Effects of Spring Dust Aerosols on Direct Radiative Forcing in China from 2000 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. WRF-Chem Model
2.2. Model Setup
2.3. Methods
2.4. Datasets
3. Results
3.1. Model Performance Evaluation
3.2. Temporal Trends in the Radiative Forcing of Dust Aerosols
3.2.1. Temporal Trends in Longwave Radiative Forcing Effect
3.2.2. Temporal Trends in Shortwave Radiative Forcing Effect
3.2.3. Temporal Trends in Net Radiative Forcing Effect
3.3. Spatial Variations in Effects of Dust Aerosol on Radiative Forcing
3.3.1. Inter-Season Average Longwave Radiative Forcing Effect
3.3.2. Inter-Season Average Short Wave Radiative Forcing Effect
3.3.3. Inter-Season Average Net Radiative Forcing Effect
3.3.4. Inter-Month Average Net Radiation Forcing Effect
3.4. Spatial and Temporal Trends in Effects of Dust Aerosol on Radiative Forcing
3.4.1. Trends in Longwave Radiative Forcing Effects
3.4.2. Trends in Shortwave Radiative Forcing Effects
3.4.3. Trends in the Net Radiative Forcing Effect
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, J.; Guan, X.; Ji, F. Enhanced Cold-Season Warming in Semi-Arid Regions. Atmos. Chem. Phys. 2012, 12, 5391–5398. [Google Scholar] [CrossRef]
- Huang, J.-P.; Huang, Z.-W.; Bi, J.-R.; Zhang, W.; Zhang, L. Micro-Pulse Lidar Measurements of Aerosol Vertical Structure over the Loess Plateau. Atmos. Ocean. Sci. Lett. 2008, 1, 8–11. [Google Scholar] [CrossRef]
- Liao, H.; Seinfeld, J.H. Radiative Forcing by Mineral Dust Aerosols: Sensitivity to Key Variables. J. Geophys. Res. 1998, 103, 31637–31645. [Google Scholar] [CrossRef]
- Shao, Y.; Wyrwoll, K.-H.; Chappell, A.; Huang, J.; Lin, Z.; McTainsh, G.H.; Mikami, M.; Tanaka, T.Y.; Wang, X.; Yoon, S. Dust Cycle: An Emerging Core Theme in Earth System Science. Aeolian Res. 2011, 2, 181–204. [Google Scholar] [CrossRef]
- Chen, W.; Meng, H.; Song, H.; Zheng, H. Progress in dust modelling, global dust budgets, and soil organic carbon dynamics. Land 2022, 11, 176. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Arimoto, R.; An, Z.S. Dust Emission from Chinese Desert Sources Linked to Variations in Atmospheric Circulation. J. Geophys. Res. 1997, 102, 28041–28047. [Google Scholar] [CrossRef]
- Huang, J.; Minnis, P.; Yi, Y.; Tang, Q.; Wang, X.; Hu, Y.; Liu, Z.; Ayers, K.; Trepte, C.; Winker, D. Summer Dust Aerosols Detected from CALIPSO over the Tibetan Plateau. Geophys. Res. Lett. 2007, 34, L18805. [Google Scholar] [CrossRef]
- Aswini, M.A.; Kumar, A.; Das, S.K. Quantification of Long-Range Transported Aeolian Dust towards the Indian Peninsular Region Using Satellite and Ground-Based Data—A Case Study during a Dust Storm over the Arabian Sea. Atmos. Res. 2020, 239, 104910. [Google Scholar] [CrossRef]
- Jose, S.; Gharai, B.; Rao, P.V.N.; Dutt, C.B.S. Satellite-Based Shortwave Aerosol Radiative Forcing of Dust Storm over the Arabian Sea: A Relationship Is Developed between SWARF and MODIS AOD. Atmos. Sci. Lett. 2016, 17, 43–50. [Google Scholar] [CrossRef]
