A Design Scenario Approach for Choosing Protection Works against Rockfall Phenomena
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phase 1: Data Acquisition
2.2. Phase 2: Data Processing
2.2.1. Block Volume, Block Shape and Source Area Identification
2.2.2. 2D and 3D Rockfall Simulations
2.3. Phase 3: Interpretation and Design
- >10% = very high probability;
- 5–10% = high probability;
- 1–5% = moderate probability;
- <1% = low probability.
3. Case Study
4. Results and Discussion
4.1. Phase 1
4.2. Phase 2
4.3. Phase 3
5. Conclusions
- The use of an IBSD curve to describe in probabilistic terms the full spectrum of block sizes geometrically possible in a rock mass, compared to the deterministic and empirically based choice of a single value;
- The use of a shape distribution to describe the relative abundance of shapes geometrically possible in a rock mass and its implementation in the numerical simulations, compared to the deterministic choice of one reference shape;
- The use of probabilistic output descriptors for key design parameters, describing the full spectrum of possibilities. This allows for a quantitative choice of those parameters, for the evaluation of the efficiency of selected protection works and even for the implementation of more sophisticated non-standard design techniques.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bemis, S.P.; Micklethwaite, S.; Turner, D.; James, M.R.; Akciz, S.; Thiele, S.T.; Bangash, H.A. Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology. J. Struct. Geol. 2014, 69, 163–178. [Google Scholar] [CrossRef]
- Kong, D.; Saroglou, C.; Wu, F.; Sha, P.; Li, B. Development and application of UAV-SfM photogrammetry for quantitative characterization of rock mass discontinuities. Int. J. Rock Mech. Min. Sci. 2021, 141, 104729. [Google Scholar] [CrossRef]
- Herrero, M.J.; Pérez-Fortes, A.P.; Escavy, J.I.; Insua-Arévalo, J.M.; De la Horra, R.; López-Acevedo, F.; Trigos, L. 3D model generated from UAV photogrammetry and semi-automated rock mass characterization. Comput. Geosci. 2022, 163, 105121. [Google Scholar] [CrossRef]
- Mineo, S.; Caliò, D.; Pappalardo, G. UAV-Based Photogrammetry and Infrared Thermography Applied to Rock Mass Survey for Geomechanical Purposes. Remote Sens. 2022, 14, 473. [Google Scholar] [CrossRef]
- Riquelme, A.J.; Abellan, A.; Tomás, R. Discontinuity spacing analysis in rock masses using 3D point clouds. Eng. Geol. 2015, 195, 185–195. [Google Scholar] [CrossRef]
- Riquelme, A.; Tomás, R.; Cano, M.; Pastor, J.L.; Abellán, A. Automatic Mapping of Discontinuity Persistence on Rock Masses Using 3D Point Clouds. Rock Mech. Rock Eng. 2018, 51, 3005–3028. [Google Scholar] [CrossRef]
- Umili, G. Methods for sampling discontinuity traces on rock mass 3D models: State of the art. IOP Conf. Ser. Earth Environ. Sci. 2021, 833, 012050. [Google Scholar] [CrossRef]
- Chen, S.; Walske, M.L.; Davies, I.J. Rapid mapping and analysing rock mass discontinuities with 3D terrestrial laser scanning in the underground excavation. Int. J. Rock Mech. Min. Sci. 2018, 110, 28–35. [Google Scholar] [CrossRef]
- Saricam, I.T.; Ozturk, H. Joint roughness profiling using photogrammetry. Appl. Geomat. 2022, 14, 573–587. [Google Scholar] [CrossRef]
- Chen, K.; Jiang, Q. A non-contact measurement method for rock mass discontinuity orientations by smartphone. J. Rock Mech. Geotech. Eng. 2022. [Google Scholar] [CrossRef]
- Migliazza, M.; Carriero, M.T.; Lingua, A.; Pontoglio, E.; Scavia, C. Rock Mass Characterization by UAV and Close-Range Photogrammetry: A Multiscale Approach Applied along the Vallone dell’Elva Road (Italy). Geosciences 2021, 11, 436. [Google Scholar] [CrossRef]
