Impact of Atmospheric Correction on Classification and Quantification of Seagrass Density from WorldView-2 Imagery
Abstract
:1. Introduction
2. Methods
2.1. Study Sites
2.2. Measurement of Water Column Optical Properties and In Situ Rrs
2.3. In Situ Seagrass Density
2.4. Top-of-Canopy Reflectance Measurements
2.5. Satellite Data
2.6. Data Processing
2.6.1. Atmospheric Correction
2.6.2. Machine Learning Supervised Classification
2.6.3. Calculation of Seagrass Density
2.7. Statistical Analysis
2.7.1. Comparison of Atmospherically Corrected Rrs Values
2.7.2. Comparison of In Situ and Retrieved LAI
3. Results
3.1. Water Column Optical Properties
3.2. Comparison of Remote Sensing Reflectance between Atmospheric Correction Methods
3.3. Image Classification
3.3.1. Saint Joseph Bay
3.3.2. Saint George Sound
3.3.3. Keaton Beach
3.4. Seagrass Density
3.4.1. Determination of LAI from Top-of-Canopy Reflectance
3.4.2. Saint Joseph Bay
3.4.3. Saint George Sound
3.4.4. Keaton Beach
3.4.5. LAI(ELH) Compared to LAI(DOS)
4. Discussion
Seagrass Density Quantification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chmura, G.; Short, F.; Torio, D.; Arroyo-Mora, P.; Fajardo, P.; Hatvany, M.; van Ardenne, L. North America’s Blue Carbon: Assessing Seagrass, Salt Marsh and Mangrove Distribution and Carbon Sinks: Project Report; Commission for Environmental Cooperation: Montreal, Canada, 2016; p. 54. [Google Scholar]
- McKenzie, L.J.; Nordlund, L.M.; Jones, B.L.; Cullen-Unsworth, L.C.; Roelfsema, C.; Unsworth, R.K. The global distribution of seagrass meadows. Environ. Res. Lett. 2020, 15, 074041. [Google Scholar] [CrossRef]
- Coffer, M.; Schaeffer, B.A.; Zimmerman, R.C.; Hill, V.; Li, J.; Islam, K.A.; Whitman, P.J. Performance across WorldView-2 and RapidEye for reproducible seagrass mapping. Remote Sens. Environ. 2020, 250, 112036. [Google Scholar] [CrossRef] [PubMed]
- Koedsin, W.; Intararuang, W.; Ritchie, R.J.; Huete, A. An Integrated Field and Remote Sensing Method for Mapping Seagrass Species, Cover, and Biomass in Southern Thailand. Remote Sens. 2016, 8, 292. [Google Scholar] [CrossRef]
- Lebrasse, M.C.; Schaeffer, B.A.; Coffer, M.; Whitman, P.J.; Zimmerman, R.C.; Hill, V.J.; Islam, K.A.; Li, J.; Osburn, C.L. Temporal Stability of Seagrass Extent, Leaf Area, and Carbon Storage in St. Joseph Bay, Florida: A Semi-automated Remote Sensing Analysis. Estuaries Coasts 2022, 45, 2082–2101. [Google Scholar] [CrossRef] [PubMed]
- Misbari, S.; Hashim, M. Change Detection of Submerged Seagrass Biomass in Shallow Coastal Water. Remote Sens. 2016, 8, 200. [Google Scholar] [CrossRef]
- Phinn, S.; Roelfsema, C.; Dekker, A.; Brando, V.; Anstee, J. Mapping seagrass species, cover and biomass in shallow waters: An assessment of satellite multi-spectral and airborne hyper-spectral imaging systems in Moreton Bay (Australia). Remote Sens. Environ. 2008, 112, 3413–3425. [Google Scholar] [CrossRef]
- Pu, R.; Bell, S. Mapping seagrass coverage and spatial patterns with high spatial resolution IKONOS imagery. Int. J. Appl. Earth Obs. 2017, 54, 145–158. [Google Scholar] [CrossRef]
- Roelfsema, C.M.; Lyons, M.; Kovacs, E.M.; Maxwell, P.; Saunders, M.I.; Samper-Villarreal, J.; Phinn, S.R. Multi-temporal mapping of seagrass cover, species and biomass: A semi-automated object based image analysis approach. Remote Sens. Environ. 2014, 150, 172–187. [Google Scholar] [CrossRef]