- Rupakheti, D.; Rupakheti, M.; Yin, X.; Hofer, J.; Rai, M.; Hu, Y.; Abdullaev, S.F.; Kang, S. Modifications in Aerosol Physical, Optical and Radiative Properties during Heavy Aerosol Events over Dushanbe, Central Asia. Geosci. Front. 2021, 12, 101251. [Google Scholar] [CrossRef]
- Xia, X.; Zong, X. Shortwave versus Longwave Direct Radiative Forcing by Taklimakan Dust Aerosols. Geophys. Res. Lett. 2009, 36, L07803. [Google Scholar] [CrossRef]
- Zhang, J.; Christopher, S.A. Longwave Radiative Forcing of Saharan Dust Aerosols Estimated from MODIS, MISR, and CERES Observations on Terra. Geophys. Res. Lett. 2003, 30, 2188. [Google Scholar] [CrossRef]
- Xin, J.; Du, W.; Wang, Y.; Gao, Q.; Li, Z.; Wang, M. Aerosol Optical Properties Affected by a Strong Dust Storm over Central and Northern China. Adv. Atmos. Sci. 2010, 27, 562–574. [Google Scholar] [CrossRef]
- Chen, S.; Huang, J.; Qian, Y.; Zhao, C.; Kang, L.; Yang, B.; Wang, Y.; Liu, Y.; Yuan, T.; Wang, T.; et al. An Overview of Mineral Dust Modeling over East Asia. J. Meteorol. Res. 2017, 31, 633–653. [Google Scholar] [CrossRef]
- Francis, D.; Nelli, N.; Fonseca, R.; Weston, M.; Flamant, C.; Cherif, C. The Dust Load and Radiative Impact Associated with the June 2020 Historical Saharan Dust Storm. Atmos. Environ. 2022, 268, 118808. [Google Scholar] [CrossRef]
- Hu, Z.; Huang, J.; Zhao, C.; Jin, Q.; Ma, Y.; Yang, B. Modeling Dust Sources, Transport, and Radiative Effects at Different Altitudes over the Tibetan Plateau. Atmos. Chem. Phys. 2020, 20, 1507–1529. [Google Scholar] [CrossRef]
- Péré, J.-C.; Rivellini, L.; Crumeyrolle, S.; Chiapello, I.; Minvielle, F.; Thieuleux, F.; Choël, M.; Popovici, I. Simulation of African Dust Properties and Radiative Effects during the 2015 SHADOW Campaign in Senegal. Atmos. Res. 2018, 199, 14–28. [Google Scholar] [CrossRef]
- Alizadeh-Choobari, O.; Sturman, A.; Zawar-Reza, P. Global Distribution of Mineral Dust and Its Impact on Radiative Fluxes as Simulated by WRF-Chem. Meteorol. Atmos. Phys. 2015, 127, 635–648. [Google Scholar] [CrossRef]
- Liu, X.; Song, H.; Lei, T.; Liu, P.; Xu, C.; Wang, D.; Yang, Z.; Xia, H.; Wang, T.; Zhao, H. Effects of natural and anthropogenic factors and their interactions on dust events in Northern China. Catena 2021, 196, 104919. [Google Scholar] [CrossRef]
- Song, H.; Zhang, K.; Piao, S.; Liu, L.; Wang, Y.-P.; Chen, Y.; Yang, Z.; Zhu, L.; Wan, S. Soil organic carbon and nutrient losses resulted from spring dust emissions in Northern China. Atmos. Environ. 2019, 213, 585–596. [Google Scholar] [CrossRef]
- Lei, L.; Zhang, K.; Zhang, X.; Wang, Y.; Xia, J.; Piao, S.; Hui, D.; Zhong, M.; Ru, J.; Zhou, Z.; et al. Plant feedback aggravates soil organic carbon loss associated with wind erosion in Northwest China. J. Geophys. Res. Biogeosci. 2019, 124, 825–839. [Google Scholar] [CrossRef]
- Song, H.; Zhang, K.; Piao, S.; Wan, S. Spatial and temporal variations of spring dust emissions in northern China over the last 30 years. Atmos. Environ. 2016, 126, 117–127. [Google Scholar] [CrossRef]
