Assessing the Potential Impacts of Climate Change on Current Coastal Ecosystems—A Canadian Case Study
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data Sources
3.2. Satellite Data Processing
3.3. Classification Procedures
3.4. Validation Criteria
3.5. Flooding and Storm Surge Scenario
4. Results
4.1. Changes in PEI Ecosystems
4.2. Impacts of Coastal Flooding on Ecosystems
4.3. Impacts of Storm Surge on PEI Ecosystems
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dau, Q.V.; Momblanch, A.; Adeloye, A.J. Adaptation in a Himalayan water resources system under a sustainable socio-economic pathway in a high-emission context. J. Hydrol. Eng. 2021, 26, 04021003. [Google Scholar] [CrossRef]
- Pecl, G.T.; Araújo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C.; Chen, I.-C.; Clark, T.D.; Colwell, R.K.; Danielsen, F.; Evengård, B.; et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 2017, 355, eaai9214. [Google Scholar] [CrossRef] [PubMed]
- Dau, Q.V.; Kittiwet, K. Identifying adaptive reservoir operation for future climate change scenarios: A case study in Central Vietnam. Water Resour. 2020, 47, 189–199. [Google Scholar] [CrossRef]
- Malhi, Y.; Franklin, J.; Seddon, N.; Solan, M.; Turner, M.G.; Field, C.B.; Knowlton, N. Climate change and ecosystems: Threats, opportunities and solutions. Phil. Trans. R. Soc. B 2020, 375, 20190104. [Google Scholar] [CrossRef]
- Wang, X.; Huang, G.; Lin, Q.; Nie, X.; Cheng, G.; Fan, Y.; Li, Z.; Yao, Y.; Suo, M. A stepwise cluster analysis approach for downscaled climate projection—A Canadian case study. Environ. Model. Softw. 2013, 49, 141–151. [Google Scholar] [CrossRef]
- Taillie, P.J.; Roman-Cuesta, R.; Lagomasino, D.; Cifuentes-Jara, M.; Fatoyinbo, T.; Ott, L.E.; Poulter, B. Widespread mangrove damage resulting from the 2017 Atlantic mega hurricane season. Environ. Res. Lett. 2020, 15, 064010. [Google Scholar] [CrossRef]
- Walcker, R.; Laplanche, C.; Herteman, M.; Lambs, L.; Fromard, F. Damages caused by hurricane Irma in the human-degraded mangroves of Saint Martin (Caribbean). Sci. Rep. 2019, 9, 18971. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Q.; Hu, K.; Snedden, G.A.; Hartig, E.K.; Couvillion, B.R.; Johnson, C.L.; Orton, P.M. Numerical Modeling of the Effects of Hurricane Sandy and Potential Future Hurricanes on Spatial Patterns of Salt Marsh Morphology in Jamaica Bay, New York City; Open-File Report 2017–1016; U.S. Geological Survey (USGS): Reston, VA, USA, 2017; p. 56. [Google Scholar]
- Asbridge, E.; Lucas, R.; Rogers, K.; Accad, A. The extent of mangrove change and potential for recovery following severe Tropical Cyclone Yasi, Hinchinbrook Island, Queensland, Australia. Ecol. Evol. 2018, 8, 10416–10434. [Google Scholar] [CrossRef]
- Hodge, J.; Williams, H. Deriving spatial and temporal patterns of coastal marsh aggradation from hurricane storm surge marker beds. Geomorphology 2016, 274, 50–63. [Google Scholar] [CrossRef]
- Xiao, H.; Wang, D.; Medeiros, S.C.; Bilskie, M.V.; Hagen, S.C.; Hall, C.R. Exploration of the effects of storm surge on the extent of saltwater intrusion into the surficial aquifer in coastal east-central Florida (USA). Sci. Total Environ. 2019, 648, 1002–1017. [Google Scholar] [CrossRef]
- Roy, P.; Pal, S.C.; Chakrabortty, R.; Chowdhuri, I.; Saha, A.; Shit, M. Effects of climate change and sea-level rise on coastal habitat: Vulnerability assessment, adaptation strategies and policy recommendations. J. Environ. Manag. 2023, 330, 117187. [Google Scholar] [CrossRef] [PubMed]