- Wicaksono, P.; Maishella, A.; Arjasakusuma, S.; Lazuardi, W.; Harahap, S.D. Assessment of WorldView-2 images for aboveground seagrass carbon stock mapping in patchy and continuous seagrass meadows. Int. J. Remote Sens. 2022, 43, 2915–2941. [Google Scholar] [CrossRef]
- Zoffoli, M.L.; Gernez, P.; Rosa, P.; Le Bris, A.; Brando, V.E.; Barillé, A.-L.; Harin, N.; Peters, S.; Poser, K.; Spaias, L. Sentinel-2 remote sensing of Zostera noltei-dominated intertidal seagrass meadows. Remote Sens. Environ. 2020, 251, 112020. [Google Scholar] [CrossRef]
- Veettil, B.K.; Ward, R.D.; Lima, M.D.A.C.; Stankovic, M.; Hoai, P.N.; Quang, N.X. Opportunities for seagrass research derived from remote sensing: A review of current methods. Ecol. Indic. 2020, 117, 106560. [Google Scholar] [CrossRef]
- National Research Council. Climate Data Records from Environmental Satellites: Interim Report; National Academies Press: Washinton, DC, USA, 2004. [Google Scholar]
- Kaufman, K.A.; Bell, S.S. The Use of Imagery and GIS Techniques to Evaluate and Compare Seagrass Dynamics across Multiple Spatial and Temporal Scales. Estuaries Coasts 2020, 45, 1028–1044. [Google Scholar] [CrossRef]
- Meehan, A.; Williams, R.; Watford, F. Detecting trends in seagrass abundance using aerial photograph interpretation: Problems arising with the evolution of mapping methods. Estuaries 2005, 28, 462–472. [Google Scholar] [CrossRef]
- Bell, S.S.; Fonseca, M.S.; Stafford, N.B. Seagrass ecology: New contributions from a landscape perspective. In Seagrasses: Biology, Ecology and Conservation; Springer: Berlin/Heidelberg, Germany, 2007; pp. 625–645. [Google Scholar]
- Islam, K.A.; Hill, V.; Schaeffer, B.A.; Zimmerman, R.C.; Li, J. Semi-supervised Adversarial Domain Adaptation for Seagrass Detection Using Multispectral Images in Coastal Areas. Data Sci. Eng. 2020, 5, 111–125. [Google Scholar] [CrossRef]
- Islam, K.A.; Pérez, D.; Hill, V.; Schaeffer, B.A.; Zimmerman, R.C.; Li, J. Seagrass detection in coastal water through deep capsule networks. In Proceedings of the Chinese Conference on Pattern Recognition and Computer Vision (PRCV); Springer: Cham, Switzerland, 2018; pp. 320–331. [Google Scholar]
- Simpson, J.; Bruce, E.; Davies, K.P.; Barber, P. A Blueprint for the Estimation of Seagrass Carbon Stock Using Remote Sensing-Enabled Proxies. Remote Sens. 2022, 14, 3572. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Jänes, H.; Carnell, P.; Young, M.; Ierodiaconou, D.; Jenkins, G.P.; Hamer, P.; Zu Ermgassen, P.S.; Gair, J.R.; Macreadie, P.I. Seagrass valuation from fish abundance, biomass and recreational catch. Ecol. Indic. 2021, 130, 108097. [Google Scholar] [CrossRef]
- Dierssen, H.M.; Zimmerman, R.C.; Leathers, R.A.; Downes, T.V.; Davis, C.O. Ocean color remote sensing of seagrass and bathymetry in the Bahamas Banks by high-resolution airborne imagery. Limnol. Oceanogr. 2003, 48, 444–455. [Google Scholar] [CrossRef]
- Hill, V.J.; Zimmerman, R.C.; Bissett, P.; Dierssen, H.M.; Kohler, D. Evaluating Light Availability, Seagrass Biomass, and Productivity Using Hyperspectral Airborne Remote Sensing in Saint Joseph’s Bay, Florida. Estuaries Coasts 2014, 37, 1467–1489. [Google Scholar] [CrossRef]
- Hemminga, M.A.; Duarte, C.M. Seagrass Ecology Seagrass; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Van Tussenbroek, B.I. Above- and below-ground biomass and production by Thalassia tesudinum in a tropical reef. Aquat. Bot. 1998, 61, 69–82. [Google Scholar] [CrossRef]
