DSF-Net: A Dual Feature Shuffle Guided Multi-Field Fusion Network for SAR Small Ship Target Detection
Abstract
:1. Introduction
- (1)
- Environmental factors, such as sea clutter, introduce multiplicative speckle noise and blur details, thereby degrading the quality of SAR images [5]. On the one hand, the similarity in size between speckle noise and small-sized SAR ship targets can result in false detection of small-sized ship targets in SAR images. On the other hand, the presence of clutter and sidelobes can cause missed detection of small-sized ship targets in SAR images [6]. In addition, the moving small ship targets produce different degrees of geometric deformation, which in turn results in missed detections of small ship targets.
- (2)
- In the inshore area, ship targets are characterized by a huge number, dense arrangement, and diverse scales. During the prediction process, a substantial overlap occurs among the generated bounding boxes. This leads to the loss of valid boxes after applying non-maximum suppression, consequently resulting in missed detection issues.
- (3)
- Since the scales of the ship targets are small, the inshore docks and coastal islands can be wrongly detected as targets, resulting in the missed detection of small ship targets.
- (1)
- We propose the PWSA (Pixel-wise Shuffle Attention) module to address the issue of insufficient effective features. The main objective of this module is to enhance the feature extraction of small SAR ship targets and improve the Backbone’s capability to extract features relevant to small SAR ships. PWSA enhances the extraction of cross-channel positional information, achieving data augmentation during the feature extraction process.
- (2)
- We introduce a Non-Local Shuffle Attention (NLSA) module to enhance the long-range dependency between different spatial locations. The NLSA module fosters better spatial relationships among pixels at various locations and ensures feature stability during fusion across different dimensions. Compared to traditional attention methods, NLSA, through the Non-Local structure, is more adept at capturing long-range dependencies between small-scale SAR ships. Moreover, the feature shuffle within NLSA enhances the feature representation capability for small SAR ship targets. Another notable advantage of NLSA is that it ensures the stability of the feature extraction structure but merely increases a slight number of parameters.
- (3)
- We design a multi-scale feature fusion module called TRF-SPP (Triple Receptive Field-Spatial Pyramid Pooling). Compared to previous multi-scale fusion approaches such as SPP and SPPF, TRF-SPP boasts a larger receptive field and a more comprehensive contextual understanding. We propose an SCTS (Squeeze Concatenate and Triple Split) technique, which effectively enhances the features of small SAR ship targets across various receptive field dimensions, reducing the likelihood of false detection.
- (4)
- To achieve precise detection of multi-scale SAR ship targets while ensuring a rapid convergence in the training process, we propose an innovative R-tradeoff loss specifically tailored for small targets of ships. The R-tradeoff loss exhibits strong resilience to scale variations in SAR ship targets, enhancing the overall robustness of DSF-Net.
2. Related Work
2.1. Deep Learning in SAR Ship Detection
2.2. Attention Mechanism
2.3. Non-Local structure
2.4. Multi-Scale Feature Fusion
2.5. Design of the Loss Function
3. Methods
3.1. Overall Architecture of DSF-Net
3.2. PWSA Module
3.3. NLSA Module
3.4. TRF-SPP Module
3.5. R-Tradeoff Loss Design
4. Experiments & Discussion
4.1. Dataset
4.2. Evaluation Metrics
4.3. Experimental Details
4.4. Experimental Results
4.4.1. Comparison with the Existing Methods
