Empirical Correlation Weighting (ECW) Spatial Interpolation Method for Satellite Aerosol Optical Depth Products by MODIS AOD over Northern China in 2016
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Method
2.2.1. MODIS Data
2.2.2. AERONET Data
2.3. Resample Method
- -
- Constructing a grid with a 0.05° × 0.05° resolution.
- -
- Iterating through each pixel in the upper grid.
- -
- During the iteration, if a pixel was one of the four closest pixels to the central points (grey pixels), it was assigned the value from the nearest central point using the nearest neighbor method.
- -
- For pixels not in close proximity to the central points (blue pixels), a bilinear interpolation method was used to resample.
- -
- Ending after every pixel was processed.
2.4. ECW Interpolation Method
2.4.1. Slide Window Size Selection
2.4.2. Establishment of the Correlative Look-Up Table (LUT)
- -
- Resampling the AOD data from HDF files to 0.05° products; MODIS data may contain overlapping observations of mid–high latitudes at different time points within a day. The two observations were averaged to obtain the observed values for the overlapping coverage area.
- -
- Looping over all pixels, extracting a 25 × 25 matrix (representing points remote from the area’s center no more than 60 km, which was equivalent to about 12 pixels at the 0.05° resolution) of AOD data centered on each pixel for the year of 2016.
- -
- Matching the AOD value at the center pixel with that of the surrounding 624 (=25 × 25 − 1) pixels, discarding the invalid value; the cases in which the center pixel and the surrounding pixel had values at the same time were selected as the sample pairs.
- -
- Calculating the statistical parameters (correlation of determination (R2) , slope, and intercept of the linear regression) for each of the sample pairs.
- -
- Processing every pixel and storing the statistical parameters.
- -
- Building an LUT of a four-dimensional array (column, row, 624, 3).
2.4.3. Interpolation Strategy
- -
- Looping over every pixel of the AOD resampled image and performing interpolation for the non-valued pixels.
- -
- For a non-valued pixel, determining whether the number of valued pixels within the sliding window (25 × 25) centered on the pixel was greater than 5% (25 × 25 × 0.05 = 31); if there were less than 31 pixels, the surrounding information was deemed insufficient, and it is difficult to give enough information, no interpolation was performed, and we proceeded to the next pixel.
- -
- Extracting the information about the central pixels from the LUT and matching the information from the valued pixels; the number of pixels with an R greater than 0.7 was checked, and if there were more than 20 pixels, we proceeded to the next step. If there were not more than 20 pixels, the number of surrounding highly correlated pixels was insufficient, there was not enough information for interpolation, and we moved on to the next pixel.
- -
- Selecting the 10 pixels with the highest R for the weighting calculation to avoid the overfitting of parameters; these values were revised according to the linear regression equation and then weighted using the weights of the R2. The formula is as follows:
- -
- Repeating the above steps until all pixels were calculated.
2.5. Validation Method
2.5.1. Estimation Validation
2.5.2. Validation with AERONET
3. Results
3.1. Numerical. Experimentation
3.2. Cases Comparison and Analysis
3.3. Spatial and Temporal Coverage
3.4. Validation
3.4.1. Estimation Validation
3.4.2. AERONET Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Fifth Assessment Report: Climate Change 2013; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Rosenfeld, D. Atmosphere. Aerosols, clouds, and climate. Science 2006, 312, 1323–1324. [Google Scholar] [CrossRef]