- Sfriso, A.; Ghetti, P.F. Seasonal variation in biomass, morphometric parameters and production of seagrasses in the lagoon of Venice. Aquat. Bot. 1998, 61, 207–223. [Google Scholar] [CrossRef]
- cKarpouzli, E.; Malthus, T. The empirical line method for the atmospheric correction of IKONOS imagery. Int. J. Remote Sens. 2003, 24, 1143–1150. [Google Scholar] [CrossRef]
- Collin, A.; Hench, J.L. Towards Deeper Measurements of Tropical Reefscape Structure Using the WorldView-2 Spaceborne Sensor. Remote Sens. 2012, 4, 1425–1447. [Google Scholar] [CrossRef]
- Wicasksono, P.; Hafizt, M. Dark target effectiveness for dark-object subtraction atmospheric correction method on mangrove above-ground carbon stock mapping. IET Image Process. 2018, 12, 582. [Google Scholar] [CrossRef]
- Eugenio, F.; Marcello, J.; Martin, J.; Rodríguez-Esparragón, D. Benthic habitat mapping using multispectral high-resolution imagery: Evaluation of shallow water atmospheric correction techniques. Sensors 2017, 17, 2639. [Google Scholar] [CrossRef] [PubMed]
- Agapiou, A.; Hadjimitsis, D.G.; Papoutsa, C.; Alexakis, D.D.; Papadavid, G. The importance of accounting for atmospheric effects in the application of NDVI and interpretation of satellite imagery supporting archaeological research: The case studies of Palaepaphos and Nea Paphos sites in Cyprus. Remote Sens. 2011, 3, 2605–2629. [Google Scholar] [CrossRef]
- De Keukelaere, L.; Sterckx, S.; Adriaensen, S.; Knaeps, E.; Reusen, I.; Giardino, C.; Bresciani, M.; Hunter, P.; Neil, C.; Van der Zande, D. Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI data using iCOR algorithm: Validation for coastal and inland waters. Eur. J. Remote Sens. 2018, 51, 525–542. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications. Remote Sens. Environ. 2018, 216, 586–597. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- Stewart, R.A.; Gorsline, D.S. Recent Sedimentary History of St. Joseph Bay, Florida St. Joseph Bay. Sedimentology 1962, 1, 256–286. [Google Scholar] [CrossRef]
- Big Bend Seagrasses Aquatic Preserve. Big Bend Seagrasses Aquatic Preserve Management Plan; Big Bend Seagrasses Aquatic Preserve: Crystal River, FL, USA, 2015. [Google Scholar]
- Cannizzaro, J.P.; Carlson, P.R., Jr.; Yarbro, L.A.; Hu, C. Optical variability along a river plume gradient: Implications for management and remote sensing. Estuar. Coast. Shelf Sci. 2013, 131, 149–161. [Google Scholar] [CrossRef]
- Pegau, W.S.; Zaneveld, R.V.; Mueller, J.L. Volume Absorption Coefficients: Instruments, Characterization, Field Measurements and Data Analysis Protocols. In Ocean Optics Protocols for Satellite Ocean Color Sensor Validation; Mueller, J.L., Fargion, G.S., McClain, C.R., Eds.; NASA: Greenbelt, MD, USA, 2003; Revision 4; Volume 4. [Google Scholar]
- Pope, R.; Fry, M.E.S. Absorption spectrum (380–700 nm) of pure water. Part II: Integrating cavity measurements. Appl. Opt. 1997, 36, 8710–8723. [Google Scholar] [CrossRef] [PubMed]
- Mobley, C.D. Light and Water: Radiative Transfer in Natural Waters; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- Morel, A.; Mueller, J.L. Normalized Water-Leaving Radiance and Remote Sensing Reflectance: Bidirectional Refelctance and Other Factors; Goddard Space Flight Center: Greenbelt, MD, USA, 2003; pp. 32–59.