Method | P (%) | R (%) | mAP (%) | mAP (%) | F (%) | GFLOPs |
---|---|---|---|---|---|---|
Faster R-CNN [14] | 58 | 61.6 | 57.7 | – | 59.75 | – |
Cascade R-CNN [54] | 54.1 | 66.2 | 59.0 | – | 59.54 | – |
YOLO V5 [39] | 84 | 63.6 | 73.3 | 27.1 | 72 | 15.9 |
YOLO V8 [55] | 82.4 | 67 | 74.4 | 29 | 74 | 28.4 |
Filtered Convolution [56] | – | – | 73 | – | – | – |
Guided Anchoring * [57] | 80.1 | 63.8 | 59.8 | – | 71.0 | – |
FoveaBox * [58] | 77.5 | 59.9 | 52.2 | – | 67.6 | – |
FCOS * [59] | 50.5 | 66.7 | 63.2 | – | 57.48 | – |
MTL-Det * [60] | – | – | 71.7 | – | – | – |
ATSS * [61] | 74.2 | 71.5 | 68.1 | – | 72.8 | – |
YOLO X † [19] | 66.78 | 75.44 | – | – | 70.85 | – |
RefineDet † [62] | 66.72 | 70.23 | – | – | 68.43 | – |
SII-Net [27] | 68.2 | 79.3 | 76.1 | – | 73.3 | – |
DSF-Net(ours) | 86.4 | 68.7 | 76.9 | 29.4 | 77 | 33.5 |
4.4.2. Ablation Experiments
Method | P (%) | R (%) | mAP (%) | mAP (%) | F (%) | GFLOPs |
---|---|---|---|---|---|---|
YOLO v5 | 84 | 63.6 | 73.3 | 27.1 | 72 | 15.9 |
PWSA&NLSA | 85.1 | 66.5 | 75.5 | 28.9 | 75 | 22.1 |
SE Attention [26] | 81.9 | 65.6 | 72.5 | 26.3 | 73 | 15.8 |
Shuffle Attention [35] | 83.7 | 64.5 | 72.1 | 26.9 | 73 | 15.8 |
CBAM Attention [31] | 79.9 | 65.8 | 72.4 | 27 | 72 | 15.9 |
ECA Attention [64] | 80.7 | 65.1 | 72 | 26.5 | 72 | 15.8 |
Coord Attention [65] | 79.5 | 64.9 | 71.6 | 26.9 | 71 | 15.8 |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Liu, Y.; Zhao, W.; Wang, X.; Li, G.; He, Y. Frequency-Adaptive Learning for SAR Ship Detection in Clutter Scenes. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5215514. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, C.; Cheng, K.; Guan, N.; Dong, H.; Deng, B. MSIF: Multisize Inference Fusion-Based False Alarm Elimination for Ship Detection in Large-Scale SAR Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5224811. [Google Scholar] [CrossRef]
- Li, J.; Xu, C.; Su, H.; Gao, L.; Wang, T. Deep learning for SAR ship detection: Past, present and future. Remote Sens. 2022, 14, 2712. [Google Scholar] [CrossRef]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.Y.; et al. Segment anything. arXiv 2023, arXiv:2304.02643. [Google Scholar]
- Singh, P.; Shree, R. A new homomorphic and method noise thresholding based despeckling of SAR image using anisotropic diffusion. J. King Saud-Univ.-Comput. Inf. Sci. 2020, 32, 137–148. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, H.; Ma, F.; Pan, Z.; Zhang, F. A Sidelobe-Aware Small Ship Detection Network for Synthetic Aperture Radar Imagery. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5205516. [Google Scholar] [CrossRef]
- Ai, J.; Luo, Q.; Yang, X.; Yin, Z.; Xu, H. Outliers-robust CFAR detector of Gaussian clutter based on the truncated-maximum-likelihood-estimator in SAR imagery. IEEE Trans. Intell. Transp. Syst. 2019, 21, 2039–2049. [Google Scholar] [CrossRef]
- Leng, X.; Ji, K.; Yang, K.; Zou, H. A bilateral CFAR algorithm for ship detection in SAR images. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1536–1540. [Google Scholar] [CrossRef]
- Hou, B.; Chen, X.; Jiao, L. Multilayer CFAR detection of ship targets in very high resolution SAR images. IEEE Geosci. Remote Sens. Lett. 2014, 12, 811–815. [Google Scholar]
- Renga, A.; Graziano, M.D.; Moccia, A. Segmentation of marine SAR images by sublook analysis and application to sea traffic monitoring. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1463–1477. [Google Scholar] [CrossRef]
- Copeland, A.C.; Ravichandran, G.; Trivedi, M.M. Localized Radon transform-based detection of ship wakes in SAR images. IEEE Trans. Geosci. Remote Sens. 1995, 33, 35–45. [Google Scholar] [CrossRef]
