Environ. Res. Lett. 2020, 15, 074003. [Google Scholar] [CrossRef]
- Hashemi, M.G.Z.; Abhishek, A.; Jalilvand, E.; Jayasinghe, S.; Andreadis, K.M.; Siqueira, P.; Das, N.N. Assessing the impact of Sentinel-1 derived planting dates on rice crop yield modeling. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103047. [Google Scholar] [CrossRef]
- Yang, Q.; Shi, L.; Han, J.; Chen, Z.; Yu, J. A VI-based phenology adaptation approach for rice crop monitoring using UAV multispectral images. Field Crops Res. 2022, 277, 108419. [Google Scholar] [CrossRef]
- de Bem, P.P.; de Carvalho Júnior, O.A.; de Carvalho, O.L.F.; Gomes, R.A.T.; Guimarāes, R.F.; Pimentel, C.M.M. Irrigated rice crop identification in Southern Brazil using convolutional neural networks and Sentinel-1 time series. Remote Sens. Appl. Soc. Environ. 2021, 24, 100627. [Google Scholar]
- Li, B.; Peng, S.; Shen, R.; Yang, Z.-L.; Yan, X.; Li, X.; Li, R.; Li, C.; Zhang, G. Development of a new index for automated mapping of ratoon rice areas using time-series normalized difference vegetation index imagery. Pedosphere 2022, 32, 576–587. [Google Scholar] [CrossRef]
- Liang, S.; Bai, R.; Chen, X. Review of the development of land table quantitative remote sensing in China in 2019. J. Remote Sens. 2020, 24, 618–671. [Google Scholar]
- Zhang, L.; Zhang, Y. Object-oriented crop classification based on UAV remote sensing imagery. Glob. Geol. 2022, 25, 60–68. [Google Scholar]
- Quan, J.; Wang, Y.; Wang, X. Extraction of Rice Planting Area in Dabie Mountain by Remote Sensing Image: Taking Landsat 8 as an Example. Chin. Agric. Sci. Bull. 2019, 35, 104–111. [Google Scholar]
- Han, H. Dynamic Monitoring and Automatic Extraction of Land Use Change Information with Supervised Classification. Master’s Thesis, Changan University, Xi’an, China, 2012. [Google Scholar]
- Feng, Q.; Yang, L.; Wang, W. Remote sensing crop classification by convolutional neural network based on temporal spectral reconstruction. J. Univ. Chin. Acad. Sci. 2020, 37, 619–628. [Google Scholar]
- Pradeep, K.; Gupta, D.K.; Varun, N.M. Comparison of support vector machine, artificial neural network, and spectral angle mapper algorithms for crop classification using LISS IV data. Int. J. Remote Sens. 2015, 36, 1604–1617. [Google Scholar]
- Hunt, M.L.; Blackburn, G.A.; Carrasco, L. High resolution wheat yield mapping using Sentinel-2. Remote Sens. Environ. 2019, 233, 111410–111425. [Google Scholar] [CrossRef]
- Dobrini, D.; Gaparovi, M.; Medak, D. Sentinel-1 and 2 time-series for vegetation mapping using random forest classification: A case study of northern Croatia. Remote Sens. 2021, 13, 2321. [Google Scholar] [CrossRef]
- Du, B.; Zhang, J.; Wang, Z. Applied Sentinel-2A NDVI time-series and object-oriented decision tree methods for crop classification. J. Earth Inf. Sci. 2019, 21, 740–751. [Google Scholar]
- Wang, X.; Han, L.; Yang, J. Multi-characterized winter wheat area extraction under a combination of Sentinel-2 and Landsat 8 data. Surv. Mapp. Bull. 2022, 3, 111–115. [Google Scholar]
- Gong, P.; Liu, H.; Zhang, M. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef]
- Wang, D.; Fang, S.; Wang, Z. Rape seed extraction study based on spectral and color characteristics. Trans. Chin. Soc. Agric. Mach. 2018, 49, 158–165. [Google Scholar]
- Mi, S.; Tan, X.; Tan, J.; Jiang, L.; Wang, Z. Analysis of influencing factors of rice planting area evolution in Dongting Lake Area during 1987–2017. J. Nat. Resour. 2020, 35, 2499–2510. [Google Scholar] [CrossRef]
- Zhang, M.; Zeng, Y. Mapping paddy fields of Dongting Lake area by fusing Landsat and MODIS data. Trans. Chin. Soc. Agric. Eng. 2015, 31, 178–185. [Google Scholar] [CrossRef]