- Zimmerman, R.C.; Hill, V.; Bissett, P.; Mobley, C.D. Empirical Line Fits. In The Ocean Optics Book; Mobley, C.D., Ed.; International Ocean Colour Coordinating Group (IOCCG): Dartmouth, NS, Canada, 2022; pp. 590–594. [Google Scholar]
- Mobley, C.D. A Numerical-Model for the Computation of Radiance Distributions in Natural-Waters with Wind-Roughened Surfaces. Limnol. Oceanogr. 1989, 34, 1473–1483. [Google Scholar] [CrossRef]
- Chavez, P.S. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens. Environ. 1988, 24, 459–479. [Google Scholar] [CrossRef]
- Kuester, M. Absolute Radiometric Calibration. 2017. Available online: https://dg-cms-uploads-production.s3.amazonaws.com/uploads/document/file/209/ABSRADCAL_FLEET_2016v0_Rel20170606.pdf (accessed on 31 July 2023).
- Schaeffer, B.A.; Myer, M.H. Resolvable estuaries for satellite derived water quality within the continental United States. Remote Sens. Lett. 2020, 11, 535–544. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006; Available online: https://catalogue.library.cern/literature/yqnn7-y0x04 (accessed on 31 July 2023).
- CIRES. Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado, B. Continuously Updated Digital Elevation Model (CUDEM)—1/9 Arc-Second Resolution Bathymetric-Topographic Tiles; CIRES: Boulder, CO, USA, 2014. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Duarte, C.M. Seagrass depth limits. Aquat. Bot. 1991, 40, 363–377. [Google Scholar] [CrossRef]
- Batiuk, R.; Bergstrom, P.; Kemp, W.M.; Koch, E.W.; Murry, L.; Stevenson, J.; Bartleson, R.; Carter, V.; Rybicki, N.; Landwehr, J.; et al. Chesapeake Bay Submerged Aquatic Vegetation Water Quality and Habitat-Based Requirements and Restoration Targets: A Second Synthesis; Chesapeake Bay Program Office: Annapolis, MD, USA, 2000. [Google Scholar]
Symbol | Definition | Dimensions |
---|---|---|
Basic parameters | ||
Rrs(DOS) | Remote sensing reflectance from DOS atmospheric correction | sr−1 |
Rrs(ELH) | Remote sensing reflectance from ELH atmospheric correction | sr−1 |
Ed(λ) | Spectral downwelling irradiance | W m−2 |
Eu(λ) | Spectral upwelling irradiance | W m−2 |
Lu(λ) | Spectral upwelling radiance | W m−2 sr−1 nm−1 |
Lw(λ) | Spectral water-leaving radiance | W m−2 sr−1 nm−1 |
zb | Depth of water column from digital elevation map | m |
z | Depth of the water column corrected for canopy height and tidal state | m |
LAI | Leaf area index | m2 leaf m−2 ground |
AGCseagrass | Above-ground seagrass carbon | g |
Inherent optical properties of the water column (IOPs) | ||
ap | Absorption by particulate material (algal + sediment + detritus) | m−1 |
an | Absorption by non-pigmented particulate material | m−1 |
ag | Absorption by CDOM | m−1 |
apg | Absorption by particulate and CDOM | m−1 |
bp | Scattering by particulate material | m−1 |