- Chen, S.; Huang, J.; Kang, L.; Wang, H.; Ma, X.; He, Y.; Yuan, T.; Yang, B.; Huang, Z.; Zhang, G. Emission, Transport, and Radiative Effects of Mineral Dust from the Taklimakan and Gobi Deserts: Comparison of Measurements and Model Results. Atmos. Chem. Phys. 2017, 17, 2401–2421. [Google Scholar] [CrossRef]
- Su, X.-T.; Wang, H.-J.; Zhang, Z.-B. Radiative Forcing and Temperature Response of Dust Aerosols over East Asia in the Latest Decade. Sci. Cold Arid. Reg. 2012, 4, 351. [Google Scholar] [CrossRef]
- Wang, H.; Tan, S.-C.; Wang, Y.; Jiang, C.; Shi, G.-Y.; Zhang, M.-X.; Che, H.-Z. A Multisource Observation Study of the Severe Prolonged Regional Haze Episode over Eastern China in January 2013. Atmos. Environ. 2014, 89, 807–815. [Google Scholar] [CrossRef]
- Chen, S.; Huang, J.; Zhao, C.; Qian, Y.; Leung, L.R.; Yang, B. Modeling the Transport and Radiative Forcing of Taklimakan Dust over the Tibetan Plateau: A Case Study in the Summer of 2006. J. Geophys. Res. Atmos. 2013, 118, 797–812. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S.; Kang, L.; Yuan, T.; Luo, Y.; Alam, K.; Li, J.; He, Y.; Bi, H.; Zhao, D. Direct Radiative Forcing Induced by Light-Absorbing Aerosols in Different Climate Regions Over East Asia. JGR Atmos. 2020, 125, e2019JD032228. [Google Scholar] [CrossRef]
- Han, Z.; Li, J.; Guo, W.; Xiong, Z.; Zhang, W. A Study of Dust Radiative Feedback on Dust Cycle and Meteorology over East Asia by a Coupled Regional Climate-Chemistry-Aerosol Model. Atmos. Environ. 2013, 68, 54–63. [Google Scholar] [CrossRef]
- Li, H.; Wang, C. Impact of Dust Radiation Effect on Simulations of Temperature and Wind—A Case Study in Taklimakan Desert. Atmos. Res. 2022, 273, 106163. [Google Scholar] [CrossRef]
- Zhang, T.; Liao, H.; Chang, W.; Liu, R. Direct Radiative Forcing by Dust in China Based on Atmospheric Chemistry and Climate Model Intercomparison Project(ACCMIP) Datasets. Chin. J. Atmos. Sci. 2016, 40, 1242–1260. [Google Scholar] [CrossRef]
- Zhong, X.; Ruiz-Arias, J.A.; Kleissl, J. Dissecting Surface Clear Sky Irradiance Bias in Numerical Weather Prediction: Application and Corrections to the New Goddard Shortwave Scheme. Sol. Energy 2016, 132, 103–113. [Google Scholar] [CrossRef]
- Ek, M.B.; Mitchell, K.E.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J.D. Implementation of Noah Land Surface Model Advances in the National Centers for Environmental Prediction Operational Mesoscale Eta Model. J. Geophys. Res. 2003, 108, 2002JD003296. [Google Scholar] [CrossRef]
- Chen, S.-H.; Sun, W.-Y. A One-Dimensional Time Dependent Cloud Model. J. Meteorol. Soc. Jpn. 2002, 80, 99–118. [Google Scholar] [CrossRef]
- Janjić, Z.I. The Step-Mountain Coordinate: Physical Package. Mon. Weather Rev. 1990, 118, 1429–1443. [Google Scholar] [CrossRef]
- Janjić, Z.I. The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef]