- Ramanathan, V.; Crutzen, P.J.; Kiehl, J.T.; Rosenfeld, D. Atmosphere—Aerosols, climate, and the hydrological cycle. Science 2001, 294, 2119–2124. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, Y.J.; Tanré, D.; Boucher, O. A satellite view of aerosols in the climate system. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, D.; Lohmann, U.; Raga, G.B.; O’Dowd, C.D.; Kulmala, M.; Fuzzi, S.; Reissell, A.; Andreae, M.O. Flood or drought: How do aerosols affect precipitation? Science 2008, 321, 1309–1313. [Google Scholar] [CrossRef]
- Pope Iii, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Geogdzhayev, I.V.; Cairns, B.; Carlson, B.E.; Chowdhary, J.; Lacis, A.A.; Liu, L.; Rossow, W.B.; Travis, L.D. Past, present, and future of global aerosol climatologies derived from satellite observations: A perspective. J. Quant. Spectrosc. Radiat. Transf. 2007, 106, 325–347. [Google Scholar] [CrossRef]
- Levy, R.C.; Munchak, L.A.; Mattoo, S.; Patadia, F.; Remer, L.A.; Holz, R.E. Towards a long-term global aerosol optical depth record: Applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance. Atmos. Meas. Tech. 2015, 8, 4083–4110. [Google Scholar] [CrossRef]
- Popp, T.; de Leeuw, G.; Bingen, C.; Bruhl, C.; Capelle, V.; Chedin, A.; Clarisse, L.; Dubovik, O.; Grainger, R.; Griesfeller, J.; et al. Development, Production and Evaluation of Aerosol Climate Data Records from European Satellite Observations (Aerosol_cci). Remote Sens. 2016, 8, 421. [Google Scholar] [CrossRef]
- Wei, X.; Chang, N.-B.; Bai, K.; Gao, W. Satellite remote sensing of aerosol optical depth: Advances, challenges, and perspectives. Crit. Rev. Environ. Sci. Technol. 2019, 50, 1640–1725. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, H.; Dong, J.; Poslad, S.; Li, R.; Zhang, X.; Rui, X. A Framework to Predict High-Resolution Spatiotemporal PM2.5 Distributions Using a Deep-Learning Model: A Case Study of Shijiazhuang, China. Remote Sens. 2020, 12, 2825. [Google Scholar] [CrossRef]
- Guo, C.Y.; Liu, G.G.; Lyu, L.J.; Chen, C.H. An Unsupervised PM2.5 Estimation Method With Different Spatio-Temporal Resolutions Based on KIDW-TCGRU. IEEE Access 2020, 8, 190263–190276. [Google Scholar] [CrossRef]
- Han, M.; Jia, S.; Zhang, C. Estimation of high-resolution PM2. 5 concentrations based on gap-filling aerosol optical depth using gradient boosting model. Air Qual. Atmos. Health 2022, 15, 619–631. [Google Scholar] [CrossRef]
- Sayer, A.; Munchak, L.; Hsu, N.; Levy, R.; Bettenhausen, C.; Jeong, M.J. MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res. Atmos. 2014, 119, 13965–13989. [Google Scholar] [CrossRef]
- Shaylor, M.; Brindley, H.; Sellar, A. An Evaluation of Two Decades of Aerosol Optical Depth Retrievals from MODIS over Australia. Remote Sens. 2022, 14, 2664. [Google Scholar] [CrossRef]
- Carroll, M.L.; DiMiceli, C.M.; Townshend, J.R.G.; Sohlberg, R.A.; Elders, A.I.; Devadiga, S.; Sayer, A.M.; Levy, R.C. Development of an operational land water mask for MODIS Collection 6, and influence on downstream data products. Int. J. Digit. Earth 2016, 10, 207–218. [Google Scholar] [CrossRef]
- Gupta, P.; Levy, R.C.; Mattoo, S.; Remer, L.A.; Munchak, L.A. A surface reflectance scheme for retrieving aerosol optical depth over urban surfaces in MODIS Dark Target retrieval algorithm. Atmos. Meas. Tech. 2016, 9, 3293–3308. [Google Scholar] [CrossRef]
- He, Q.; Wang, W.; Song, Y.; Zhang, M.; Huang, B. Spatiotemporal high-resolution imputation modeling of aerosol optical depth for investigating its full-coverage variation in China from 2003 to 2020. Atmos. Res. 2023, 281, 106481. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, Y.; Zhao, K.; Zhu, Z.; Asrar, G.R.; Zhao, X. Gap-filling MODIS daily aerosol optical depth products by developing a spatiotemporal fitting algorithm. GIScience Remote Sens. 2022, 59, 762–781. [Google Scholar] [CrossRef]
- Cai, B.; Shi, Z.; Zhao, J. Novel spatial and temporal interpolation algorithms based on extended field intensity model with applications for sparse AQI. Multimed. Tools Appl. 2021, 81, 19215–19236. [Google Scholar] [CrossRef]