bbp | Backscattering by particulate material | m−1 |
cpg | Beam attenuation coefficient | m−1 |
Apparent optical properties of the water column (AOPs) | ||
Kd(λ) | Spectral downwelling diffuse water column attenuation coefficient | m−1 |
KLu (λ) | Spectral upwelling diffuse attenuation coefficient | m−1 |
Rb(λ) | Spectral benthic reflectance | dimensionless |
Band Name | Center Wavelength (nm) (Lower and Upper Band Edges) |
---|---|
MS1 (NIR1) | 835 (770–895) |
MS2 (Red) | 660 (630–690) |
MS3 (Green) | 545 (510–580) |
MS4 (Blue) | 480 (450–510) |
MS5 (Red edge) | 725 (705–745) |
MS6 (Yellow) | 605 (585–625) |
MS7 (Coastal) | 425 (440–450) |
MS8 (NIR 2) | 950 (860–1040) |
Date | Location | MAXAR Image ID | View Angle (Degrees Off-Nadir) | Ground Resolution (m) | Sun Elevation | NOAA Tide Station ID |
---|---|---|---|---|---|---|
20 May 2010 | Keaton Beach | 10300100045A9500 | 36.7° | 3 | 68.8° | 8727695 |
14 Nov 2010 | Saint Joseph Bay | 103001000897AC00 | 15.6° | 2 | 40.5° | 8728912 |
27 Apr 2012 | Saint George Sound | 10300100184AB500 | 35.4° | 3 | 67.6° | 8728360 |
Band | Saint Joseph Bay | Saint George Sound | Keaton Beach |
---|---|---|---|
MS7: 425 nm | 1.29 (1.26–1.33) | 2.75 (2.72–2.78) | −13.76 (−14.2–−13.29) |
MS4: 480 nm | 1.49 (1.48–1.50) | 1.96 (1.93–1.98) | 3.89 (3.68–3.95) |
MS3: 545 nm | 1.272 (1.268–1.275) | 1.298 (1.286–1.309) | 0.916 (0.893–0.940) |
MS6: 605 nm | 0.92 (0.915–0.922) | 1.199 (1.19–1.21) | 1.15 (1.09–1.22) |
MS2: 660 nm | 0.86 (0.863–0.852) | 1.365 (1.35–1.37) | 2.314 (2.26–2.37) |
MS5: 725 nm | 1.49 (1.47–1.5) | 1.926 (1.92–1.93) | 1.238 (1.21–1.26) |
Band | Degrees of Freedom | Sum of Squares | Mean of Squares | F Ratio | p-Value |
---|---|---|---|---|---|
1 | 2 | 0.0002 | 0.0001 | 4169.03 | <0.001 |
2 | 2 | 0.00026 | 0.00013 | 3207.66 | <0.001 |
3 | 2 | 0.00013 | 0.00006 | 208.92 | <0.001 |
4 | 2 | 0.00123 | 0.00062 | 3318.18 | <0.001 |
5 | 2 | 0.00203 | 0.00101 | 6078.29 | <0.001 |
6 | 2 | 0.0001 | 0.00005 | 90.25 | <0.001 |
Saint Joseph Bay | Saint George Sound | Keaton Beach | ||||
---|---|---|---|---|---|---|
ELH | DOS | ELH | DOS | ELH | DOS | |
Total seagrass area (km2) | 25.2 | 27.0 | 17.9 | 17.3 | 70.5 | 72.4 |
Seagrass area not overlapping (km2) | 2.2 | 4.0 | 3.6 | 3.0 | 3.2 | 5.1 |
Intertidal (km2) | 8.9 | 8.6 | 0 | 0 | 0 | 0 |
Optically shallow sand (km2) | 28.7 | 20.1 | 16.8 | 7.82 | 5.63 | 4.35 |
Optically deep water (km2) | 102.8 | 110.2 | 76.7 | 86.8 | 33.2 | 35.8 |
Land (km2) | 20 | 19.75 | 4.6 | 4.05 | 17.82 | 14.28 |
Total area mapped (km2) | 186 | 186 | 116 | 116 | 127 | 127 |
Saint Joseph Bay | Saint George Sound | Keaton Beach | ||||
---|---|---|---|---|---|---|
Variable | LAI(ELH) | LAI(DOS) | LAI(ELH) | LAI(DOS) | LAI(ELH) | LAI(DOS) |
Median LAI (m2 m−2) | 1.97 | 0.98 | 1.96 | 1.06 | 3.33 | 1.41 |