- Wilson, E.O. Biodiversity and Climate Change Transforming the Biosphere; Yale University Press: New Haven, CT, USA, 2019. [Google Scholar]
- Higgins, S.I.; Conradi, T.; Muhoko, E. Shifts in vegetation activity of terrestrial ecosystems attributable to climate trends. Nat. Geosci. 2023, 16, 147–153. [Google Scholar] [CrossRef]
- Froese, R.; Schilling, J. The nexus of climate change, land use, and conflicts. Curr. Clim. Change Rep. 2019, 5, 24–35. [Google Scholar] [CrossRef]
- Sunderlin, W.D.; de Sassi, C.; Sills, E.O.; Duchelle, A.E.; Larson, A.M.; Resosudarmo, I.A.P.; Awono, A.; Kweka, D.L.; Huynh, T.B. Creating an appropriate tenure foundation for REDD+: The record to date and prospects for the future. World Dev. 2018, 106, 376–392. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, P.; Wang, C.; Zhang, M.; Cao, X.; Chen, C.; Wang, C.; Xiu, C.; Du, D.; Cui, H.; et al. Multiple pollutants stress the coastal ecosystem with climate and anthropogenic drivers. J. Hazard. Mater. 2022, 424, 127570. [Google Scholar] [CrossRef]
- Skoulikaris, C.; Makris, C.; Katirtzidou, M.; Baltikas, V.; Krestenitis, Y. Assessing the Vulnerability of a Deltaic Environment due to Climate Change Impact on Surface and Coastal Waters: The Case of Nestos River (Greece). Environ. Model. Assess. 2021, 26, 459–486. [Google Scholar] [CrossRef]
- Wang, X.; Guo, J.; Fenech, A.; Farooque, A.A. Future climate projections for Eastern Canada. Clim. Dyn. 2022, 59, 2735–2750. [Google Scholar] [CrossRef]
- Wang, X.; Yang, A.; Fenech, A.; Cheng, H. Environmental systems modelling and analysis under changing conditions. Math. Probl. Eng. 2021, 2021, 9780860. [Google Scholar] [CrossRef]
- Lewis, B.M.; Battye, W.H.; Aneja, V.P.; Kim, H.; Bell, M.L. Modeling and Analysis of Air Pollution and Environmental Justice: The Case for North Carolina’s Hog Concentrated Animal Feeding Operations. Environ. Heal. Perspect. 2023, 131, 087018. [Google Scholar] [CrossRef]
- Druckenbrod, D.L.; Martin-Benito, D.; Orwig, D.A.; Pederson, N.; Poulter, B.; Renwick, K.M.; Shugart, H.H. Redefining temperate forest responses to climate and disturbance in the eastern United States: New insights at the mesoscale. Glob. Ecol. Biogeogr. 2019, 28, 557–575. [Google Scholar] [CrossRef]
- Palacios-Orueta, A.; Huesca, M.; Whiting, M.L.; Litago, J.; Khanna, S.; Garcia, M.; Ustin, S.L. Derivation of phenological metrics by function fitting to time-series of Spectral Shape Indexes AS1 and AS2: Mapping cotton phenological stages using MODIS time series. Remote Sens. Environ. 2012, 126, 148–159. [Google Scholar] [CrossRef]
- Muraoka, H.; Koizumi, H. Satellite Ecology (SATECO)—Linking ecology, remote sensing and micrometeorology, from plot to regional scale, for the study of ecosystem structure and function. J. Plant Res. 2009, 122, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Marceau, D.J.; Hay, G.J. Remote sensing contributions to the scale Issue. Can. J. Remote Sens. 1999, 25, 357–366. [Google Scholar] [CrossRef]
- Lewis, D.; Phinn, S.; Arroyo, L. Cost-effectiveness of seven approaches to map vegetation vommunities—A case study from Northern Australia’s tropical Savannas. Remote Sens. 2013, 5, 377–414. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef]
- Basheer, S.; Wang, X.; Farooque, A.A.; Nawaz, R.A.; Liu, K.; Adekanmbi, T.; Liu, S. Comparison of land use land cover classifiers using different satellite imagery and machine learning techniques. Remote. Sens. 2022, 14, 4978. [Google Scholar] [CrossRef]