- Gao, S.; He, D.; Zhang, Z.; Tang, X.; Zhao, Z. A novel dynamic interpolation method based on both temporal and spatial correlations. Appl. Intell. 2022, 53, 5100–5125. [Google Scholar] [CrossRef]
- Yang, J.; Hu, M. Filling the missing data gaps of daily MODIS AOD using spatiotemporal interpolation. Sci. Total Environ. 2018, 633, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.; Wu, Z.; Liao, K.; Ren, Y. Handling Missing Data in Large-Scale MODIS AOD Products Using a Two-Step Model. Remote Sens. 2020, 12, 3786. [Google Scholar] [CrossRef]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Li, J.; Heap, A.D. Spatial interpolation methods applied in the environmental sciences: A review. Environ. Model. Softw. 2014, 53, 173–189. [Google Scholar] [CrossRef]
- Li, K.; Bai, K.; Li, Z.; Guo, J.; Chang, N.B. Synergistic data fusion of multimodal AOD and air quality data for near real-time full coverage air pollution assessment. J. Env. Manag. 2022, 302, 114121. [Google Scholar] [CrossRef]
- Singh, M.K.; Venkatachalam, P.; Gautam, R. Geostatistical Methods for Filling Gaps in Level-3 Monthly-Mean Aerosol Optical Depth Data from Multi-Angle Imaging SpectroRadiometer. Aerosol Air Qual. Res. 2017, 17, 1963–1974. [Google Scholar] [CrossRef]
- Zhang, T.; Zeng, C.; Gong, W.; Wang, L.; Sun, K.; Shen, H.; Zhu, Z.; Zhu, Z. Improving Spatial Coverage for Aqua MODIS AOD using NDVI-Based Multi-Temporal Regression Analysis. Remote Sens. 2017, 9, 340. [Google Scholar] [CrossRef]
- Yao, R.; Wang, L.; Huang, X.; Cao, Q.; Wei, J.; He, P.; Wang, S.; Wang, L. Global seamless and high-resolution temperature dataset (GSHTD), 2001–2020. Remote Sens. Environ. 2023, 286, 113422. [Google Scholar] [CrossRef]
- Deng, M.; Fan, Z.; Liu, Q.; Gong, J. A Hybrid Method for Interpolating Missing Data in Heterogeneous Spatio-Temporal Datasets. ISPRS Int. J. Geo-Inf. 2016, 5, 13. [Google Scholar] [CrossRef]
- Cheng, S.; Peng, P.; Lu, F. A lightweight ensemble spatiotemporal interpolation model for geospatial data. Int. J. Geogr. Inf. Sci. 2020, 34, 1849–1872. [Google Scholar] [CrossRef]
- Gerber, F.; Jong, R.d.; Schaepman, M.E.; Schaepman-Strub, G.; Furrer, R. Predicting missing values in spatio-temporal satellite data. arXiv 2016, arXiv:1605.01038. [Google Scholar]
- Malambo, L.; Heatwole, C.D. A Multitemporal Profile-Based Interpolation Method for Gap Filling Nonstationary Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 252–261. [Google Scholar] [CrossRef]
- Zhang, Q.; Streets, D.G.; He, K.; Klimont, Z. Major components of China’s anthropogenic primary particulate emissions. Environ. Res. Lett. 2007, 2, 045027. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, H.; Zhang, X.; Cai, X.; Jin, X.; Zhang, L.; Song, Y.; Kang, L.; Hu, F.; Zhu, T. COATS: Comprehensive observation on the atmospheric boundary layer three-dimensional structure during haze pollution in the North China Plain. Sci. China Earth Sci. 2023, 66, 939–958. [Google Scholar] [CrossRef]
- Li, K.; Zhang, D.; Hou, J. Emerging of surface ozone pollution beyond summer season over the North China Plain. Copernicus Meetings. In Proceedings of the EGU General Assembly 2023, Vienna, Austria, 24–28 April 2023. [Google Scholar]
- Shah, M.I.; Usman, M.; Obekpa, H.O.; Abbas, S. Nexus between environmental vulnerability and agricultural productivity in BRICS: What are the roles of renewable energy, environmental policy stringency, and technology? Environ. Sci. Pollut. Res. 2023, 30, 15756–15774. [Google Scholar] [CrossRef] [PubMed]
- Richard, G.; Izah, S.; Ibrahim, M. Air pollution in the Niger Delta region of Nigeria: Sources, health effects, and strategies for mitigation. J. Environ. Stud. 2023, 29, 1–15. [Google Scholar] [CrossRef]
- WHO. WHO Air Quality Guidelines. Available online: https://www.c40knowledgehub.org/s/article/WHO-Air-Quality-Guidelines?language=enUS (accessed on 5 November 2021).