- Karakus, O.; Rizaev, I.; Achim, A. Ship Wake Detection in SAR Images via Sparse Regularization. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1665–1677. [Google Scholar] [CrossRef]
- Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. Proc. IEEE 2023, 111, 257–276. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A single-stage object detection framework for industrial applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022, arXiv:2207.02696. [Google Scholar]
- Xu, S.; Wang, X.; Lv, W.; Chang, Q.; Cui, C.; Deng, K.; Wang, G.; Dang, Q.; Wei, S.; Du, Y.; et al. PP-YOLOE: An evolved version of YOLO. arXiv 2022, arXiv:2203.16250. [Google Scholar]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Zhou, Y.; Fu, K.; Han, B.; Yang, J.; Pan, Z.; Hu, Y.; Yin, D. D-MFPN: A Doppler Feature Matrix Fused with a Multilayer Feature Pyramid Network for SAR Ship Detection. Remote Sens. 2023, 15, 626. [Google Scholar] [CrossRef]
- Ma, X.; Hou, S.; Wang, Y.; Wang, J.; Wang, H. Multiscale and dense ship detection in SAR images based on key-point estimation and attention mechanism. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5221111. [Google Scholar] [CrossRef]
- Xia, R.; Chen, J.; Huang, Z.; Wan, H.; Wu, B.; Sun, L.; Yao, B.; Xiang, H.; Xing, M. CRTransSar: A visual transformer based on contextual joint representation learning for SAR ship detection. Remote Sens. 2022, 14, 1488. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, S.; Zhan, R.; Wang, W.; Zhang, J. LMSD-YOLO: A Lightweight YOLO Algorithm for Multi-Scale SAR Ship Detection. Remote Sens. 2022, 14, 4801. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X. Squeeze-and-excitation Laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geosci. Remote Sens. Lett. 2021, 19, 4019905. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2011–2023. [Google Scholar] [CrossRef]
- Su, N.; He, J.; Yan, Y.; Zhao, C.; Xing, X. SII-Net: Spatial information integration network for small target detection in SAR images. Remote Sens. 2022, 14, 442. [Google Scholar] [CrossRef]
- Chen, P.; Li, Y.; Zhou, H.; Liu, B.; Liu, P. Detection of small ship objects using anchor boxes cluster and feature pyramid network model for SAR imagery. J. Mar. Sci. Eng. 2020, 8, 112. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Qu, L.; Cai, J.; Fang, J. A Spatial Cross-Scale Attention Network and Global Average Accuracy Loss for SAR Ship Detection. Remote Sens. 2023, 15, 350. [Google Scholar] [CrossRef]
- Xu, Z.; Gao, R.; Huang, K.; Xu, Q. Triangle Distance IoU Loss, Attention-Weighted Feature Pyramid Network, and Rotated-SARShip Dataset for Arbitrary-Oriented SAR Ship Detection. Remote Sens. 2022, 14, 4676. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6848–6856. [Google Scholar]
- Cui, Z.; Wang, X.; Liu, N.; Cao, Z.; Yang, J. Ship detection in large-scale SAR images via spatial shuffle-group enhance attention. IEEE Trans. Geosci. Remote Sens. 2020, 59, 379–391. [Google Scholar] [CrossRef]
- Gao, X.; Xu, L.; Wang, F.; Hu, X. Multi-branch aware module with channel shuffle pixel-wise attention for lightweight image super-resolution. Multimed. Syst. 2023, 29, 289–303. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Yang, Y.B. Sa-net: Shuffle attention for deep convolutional neural networks. In Proceedings of the ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; IEEE: Piscataway, NJ, USA; pp. 2235–2239. [Google Scholar]
- Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7794–7803. [Google Scholar]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3146–3154. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef] [PubMed]
- Jocher, G.; Nishimura, K.; Mineeva, T.; Vilariño, R. YOLOv5 by Ultralytics. Code Repository. 2020. Available online: https://github.com/ultralytics/yolov5 (accessed on 22 December 2022).