Mean LAI (m2 m−2) | 1.89 | 0.93 | 1.94 | 1.06 | 3.38 | 1.39 |
Min LAI | 0 | 0 | 0 | 0 | 0 | 0 |
Max LAI | 2.66 | 1.37 | 2.6 | 1.79 | 6.15 | 1.84 |
Total AGCseagrass (Gg) | 1.66 | 0.88 | 1.24 | 0.62 | 8.34 | 3.53 |
Percent Differences from ELH | −47 | −50 | −58 | |||
Area-specific AGCseagrass (g m−2) | 66 | 33 | 68 | 36 | 118 | 49 |
Saint Joseph Bay | Saint George Sound | Keaton Beach | |||||||
---|---|---|---|---|---|---|---|---|---|
LAI(INS ITU) | LAI(ELH) | LAI(DOS) | LAI(INS ITU) | LAI(ELH) | LAI(DOS) | LAI(INS ITU) | LAI(ELH) | LAI(DOS) | |
LAI(INS ITU) | U = 280,464 p = 0.118 | U = 423,261 p = <0.00 * | U = 126,423 p = 0.000 * | U = 285,869 p = <0.00 * | U = 36,241 p = <0.00 * | U = 377,731 p = <0.00 * | |||
LAI(ELH) | U = 51,225,352 p = <0.00 * | U = 1,084,540 p = <0.00 * | U = 114,048 p = <0.00 * | ||||||
LAI(DOS) |
Algorithm # | Fit Type | Site | Slope | Intercept | Exponent | r2 |
---|---|---|---|---|---|---|
1 | Exponential | All (Figure 14A) | 0.39 (0.0044) | 1.53 (0.0063) | 4.289 (0.05) | 0.96 |
2 | Linear | Saint Joseph Bay (Figure 14B) | 1.63 (0.004) | 0.41 (0.006) | 0.90 | |
3 | Linear | Saint George Sound (Figure 14C) | 1.03 (0.017) | 0.89 (0.017) | 0.79 | |
4 | Exponential | Keaton Beach (Figure 14D) | 0.171 (0.03) | 2.12 (0.079) | 5.59 (0.359) | 0.85 |
Site | Algorithm | Mean Absolute Error | Root-Mean-Square Error |
---|---|---|---|
Saint Joseph Bay | 1 | 0.089 | 0.11 |
2 | 0.0419 | 0.068 | |
Saint George Sound | 1 | 0.114 | 0.148 |
3 | 0.0422 | 0.061 | |
Keaton Beach | 1 | 0.084 | 0.185 |
4 | 0.130 | 0.175 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hill, V.J.; Zimmerman, R.C.; Bissett, P.; Kohler, D.; Schaeffer, B.; Coffer, M.; Li, J.; Islam, K.A. Impact of Atmospheric Correction on Classification and Quantification of Seagrass Density from WorldView-2 Imagery. Remote Sens. 2023, 15, 4715. https://doi.org/10.3390/rs15194715
Hill VJ, Zimmerman RC, Bissett P, Kohler D, Schaeffer B, Coffer M, Li J, Islam KA. Impact of Atmospheric Correction on Classification and Quantification of Seagrass Density from WorldView-2 Imagery. Remote Sensing. 2023; 15(19):4715. https://doi.org/10.3390/rs15194715
Chicago/Turabian StyleHill, Victoria J., Richard C. Zimmerman, Paul Bissett, David Kohler, Blake Schaeffer, Megan Coffer, Jiang Li, and Kazi Aminul Islam. 2023. "Impact of Atmospheric Correction on Classification and Quantification of Seagrass Density from WorldView-2 Imagery" Remote Sensing 15, no. 19: 4715. https://doi.org/10.3390/rs15194715
APA StyleHill, V. J., Zimmerman, R. C., Bissett, P., Kohler, D., Schaeffer, B., Coffer, M., Li, J., & Islam, K. A. (2023). Impact of Atmospheric Correction on Classification and Quantification of Seagrass Density from WorldView-2 Imagery. Remote Sensing, 15(19), 4715. https://doi.org/10.3390/rs15194715