- Dau, Q.V.; Adeloye, A.J. Water security implications of climate and socio-economic stressors for river basin management. Hydrol. Sci. J. 2021, 66, 1097–1112. [Google Scholar] [CrossRef]
- Rolnick, D.; Donti, P.L.; Kaack, L.H.; Kochanski, K.; Lacoste, A.; Sankaran, K.; Ross, A.S.; Milojevic-Dupont, N.; Jaques, N.; Waldman-Brown, A.; et al. Tackling climate change with machine learning. ACM Comput. Surv. 2022, 55, 1–96. [Google Scholar] [CrossRef]
- Huntingford, C.; Jeffers, E.S.; Bonsall, M.B.; Christensen, H.M.; Lees, T.; Yang, H. Machine learning and artificial intelligence to aid climate change research and preparedness. Environ. Res. Lett. 2019, 14, 124007. [Google Scholar] [CrossRef]
- Guo, J.; Wang, X.; Fan, Y.; Liang, X.; Jia, H.; Liu, L. How extreme events in China would be affected by global warming—Insights from a bias-borrected CMIP6 ensemble. Earth's Futur. 2023, 11, e2022EF003347. [Google Scholar] [CrossRef]
- Santini, M.; Valentini, R. Predicting hot-spots of land use changes in Italy by ensemble forecasting. Reg. Environ. Change 2011, 11, 483–502. [Google Scholar] [CrossRef]
- Lacava, G.; Mercaldo, F.; Martinelli, F.; Santone, A.; Pizzi, M. Drone audio recognition based on machine learning techniques. Procedia Comput. Sci. 2022, 207, 848–857. [Google Scholar] [CrossRef]
- Bansal, D.; Chhikara, R.; Khanna, K.; Gupta, P. Comparative analysis of various machine learning algorithms for detecting dementia. Procedia Comput. Sci. 2018, 132, 1497–1502. [Google Scholar] [CrossRef]
- Ray, S. A quick review of machine learning algorithms. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; pp. 35–39. [Google Scholar]
- Chown, S.; Froneman, P.W. The Prince Edward Islands: Land-Sea Interactions in a Changing Ecosystem; Sun Press: , Stellenbosch, South Africa, 2008. [Google Scholar]
- Khirfan, L.; El-Shayeb, H. Urban climate resilience through socio-ecological planning: A case study in Charlottetown, Prince Edward Island. J. Urban. Int. Res. Placemaking Urban Sustain. 2020, 13, 187–212. [Google Scholar] [CrossRef]
- Bhatti, A.Z.; Farooque, A.A.; Krouglicof, N.; Peters, W.; Acharya, B.; Li, Q.; Ahsan, M.S. Climate change impacts on precipitation and temperature in Prince Edward Island, Canada. World Water Policy 2021, 7, 9–29. [Google Scholar] [CrossRef]
- Fenech, A.; Chen, A.; Clark, A.; Hedley, N. Building an adaptation tool for visualizing the coastal impacts of climate change on Prince Edward Island, Canada. In Climate Change Adaptation in North America: Fostering Resilience and the Regional Capacity to Adapt; Leal Filho, W., Keenan, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 225–238. [Google Scholar]
- Kınay, P.; Wang, X.; Augustine, P.J.; Augustine, M. Reporting evidence on the environmental and health impacts of climate change on Indigenous Peoples of Atlantic Canada: A systematic review. Environ. Res. Clim. 2023, 2, 022003. [Google Scholar] [CrossRef]
- Szuster, B.W.; Chen, Q.; Borger, M. A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones. Appl. Geogr. 2011, 31, 525–532. [Google Scholar] [CrossRef]
- Government-of-PEI. 2000/02 Prince Edward Isaland Corporate Land Use Inventory—Land Use and Land Cover Summary; Government of PEI: Charlottetown, PE, Canada, 2003. [Google Scholar]
- Government-of-PEI. State of the Forest Report 2010; Agriculture and Forestry—Forests, Fish and Wildlife: Charlottetown, PE, Canada, 2013. [Google Scholar]
- DFO. Seafisheries Landed Quantity by Province. Available online: https://www.dfo-mpo.gc.ca/stats/commercial/land-debarq/sea-maritimes/s2021pq-eng.htm (accessed on 10 May 2023).