- Hsu, N.C.; Jeong, M.J.; Bettenhausen, C.; Sayer, A.M.; Hansell, R.; Seftor, C.S.; Huang, J.; Tsay, S.C. Enhanced Deep Blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- Kahn, R.A.; Gaitley, B.J.; Garay, M.J.; Diner, D.J.; Eck, T.F.; Smirnov, A.; Holben, B.N. Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network. J. Geophys. Res. Atmos. 2010, 115, D23209. [Google Scholar] [CrossRef]
- Holben, B.N.; Tanre, D.; Smirnov, A.; Eck, T.; Slutsker, I.; Abuhassan, N.; Newcomb, W.; Schafer, J.; Chatenet, B.; Lavenu, F. An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. J. Geophys. Res. Atmos. 2001, 106, 12067–12097. [Google Scholar] [CrossRef]
- Ichoku, C.; Chu, D.A.; Mattoo, S.; Kaufman, Y.J.; Remer, L.A.; Tanré, D.; Slutsker, I.; Holben, B.N. A spatio-temporal approach for global validation and analysis of MODIS aerosol products. Geophys. Res. Lett. 2002, 29, MOD1. [Google Scholar] [CrossRef]
- Hyer, E.J.; Reid, J.S.; Zhang, J. An over-land aerosol optical depth data set for data assimilation by filtering, correction, and aggregation of MODIS Collection 5 optical depth retrievals. Atmos. Meas. Tech. 2011, 4, 379–408. [Google Scholar] [CrossRef]
- Zhang, J.; Reid, J.S. MODIS aerosol product analysis for data assimilation: Assessment of over-ocean level 2 aerosol optical thickness retrievals. J. Geophys. Res. 2006, 111, D22207. [Google Scholar] [CrossRef]
- Sayer, A.M.; Hsu, N.C.; Bettenhausen, C. Implications of MODIS bow-tie distortion on aerosol optical depth retrievals, and techniques for mitigation. Atmos. Meas. Tech. 2015, 8, 5277–5288. [Google Scholar] [CrossRef]
- Klein, L.; Milburn, R.; Praderas, C.; Taaheri, A. Tools for Manipulating, Processing and Browsing HDF-EOS—Based Data. In AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2003; p. U41B-0010. [Google Scholar]
- Dwyer, J.; Schmidt, G. The MODIS Reprojection Tool. In Earth Science Satellite Remote Sensing; Qu, J.J., Gao, W., Kafatos, M., Murphy, R.E., Salomonson, V.V., Eds.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef]
- Huang, G.H. Measure of Association. In International Encyclopedia of Education, 3rd ed.; Peterson, P., Baker, E., McGaw, B., Eds.; Elsevier: Oxford, UK, 2010; pp. 260–263. [Google Scholar]
- Martins, V.S.; Lyapustin, A.; Carvalho, L.A.S.; Barbosa, C.C.F.; Novo, E.M.L.M. Validation of high-resolution MAIAC aerosol product over South America. J. Geophys. Res. Atmos. 2017, 122, 7537–7559. [Google Scholar] [CrossRef]
Month | DB | DT | ||||
---|---|---|---|---|---|---|
Origin | ECW | Difference | Origin | ECW | Difference | |
January | 46.07% | 70.64% | 24.57% | 4.42% | 6.99% | 2.57% |
February | 46.07% | 74.71% | 28.64% | 6.04% | 16.26% | 10.22% |
March | 52.81% | 75.58% | 22.76% | 11.23% | 26.57% | 15.33% |
April | 50.50% | 69.08% | 18.58% | 16.79% | 37.76% | 20.97% |
May | 44.37% | 63.89% | 19.52% | 19.53% | 39.37% | 19.84% |
June | 39.97% | 73.53% | 33.56% | 29.08% | 53.20% | 24.12% |