- Ginoux, P.; Chin, M.; Tegen, I.; Prospero, J.M.; Holben, B.; Dubovik, O.; Lin, S.-J. Sources and Distributions of Dust Aerosols Simulated with the GOCART Model. J. Geophys. Res. 2001, 106, 20255–20273. [Google Scholar] [CrossRef]
- Wang, F.; Wang, M.; Kong, Y.; Zhang, H.; Ru, X.; Song, H. Spatial and Temporal Variations in Spring Dust Concentrations from 2000 to 2020 in China: Simulations with WRF-Chem. Remote Sens. 2022, 14, 6090. [Google Scholar] [CrossRef]
- Song, H.; Wang, K.; Zhang, Y.; Hong, C.; Zhou, S. Simulation and Evaluation of Dust Emissions with WRF-Chem (v3.7.1) and Its Relationship to the Changing Climate over East Asia from 1980 to 2015. Atmos. Environ. 2017, 167, 511–522. [Google Scholar] [CrossRef]
- Chen, S.; Yuan, T.; Zhang, X.; Zhang, G.; Feng, T.; Zhao, D.; Zang, Z.; Liao, S.; Ma, X.; Jiang, N.; et al. Dust Modeling over East Asia during the Summer of 2010 Using the WRF-Chem Model. J. Quant. Spectrosc. Radiat. Transf. 2018, 213, 1–12. [Google Scholar] [CrossRef]
- Dong, X.; Fu, J.S.; Huang, K.; Zhu, Q.; Tipton, M. Regional Climate Effects of Biomass Burning and Dust in East Asia: Evidence From Modeling and Observation. Geophys. Res. Lett. 2019, 46, 11490–11499. [Google Scholar] [CrossRef]
- Su, X.T.; Li, K.; Wei, Q.; Wen, W. The Optical Properties of East Asian Dust Aerosol and Its Impact on Radiative Forcing and Temperature. J. Desert Res. 2016, 36, 1381–1390. [Google Scholar] [CrossRef]
- Tian, T.; Ma, J. Numerical Simulation of Aerosol Direct Radiation Forcing over the Tibetan Plateau. Clim. Environ. Res. 2021, 26, 449–460. [Google Scholar] [CrossRef]
- Tian, L.; Zhang, P.; Chen, L. Estimation of the Dust Aerosol Shortwave Direct Forcing Over Land Based on an Equi-albedo Method From Satellite Measurements. J. Geophys. Res. Atmos. 2019, 124, 8793–8807. [Google Scholar] [CrossRef]
- Francis, D.; Fonseca, R.; Nelli, N.; Bozkurt, D.; Cuesta, J.; Bosc, E. On the Middle East’s severe dust storms in spring 2022: Triggers and impacts. Atmos. Environ. 2023, 296, 119539. [Google Scholar] [CrossRef]
- Yoshioka, M.; Mahowald, N.M.; Conley, A.J.; Collins, W.D.; Fillmore, D.W.; Zender, C.S.; Coleman, D.B. Impact of Desert Dust Radiative Forcing on Sahel Precipitation: Relative Importance of Dust Compared to Sea Surface Temperature Variations, Vegetation Changes, and Greenhouse Gas Warming. J. Clim. 2007, 20, 1445–1467. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, J.; Zheng, Y. A modeling study of global radiative forcing due to dust aerosol. Acta Meteorol. Sin. 2009, 67, 510–521. [Google Scholar]
- Ma, J.; Zhang, H.; Zheng, Y. The optical depth global distribution of dust aerosol and its possible reason analysis. Clim. Environ. Res. 2007, 12, 156–164. [Google Scholar]
- Liu, X.; Chen, S.; Guo, Z.; Zhou, H.; Chen, Y.; Kang, Y.; Liu, Q.; Huang, G.; Liu, T.; Chen, C.; et al. The Influence of Dusts on Radiation and Temperature over the Eastern Asia with a Regional Climate Model. Sci. Total Environ. 2021, 792, 148351. [Google Scholar] [CrossRef]