- Government-of-PEI. GIS Data Layer—Resource Data. Available online: http://www.gov.pe.ca/gis/index.php3?number=77543&lang=E (accessed on 12 May 2023).
- Google. Landsat Collections. Available online: https://developers.google.com/earth-engine/datasets/catalog/landsat (accessed on 2 April 2023).
- DEECA. Coastal Hazards Information Platform (CHIP). Available online: https://www.princeedwardisland.ca/en/information/environment-energy-and-climate-action/coastal-hazards-information-platform-chip (accessed on 15 March 2023).
- USGS. Landsat 8-9 Operational Land Imager (OLI)—Thermal Infrared Sensor (TIRS) Collection 2 Level 2 (L2) Data Format Control Book (DFCB); United States Geological Survey: Reston, VA, USA, 2020; Volume 78. [Google Scholar]
- Dibblee, R. Wetland 2000 Polygon. Available online: www.gov.pe/gis (accessed on 22 June 2023).
- Pal, M.; Mather, P.M. Support vector machines for classification in remote sensing. Int. J. Remote Sens. 2005, 26, 1007–1011. [Google Scholar] [CrossRef]
- Awad, M. Google Earth Engine (GEE) cloud computing based crop classification using radar, optical images and Support Vector Machine Algorithm (SVM). In Proceedings of the 2021 IEEE 3rd International Multidisciplinary Conference on Engineering Technology (IMCET), Beirut, Lebanon, 8–10 December 2021; pp. 71–76. [Google Scholar]
- Begg, R.K.; Palaniswami, M.; Owen, B. Support vector machines for automated gait classification. IEEE Trans. Biomed. Eng. 2005, 52, 828–838. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Masek, J.G.; Cohen, W.B.; Leckie, D.; Wulder, M.A.; Vargas, R.; de Jong, B.; Healey, S.; Law, B.; Birdsey, R.; Houghton, R.A.; et al. Recent rates of forest harvest and conversion in North America. J. Geophys. Res. 2011, 116, G00K03. [Google Scholar] [CrossRef]
- Gaveau, D.L.A.; Sheil, D.; Husnayaen; Salim, M. A.; Arjasakusuma, S.; Ancrenaz, M.; Pacheco, P.; Meijaard, E. Rapid conversions and avoided deforestation: Examining four decades of industrial plantation expansion in Borneo. Sci. Rep. 2016, 6, 32017. [Google Scholar] [CrossRef]
- Ramenzoni, V.C.; Escuela, D.B.; Rivero, A.R.; González-Díaz, P.; Sánchez, V.V.; López-Castañeda, L.; Méndez, A.F.; Ramos, I.H.; López, N.V.H.; Besonen, M.R.; et al. Vulnerability of Fishery-Based Livelihoods to Extreme Events: Local Perceptions of Damages from Hurricane Irma and Tropical Storm Alberto in Yaguajay, Central Cuba. Coast. Manag. 2020, 48, 354–377. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Tong, C. A review on impact of typhoons and hurricanes on coastal wetland ecosystems. Acta Ecol. Sin. 2016, 36, 23–29. [Google Scholar] [CrossRef]
- CBC. Dorian Takes out 80% of Trees in Cavendish Area of P.E.I. National Park, Parks Canada Says. Available online: https://www.cbc.ca/news/canada/prince-edward-island/pei-post-tropical-storm-dorian-cavendish-trees-1.5277635 (accessed on 25 March 2023).