- Liu, S.; Huang, D.; Wang, Y. Receptive field block net for accurate and fast object detection. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 385–400. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Wang, J.; Lin, Y.; Guo, J.; Zhuang, L. SSS-YOLO: Towards more accurate detection for small ships in SAR image. Remote Sens. Lett. 2021, 12, 93–102. [Google Scholar] [CrossRef]
- Yang, S.; An, W.; Li, S.; Zhang, S.; Zou, B. An Inshore SAR Ship Detection Method Based on Ghost Feature Extraction and Cross-Scale Interaction. IEEE Geosci. Remote Sens. Lett. 2023, 19, 4019905. [Google Scholar] [CrossRef]
- Liu, S.; Kong, W.; Chen, X.; Xu, M.; Yasir, M.; Zhao, L.; Li, J. Multi-scale ship detection algorithm based on a lightweight neural network for spaceborne SAR images. Remote Sens. 2022, 14, 1149. [Google Scholar] [CrossRef]
- Hong, Z.; Yang, T.; Tong, X.; Zhang, Y.; Jiang, S.; Zhou, R.; Han, Y.; Wang, J.; Yang, S.; Liu, S. Multi-scale ship detection from SAR and optical imagery via a more accurate YOLOv3. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6083–6101. [Google Scholar] [CrossRef]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized intersection over union: A metric and a loss for bounding box regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 658–666. [Google Scholar]
- Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU loss: Faster and better learning for bounding box regression. In Proceedings of the AAAI conference on artificial intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 12993–13000. [Google Scholar]
- Zhang, Y.F.; Ren, W.; Zhang, Z.; Jia, Z.; Wang, L.; Tan, T. Focal and efficient IOU loss for accurate bounding box regression. Neurocomputing 2022, 506, 146–157. [Google Scholar] [CrossRef]
- Gevorgyan, Z. SIoU loss: More powerful learning for bounding box regression. arXiv 2022, arXiv:2205.12740. [Google Scholar]
- Wang, J.; Xu, C.; Yang, W.; Yu, L. A normalized Gaussian Wasserstein distance for tiny object detection. arXiv 2021, arXiv:2110.13389. [Google Scholar]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768. [Google Scholar]
- Zhang, T.; Zhang, X.; Ke, X.; Zhan, X.; Shi, J.; Wei, S.; Pan, D.; Li, J.; Su, H.; Zhou, Y.; et al. LS-SSDD-v1. 0: A deep learning dataset dedicated to small ship detection from large-scale Sentinel-1 SAR images. Remote Sens. 2020, 12, 2997. [Google Scholar] [CrossRef]
- Du, Y.; Du, L.; Guo, Y.; Shi, Y. Semi-Supervised SAR Ship Detection Network via Scene Characteristic Learning. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5201517. [Google Scholar] [CrossRef]
- Cai, Z.; Vasconcelos, N. Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162. [Google Scholar]
- Jocher, G.; Nishimura, K.; Mineeva, T.; Vilariño, R. YOLOv8 by Ultralytics. Code Repository. 2023. Available online: https://github.com/ultralytics/ultralytics (accessed on 15 July 2023).
- Zhang, L.; Wang, H.; Wang, L.; Pan, C.; Huo, C.; Liu, Q.; Wang, X. Filtered Convolution for Synthetic Aperture Radar Images Ship Detection. Remote Sens. 2022, 14, 5257. [Google Scholar] [CrossRef]
- Wang, J.; Chen, K.; Yang, S.; Loy, C.C.; Lin, D. Region proposal by guided anchoring. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2965–2974. [Google Scholar]
- Kong, T.; Sun, F.; Liu, H.; Jiang, Y.; Li, L.; Shi, J. Foveabox: Beyound anchor-based object detection. IEEE Trans. Image Process. 2020, 29, 7389–7398. [Google Scholar] [CrossRef]
- Tian, Z.; Shen, C.; Chen, H.; He, T. Fcos: Fully convolutional one-stage object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27–28 October 2019; pp. 9627–9636. [Google Scholar]
- Zhang, X.; Huo, C.; Xu, N.; Jiang, H.; Cao, Y.; Ni, L.; Pan, C. Multitask learning for ship detection from synthetic aperture radar images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8048–8062. [Google Scholar] [CrossRef]
- Zhang, S.; Chi, C.; Yao, Y.; Lei, Z.; Li, S.Z. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 9759–9768. [Google Scholar]