- Sang, G.; Tang, Z.; Mao, K.; Deng, G.; Wang, J.; Li, J. High-resolution paddy rice mapping using Sentinel data based on GEE platform:a case study of Hunan province, China. Acta Agron. Sin. 2022, 48, 2409–2420. [Google Scholar]
- Jiang, L.; Wu, S.; Liu, Y. Change Analysis on the Spatio-Temporal Patterns of Main Crop Planting in the Middle Yangtze Plain. Remote Sens. 2022, 14, 1141. [Google Scholar] [CrossRef]
Year | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|---|---|
Overall accuracy/% | 89.6 | 93.4 | 94.3 | 93.1 | 93.6 | 94.1 | 93.8 |
Kappa coefficient | 0.81 | 0.86 | 0.87 | 0.86 | 0.86 | 0.87 | 0.86 |
Producers accuracy/% | 82.3 | 86.5 | 89.0 | 86.1 | 87.1 | 87.5 | 87.2 |
User accuracy/% | 93.5 | 96.5 | 98.5 | 96.8 | 97.3 | 98.1 | 97.5 |
Change Features | 1990–1995 | 1995–2000 | 2000–2005 | 2005–2010 | 2010–2015 | 2015–2020 | |
---|---|---|---|---|---|---|---|
Rice | STDI | −97.38 | 91.92 | 68.64 | 49.83 | 21.37 | 66.91 |
Areain * | 2.35 | 691.85 | 838.56 | 1114.29 | 377.63 | 930.86 | |
other to SR * | 1.71 | 248.70 | 64.23 | 0.30 | 82.49 | 371.74 | |
other to DR * | 0.64 | 443.15 | 774.33 | 1113.99 | 295.13 | 559.12 | |
Areaout * | 177.18 | 29.13 | 155.95 | 373.13 | 244.62 | 184.51 | |
SR to other | 60.36 | 15.72 | 147.10 | 214.71 | 133.68 | 137.10 | |
DR to other | 116.82 | 13.41 | 8.85 | 158.41 | 110.94 | 47.41 | |
SR | STDI | −3.10 | 59.69 | 75.11 | −56.21 | −7.56 | 65.98 |
Areain | 322.88 | 395.05 | 1365.42 | 282.77 | 471.49 | 3143.69 | |
DR to SR | 321.17 | 146.34 | 1301.19 | 282.47 | 389.00 | 2771.94 | |
other to SR | 1.71 | 248.70 | 64.23 | 0.30 | 82.49 | 371.74 | |
Areaout | 343.51 | 99.71 | 194.07 | 1008.78 | 548.66 | 644.42 | |
SR to DR | 283.16 | 83.99 | 46.96 | 794.06 | 414.98 | 507.31 | |
SR to other | 60.36 | 15.72 | 147.10 | 214.71 | 133.68 | 137.10 | |
DR | STDI | −21.36 | 53.49 | −25.19 | 62.46 | 17.37 | −45.11 |
Areain | 283.80 | 527.13 | 821.29 | 1908.06 | 710.12 | 1066.44 | |
SR to DR | 283.16 | 83.99 | 46.96 | 794.06 | 414.98 | 507.31 | |
other to DR | 0.64 | 443.15 | 774.33 | 1113.99 | 295.13 | 559.12 | |
Areaout | 437.99 | 159.75 | 1374.26 | 440.88 | 499.94 | 2819.35 | |
DR to SR | 321.17 | 146.34 | 1365.42 | 282.47 | 389.00 | 2771.94 | |
DR to other | 116.82 | 13.41 | 8.85 | 158.41 | 110.94 | 47.41 |
Stability Features | 1990–1995 | 1995–2000 | 2000–2005 | 2005–2010 | 2010–2015 | 2015–2020 | |
---|---|---|---|---|---|---|---|
Areastable km2 | Rice | 5750.48 | 5060.98 | 4934.16 | 5335.36 | 6204.84 | 6397.95 |
SR * | 624.1 | 551.93 | 457.58 | 814.22 | 548.31 | 375.39 | |
DR * | 4522.05 | 4278.71 | 3064.2 | 3444.61 | 4852.55 | 2743.31 | |
SI % | Rice | 96.97 | 87.53 | 84.14 | 78.2 | 90.89 | 85.15 |
SR | 48.36 | 52.73 | 22.69 | 38.67 | 34.96 | 9.02 | |
DR | 86.24 | 86.17 | 58.26 | 59.46 | 80.04 | 41.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.; Liu, Y.; Wu, S. Spatiotemporal Variation and Stability of Rice Planting Using Landsat–MODIS Fusion Images from 1990 to 2020. Remote Sens. 2023, 15, 4814. https://doi.org/10.3390/rs15194814
Jiang L, Liu Y, Wu S. Spatiotemporal Variation and Stability of Rice Planting Using Landsat–MODIS Fusion Images from 1990 to 2020. Remote Sensing. 2023; 15(19):4814. https://doi.org/10.3390/rs15194814
Chicago/Turabian StyleJiang, Luguang, Ye Liu, and Si Wu. 2023. "Spatiotemporal Variation and Stability of Rice Planting Using Landsat–MODIS Fusion Images from 1990 to 2020" Remote Sensing 15, no. 19: 4814. https://doi.org/10.3390/rs15194814
APA StyleJiang, L., Liu, Y., & Wu, S. (2023). Spatiotemporal Variation and Stability of Rice Planting Using Landsat–MODIS Fusion Images from 1990 to 2020. Remote Sensing, 15(19), 4814. https://doi.org/10.3390/rs15194814