- Harmon, M.E.; Franklin, J.F.; Swanson, F.J.; Sollins, P.; Gregory, S.V.; Lattin, J.D.; Anderson, N.H.; Cline, S.P.; Aumen, N.G.; Sedell, J.R.; et al. Ecology of Coarse Woody Debris in Temperate Ecosystems. In Advances in Ecological Research; Academic Press: Cambridge, MA, USA, 2004; Volume 34, pp. 59–234. [Google Scholar]
- Behnke-Borowczyk, J.; Kwaśna, H.; Kartawik, N.; Sijka, B.; Bełka, M.; Łakomy, P. Effect of management on fungal communities in dead wood of Scots pine. For. Ecol. Manag. 2021, 479, 118528. [Google Scholar] [CrossRef]
- Government-of-PEI. PEI Forestry Commission. Available online: https://www.princeedwardisland.ca/en/information/environment-energy-and-climate-action/pei-forestry-commission (accessed on 16 March 2023).
- Allen, Y.C.; Couvillion, B.R.; Barras, J.A. Using multitemporal remote sensing imagery and inundation measures to improve land change estimates in coastal wetlands. Estuaries Coasts 2012, 35, 190–200. [Google Scholar] [CrossRef]
- Mathew, S.; Davidson-Arnott, R.G.D.; Ollerhead, J. Evolution of a beach–dune system following a catastrophic storm overwash event: Greenwich Dunes, Prince Edward Island, 1936–2005. Can. J. Earth Sci. 2010, 47, 273–290. [Google Scholar] [CrossRef]
- Government-of-PEI. Environmental Protection Act; Legislative Counsel Office: Charlottetown, PE, Canada, 2017. [Google Scholar]
- Temmerman, S.; Horstman, E.M.; Krauss, K.W.; Mullarney, J.C.; Pelckmans, I.; Schoutens, K. Marshes and Mangroves as Nature-Based Coastal Storm Buffers. Annu. Rev. Mar. Sci. 2023, 15, 95–118. [Google Scholar] [CrossRef]
- Loke, L.H.L.; Heery, E.C.; Todd, P.A. Chapter 26—Shoreline Defenses. In World Seas: An Environmental Evaluation, 2nd ed.; Sheppard, C., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 491–504. [Google Scholar]
- Taylor, A.R.; Boulanger, Y.; Price, D.T.; Cyr, D.; McGarrigle, E.; Rammer, W.; Kershaw, J.A. Rapid 21st century climate change projected to shift composition and growth of Canada’s Acadian Forest Region. For. Ecol. Manag. 2017, 405, 284–294. [Google Scholar] [CrossRef]
- Silva, M.; Hartling, L.A.; Field, S.A.; Teather, K. The effects of habitat fragmentation on amphibian species richness of Prince Edward Island. Can. J. Zool. 2003, 81, 563–573. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development: Draft Resolution Referred to the United Nations Summit for the Adoption of the Post-2015 Development Agenda by the General Assembly at Its 69th Session; UN: New York, NY, USA, 2015; p. 35. [Google Scholar]
Year | Evaluation Index | Total Area (km2) * | |||||||
---|---|---|---|---|---|---|---|---|---|
Overall Accuracy | Kappa | Sand Dune and Beach | Salt or Brackish Marsh | No Open Water or Marsh Component | Salt Water | Open Water or Marsh Component | Forest | Other | |
2013 | 0.95 | 0.95 | 35 | 12 | 98 | 79 | 134 | 2462 | 2938 |
2014 | 0.94 | 0.88 | 36 (3%) | 11 (−8%) | 99 (1%) | 79 (−8%) | 132 (−1%) | 2449 (−1%) | 2952 (−8%) |
2015 | 0.96 | 0.93 | 39 (11%) | 9 (−25%) | 96 (−2%) | 75 (−5%) | 121 (−10%) | 2396 (−3%) | 3023 (3%) |