- Zhang, S.; Wen, L.; Bian, X.; Lei, Z.; Li, S.Z. Single-shot refinement neural network for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4203–4212. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient channel attention for deep convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 11534–11542. [Google Scholar]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13713–13722. [Google Scholar]
- Wang, S.; Gao, S.; Zhou, L.; Liu, R.; Zhang, H.; Liu, J.; Jia, Y.; Qian, J. YOLO-SD: Small Ship Detection in SAR Images by Multi-Scale Convolution and Feature Transformer Module. Remote Sens. 2022, 14, 5268. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part I 14. Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Pang, J.; Chen, K.; Shi, J.; Feng, H.; Ouyang, W.; Lin, D. Libra r-cnn: Towards balanced learning for object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and PATTERN Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 821–830. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Zhang, H.; Chang, H.; Ma, B.; Wang, N.; Chen, X. Dynamic R-CNN: Towards high quality object detection via dynamic training. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part XV 16. Springer: Berlin/Heidelberg, Germany, 2020; pp. 260–275. [Google Scholar]
- Lu, X.; Li, B.; Yue, Y.; Li, Q.; Yan, J. Grid r-cnn. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7363–7372. [Google Scholar]
- Chen, Q.; Wang, Y.; Yang, T.; Zhang, X.; Cheng, J.; Sun, J. You only look one-level feature. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13039–13048. [Google Scholar]
Parameter | LS-SSDDv1.0 |
---|---|
Satellite | Sentinel-1 |
Sensor mode | IW |
Location | Tokyo, Adriatic Sea, etc. |
Resolution(m) | 5 × 20 |
Polarization | VV, VH |
Image size(pixel) | 24,000 × 16,000 |
Cover width(km) | 250 |
Image number | 15 |
YOLO v5 (Baseline) | PWSA&NLSA | TRF-SPP | R-Tradeoff Loss | P (%) | R (%) | mAP (%) | mAP (%) | F (%) | GFLOPs |
---|---|---|---|---|---|---|---|---|---|
✓ | 84 | 63.6 | 73.3 | 27.1 | 72 | 15.9 | |||
✓ | ✓ | 85.1 (+1.1) | 66.5 (+2.9) | 75.5 (+2.2) | 28.9 (+1.8) | 75 (+3) | 22.1 | ||
✓ | ✓ | ✓ | 85.5 (+1.5) | 67.6 (+4.0) | 76.1 (+2.8) | 29.2 (+2.1) | 76 (+4) | 33.5 | |
✓ | ✓ | ✓ | ✓ | 86.4 (+2.4) | 68.7 (+5.1) | 76.9 (+3.6) | 29.4 (+2.3) | 77 (+5) | 33.5 |
✓ | ✓ | 84.1 (+0.1) | 66.4 (+2.8) | 75.5 (+2.2) | 29.0 (+1.9) | 74 (+2) | 27.2 | ||
✓ | ✓ | 84.3 (+0.3) | 68.5 (+4.9) | 76.2 (+2.9) | 28.9 (+1.8) | 76 (+4) | 15.8 |
R | P (%) | R (%) | mAP (%) | mAP (%) | F (%) | GFLOPs |
---|---|---|---|---|---|---|
0.1 | 85.2 | 70.8 | 76.5 | 28.6 | 77 | 33.5 |
0.2 | 85.2 | 71.3 | 76.9 | 29.2 | 78 | 33.5 |
0.3 | 84.7 | 69.1 | 75.8 | 28.4 | 76 | 33.5 |
0.5 | 86.4 | 68.7 | 76.9 | 29.4 | 77 | 33.5 |
0.7 | 83.2 | 67 | 75.6 | 26.7 | 74 | 33.5 |
0.9 | 82.2 | 66.9 | 74.9 | 28.1 | 74 | 33.5 |
1.0 | 85.5 | 67.6 | 76.1 | 29.2 | 76 | 33.5 |
Method | P (%) | R (%) | F (%) | Parameters |
---|---|---|---|---|
SSD [67] | 43.05 | 52.57 | 47.33 | 2.37 × |
RetinaNet [63] | 50.75 | 57.87 | 54.51 | 3.57 × |
RefineDet [62] | 66.72 | 70.23 | 68.43 | 4.29 × |
YOLOX [19] | 66.78 | 75.44 | 70.85 | 2.53 × |
DSF-Net(ours) | 86.4 | 68.7 | 77 | 2.45 × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Zhai, J.; Huang, K.; Liu, K. DSF-Net: A Dual Feature Shuffle Guided Multi-Field Fusion Network for SAR Small Ship Target Detection. Remote Sens. 2023, 15, 4546. https://doi.org/10.3390/rs15184546
Xu Z, Zhai J, Huang K, Liu K. DSF-Net: A Dual Feature Shuffle Guided Multi-Field Fusion Network for SAR Small Ship Target Detection. Remote Sensing. 2023; 15(18):4546. https://doi.org/10.3390/rs15184546
Chicago/Turabian StyleXu, Zhijing, Jinle Zhai, Kan Huang, and Kun Liu. 2023. "DSF-Net: A Dual Feature Shuffle Guided Multi-Field Fusion Network for SAR Small Ship Target Detection" Remote Sensing 15, no. 18: 4546. https://doi.org/10.3390/rs15184546
APA StyleXu, Z., Zhai, J., Huang, K., & Liu, K. (2023). DSF-Net: A Dual Feature Shuffle Guided Multi-Field Fusion Network for SAR Small Ship Target Detection. Remote Sensing, 15(18), 4546. https://doi.org/10.3390/rs15184546