July | 45.89% | 67.01% | 21.11% | 17.35% | 41.58% | 24.23% |
August | 34.43% | 69.28% | 34.85% | 14.88% | 41.00% | 26.12% |
September | 32.30% | 72.85% | 40.56% | 25.75% | 53.05% | 27.30% |
October | 44.41% | 62.25% | 17.85% | 16.41% | 33.46% | 17.05% |
November | 33.93% | 73.97% | 40.04% | 15.35% | 32.78% | 17.43% |
December | 55.84% | 75.04% | 19.20% | 3.70% | 9.40% | 5.70% |
Total | 43.88% | 70.65% | 26.77% | 15.04% | 32.62% | 17.57% |
Season | Method | Experiment 1 | Experiment 2 | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | MAE | R2 | RMSE | MAE | ||||
Spring | OK | 0.7257 | 0.5427 | 0.1551 | 0.1075 | 0.8074 | 0.6683 | 0.0963 | 0.0684 |
TPS | 0.7118 | 0.5024 | 0.1832 | 0.1229 | 0.7857 | 0.6494 | 0.0971 | 0.0687 | |
ECW | 0.8284 | 0.6782 | 0.1305 | 0.0923 | 0.8220 | 0.6794 | 0.0956 | 0.0702 | |
Summer | OK | 0.7014 | 0.5390 | 0.1606 | 0.1031 | 0.7801 | 0.6780 | 0.1647 | 0.1125 |
TPS | 0.6698 | 0.4638 | 0.1986 | 0.1272 | 0.7799 | 0.6445 | 0.1906 | 0.1317 | |
ECW | 0.8080 | 0.6427 | 0.1439 | 0.0962 | 0.8353 | 0.7087 | 0.1554 | 0.1078 | |
Autumn | OK | 0.7714 | 0.6255 | 0.1112 | 0.0783 | 0.8257 | 0.7423 | 0.1429 | 0.0978 |
TPS | 0.7328 | 0.5382 | 0.1499 | 0.0985 | 0.8342 | 0.7186 | 0.1698 | 0.1138 | |
ECW | 0.8662 | 0.7234 | 0.0991 | 0.0690 | 0.8808 | 0.7859 | 0.1259 | 0.0863 | |
Winter | OK | 0.8013 | 0.6600 | 0.1066 | 0.0746 | 0.7735 | 0.6613 | 0.1284 | 0.0828 |
TPS | 0.7831 | 0.6298 | 0.1305 | 0.0865 | 0.7850 | 0.6649 | 0.1247 | 0.0755 | |
ECW | 0.8765 | 0.7723 | 0.0950 | 0.0663 | 0.8500 | 0.7208 | 0.1078 | 0.0707 | |
Year | OK | 0.7499 | 0.5918 | 0.1334 | 0.0909 | 0.7967 | 0.6875 | 0.1331 | 0.0904 |
TPS | 0.7244 | 0.5335 | 0.1655 | 0.1088 | 0.7962 | 0.6694 | 0.1456 | 0.0974 | |
ECW | 0.8448 | 0.7042 | 0.1171 | 0.0809 | 0.8470 | 0.7237 | 0.1212 | 0.0838 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, X.; Zhou, P.; Fan, M. Empirical Correlation Weighting (ECW) Spatial Interpolation Method for Satellite Aerosol Optical Depth Products by MODIS AOD over Northern China in 2016. Remote Sens. 2023, 15, 4462. https://doi.org/10.3390/rs15184462
Wang Y, Zhang X, Zhou P, Fan M. Empirical Correlation Weighting (ECW) Spatial Interpolation Method for Satellite Aerosol Optical Depth Products by MODIS AOD over Northern China in 2016. Remote Sensing. 2023; 15(18):4462. https://doi.org/10.3390/rs15184462
Chicago/Turabian StyleWang, Yang, Xianmei Zhang, Pei Zhou, and Meng Fan. 2023. "Empirical Correlation Weighting (ECW) Spatial Interpolation Method for Satellite Aerosol Optical Depth Products by MODIS AOD over Northern China in 2016" Remote Sensing 15, no. 18: 4462. https://doi.org/10.3390/rs15184462
APA StyleWang, Y., Zhang, X., Zhou, P., & Fan, M. (2023). Empirical Correlation Weighting (ECW) Spatial Interpolation Method for Satellite Aerosol Optical Depth Products by MODIS AOD over Northern China in 2016. Remote Sensing, 15(18), 4462. https://doi.org/10.3390/rs15184462