2016 | 0.96 | 0.95 | 37 (6%) | 10 (−17%) | 97 (−1%) | 76 (−4%) | 124 (−7%) | 2391 (−3%) | 3025 (3%) |
2017 | 0.95 | 0.92 | 39 (11%) | 10 (−17%) | 95 (−3%) | 76 (−4%) | 123 (−8%) | 2345 (−5%) | 3071 (5%) |
2018 | 0.93 | 0.87 | 39 (11%) | 10 (−17%) | 96 (−2%) | 82 (4%) | 115 (−14%) | 2340 (−5%) | 3075 (5%) |
2019 | 0.96 | 0.95 | 39 (11%) | 10 (−17%) | 96 (−2%) | 80 (1%) | 123 (−8%) | 2280 (−7%) | 3131 (7%) |
2020 | 0.96 | 0.93 | 37 (6%) | 10 (−17%) | 93 (−5%) | 76 (−4%) | 116 (−14%) | 2292 (−7%) | 3135 (7%) |
2021 | 0.93 | 0.89 | 36 (3%) | 10 (−17%) | 96 (−2%) | 75 (−5%) | 125 (−7%) | 2306 (−6%) | 3112 (6%) |
2022 | 0.96 | 0.95 | 39 (11%) | 10 (−17%) | 95 (−3%) | 75 (−5%) | 122 (−9%) | 2392 (−3%) | 3023 (3%) |
Scenarios | Total Affected Area (km2) * | ||||||
---|---|---|---|---|---|---|---|
Sand Dune and Beach | Salt or Brackish Marsh | No Open Water or Marsh Component | Salt Water | Open Water or Marsh Component | Forest | Other | |
Without Flooding | 39 | 10 | 95 | 75 | 122 | 2392 | 3023 |
Scenario 1 | 19 (49%) | 6 (60%) | 4 (4%) | 23 (31%) | 34 (28%) | 56 (2%) | 235 (8%) |
Scenario 2 | 20 (51%) | 6 (60%) | 5 (5%) | 23 (31%) | 34 (28%) | 67 (3%) | 257 (9%) |
Scenario 3 | 24 (62%) | 6 (60%) | 8 (8%) | 23 (31%) | 34 (28%) | 96 (4%) | 322 (11%) |
Scenario 4 | 28 (72%) | 6 (60%) | 12 (13%) | 23 (31%) | 35 (29%) | 153 (6%) | 445 (15%) |
Scenarios | Total Affected Area (km2) * | ||||||
---|---|---|---|---|---|---|---|
Sand Dune and Beach | Salt or Brackish Marsh | No Open Water or Marsh Component | Salt Water | Open Water or Marsh Component | Forest | Other | |
Without Storm Surge | 39 | 10 | 95 | 75 | 122 | 2392 | 3023 |
Storm Surge (1.0 m) | 10 (26%) | 3 (30%) | 3 (3%) | 4 (5%) | 13 (11%) | 28 (1%) | 140 (5%) |
Storm Surge (2.0 m) | 15 (38%) | 3 (30%) | 5 (5%) | 4 (5%) | 15 (12%) | 71 (3%) | 230 (8%) |
Storm Surge (3.0 m) | 18 (46%) | 3 (30%) | 10 (11%) | 4 (5%) | 15 (12%) | 118 (5%) | 332 (11%) |
Storm Surge (4.0 m) | 20 (51%) | 3 (30%) | 13 (14%) | 4 (5%) | 16 (13%) | 167 (7%) | 438 (14%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dau, Q.V.; Wang, X.; Shah, M.A.R.; Kinay, P.; Basheer, S. Assessing the Potential Impacts of Climate Change on Current Coastal Ecosystems—A Canadian Case Study. Remote Sens. 2023, 15, 4742. https://doi.org/10.3390/rs15194742
Dau QV, Wang X, Shah MAR, Kinay P, Basheer S. Assessing the Potential Impacts of Climate Change on Current Coastal Ecosystems—A Canadian Case Study. Remote Sensing. 2023; 15(19):4742. https://doi.org/10.3390/rs15194742
Chicago/Turabian StyleDau, Quan Van, Xiuquan Wang, Mohammad Aminur Rahman Shah, Pelin Kinay, and Sana Basheer. 2023. "Assessing the Potential Impacts of Climate Change on Current Coastal Ecosystems—A Canadian Case Study" Remote Sensing 15, no. 19: 4742. https://doi.org/10.3390/rs15194742
APA StyleDau, Q. V., Wang, X., Shah, M. A. R., Kinay, P., & Basheer, S. (2023). Assessing the Potential Impacts of Climate Change on Current Coastal Ecosystems—A Canadian Case Study. Remote Sensing, 15(19), 4742. https://doi.org/10.3390/rs15194742