- Lau, K.M.; Kim, M.K.; Kim, K.M. Asian Summer Monsoon Anomalies Induced by Aerosol Direct Forcing: The Role of the Tibetan Plateau. Clim. Dyn. 2006, 26, 855–864. [Google Scholar] [CrossRef]
- Zeng, J.; Zhang, R.; Tang, J.; Liang, J.; Li, J.; Zeng, Y.; Li, Y.; Zhang, Q.; Shui, W.; Wang, Q. Ecological sustainability assessment of the carbon footprint in Fujian Province, southeast China. Front. Earth Sci. 2021, 15, 12–22. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, R.; Bento, V.A.; Leng, S.; Qi, J.; Zeng, J.; Wang, Q. The effect of drought on vegetation gross primary productivity under different vegetation types across China from 2001 to 2020. Remote Sens. 2022, 14, 4658. [Google Scholar] [CrossRef]
- Leng, S.; Huete, A.; Cleverly, J.; Yu, Q.; Zhang, R.; Wang, Q. Spatiotemporal variations of dryland vegetation phenology revealed by satellite-observed fluorescence and greenness across the North Australian Tropical Transect. Remote Sens. 2022, 14, 2985. [Google Scholar] [CrossRef]
- Leng, S.; Huete, A.; Cleverly, J.; Gao, S.; Yu, Q.; Meng, X.; Qi, J.; Zhang, R.; Wang, Q. Assessing the impact of extreme droughts on dryland vegetation by multi-satellite solar-induced chlorophyll fluorescence. Remote Sens. 2022, 14, 1581. [Google Scholar] [CrossRef]
- Zhang, R.; Qi, J.; Leng, S.; Wang, Q. Long-term vegetation phenology changes and responses to preseason temperature and precipitation in Northern China. Remote Sens. 2022, 14, 1396. [Google Scholar] [CrossRef]
Elements | Observation | Simulation | MB | NMB | NME | RMSE | R | p |
---|---|---|---|---|---|---|---|---|
WD (°) | 204.07 | 180.62 | −23.45 | −0.11 | 0.19 | 77.17 | 0.24 | <0.05 |
WS (m s−1) | 4.04 | 3.83 | −0.21 | −0.05 | 0.22 | 1.11 | 0.36 | <0.01 |
TEM (°C) | 13.53 | 12.78 | −0.76 | −0.06 | 0.12 | 2.67 | 0.96 | <0.001 |
PRE (mm) | 0.07 | 5.91 | 5.84 | 26.78 | 27.41 | 40.72 | 0.27 | <0.05 |
PM10 (ug m−3) | 109.69 | 115.37 | 5.68 | 0.05 | 0.76 | 121.07 | 0.35 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Qi, M.; Ren, S.; Zhu, M.; Xing, Q.; Wang, M.; Song, H.; Wang, Q.; Liu, P. Effects of Spring Dust Aerosols on Direct Radiative Forcing in China from 2000 to 2020. Remote Sens. 2023, 15, 4564. https://doi.org/10.3390/rs15184564
Wang F, Qi M, Ren S, Zhu M, Xing Q, Wang M, Song H, Wang Q, Liu P. Effects of Spring Dust Aerosols on Direct Radiative Forcing in China from 2000 to 2020. Remote Sensing. 2023; 15(18):4564. https://doi.org/10.3390/rs15184564
Chicago/Turabian StyleWang, Feng, Minghui Qi, Shuxin Ren, Mengjie Zhu, Qianlong Xing, Mengqiang Wang, Hongquan Song, Qianfeng Wang, and Pengfei Liu. 2023. "Effects of Spring Dust Aerosols on Direct Radiative Forcing in China from 2000 to 2020" Remote Sensing 15, no. 18: 4564. https://doi.org/10.3390/rs15184564
APA StyleWang, F., Qi, M., Ren, S., Zhu, M., Xing, Q., Wang, M., Song, H., Wang, Q., & Liu, P. (2023). Effects of Spring Dust Aerosols on Direct Radiative Forcing in China from 2000 to 2020. Remote Sensing, 15(18), 4564. https://doi.org/10.3390/rs15184564