- Caliò, D.; Mineo, S.; Pappalardo, G. Digital Rock Mass Analysis for the Evaluation of Rockfall Magnitude at Poorly Accessible Cliffs. Remote Sens. 2023, 15, 1515. [Google Scholar] [CrossRef]
- Mineo, S.; Pappalardo, G.; Onorato, S. Geomechanical Characterization of a Rock Cliff Hosting a Cultural Heritage through Ground and UAV Rock Mass Surveys for Its Sustainable Fruition. Sustainability 2021, 13, 924. [Google Scholar] [CrossRef]
- Giordan, D.; Manconi, A.; Tannant, D.D.; Allasia, P. UAV: Low-cost remote sensing for high-resolution investigation of landslides. In Proceedings of the International Geosciences and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 5344–5347. [Google Scholar] [CrossRef]
- Rodriguez, J.; Macciotta, R.; Hendry, M.T.; Roustaei, M.; Gräpel, C.; Skirrow, R. UAVs for monitoring, investigation, and mitigation design of a rock slope with multiple failure mechanisms—A case study. Landslides 2020, 17, 2027–2040. [Google Scholar] [CrossRef]
- Abbruzzese, J.M.; Labiouse, V. New Cadanav Methodology for Rock Fall Hazard Zoning Based on 3D Trajectory Modelling. Geosciences 2020, 10, 434. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, W.; Chai, B.; Du, J.; Tang, L.; Yi, X. Discontinuity interpretation and identification of potential rockfalls for high-steep slopes based on UAV nap-of-the-object photogrammetry. Comput. Geosci. 2022, 166, 105191. [Google Scholar] [CrossRef]
- Umili, G.; Taboni, B.; Ferrero, A.M. Influence of uncertainties: A focus on block volume and shape assessment for rockfall analysis. J. Rock Mech. Geotech. Eng. 2023, 15, 2250–2263. [Google Scholar] [CrossRef]
- Umili, G.; Bonetto, S.M.R.; Mosca, P.; Vagnon, F.; Ferrero, A.M. In Situ Block Size Distribution Aimed at the Choice of the Design Block for Rockfall Barriers Design: A Case Study along Gardesana Road. Geosciences 2020, 10, 223. [Google Scholar] [CrossRef]
- Lu, P.; Latham, J.-P. Developments in the Assessment of In-situ Block Size Distributions of Rock Masses. Rock Mech. Rock Eng. 1999, 32, 29–49. [Google Scholar] [CrossRef]
- Wang, H.; Latham, J.-P.; Poole, A.B. In situ block size assessment from discontinuity spacing data. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1993, 30, A106. [Google Scholar] [CrossRef]
- Wang, H.; Latham, J.-P.; Poole, A.B. Predictions of block size distribution for quarrying. Q. J. Eng. Geol. 1991, 24, 91–99. [Google Scholar] [CrossRef]
- Leine, R.I.; Capobianco, G.; Bartelt, P.; Christen, M.; Caviezel, A. Stability of rigid body motion through an extended intermediate axis theorem: Application to rockfall simulation. Multibody Syst. Dyn. 2021, 52, 431–455. [Google Scholar] [CrossRef]
- Lu, G.; Ringenbach, A.; Caviezel, A.; Sanchez, M.; Christen, M.; Bartelt, P. Mitigation effects of trees on rockfall hazards: Does rock shape matter? Landslides 2021, 18, 59–77. [Google Scholar] [CrossRef]
- Palmstrom, A. Measurement and characterization of rock mass jointing. In In-Situ Characterization of Rocks; Sharma, V.M., Saxena, K.R., Eds.; A. A. Balkema Publishers: Rotterdam, The Netherlands, 2001; pp. 49–97. [Google Scholar]
- Kalenchuk, K.S.; Diederichs, M.S.; McKinnon, S. Characterizing block geometry in jointed rockmasses. Int. J. Rock Mech. Min. Sci. 2006, 43, 1212–1225. [Google Scholar] [CrossRef]
- Dorren, L.K.A. Rockyfor3D, Revealed—Transparent Description of the Complete 3D Rockfall Model; ecorisQ paper (www.ecorisq.org); Int. ecorisQ Association: Geneva, Switzerland, 2016; p. 33. [Google Scholar]
- Noël, F.; Cloutier, C.; Jaboyedoff, M.; Locat, J. Impact-Detection Algorithm That Uses Point Clouds as Topographic Inputs for 3D Rockfall Simulations. Geosciences 2021, 11, 188. [Google Scholar] [CrossRef]
- Leine, R.I.; Schweizer, A.; Christen, M.; Glover, J.; Bartelt, P.; Gerber, W. Simulation of rockfall trajectories with consideration of rock shape. Multibody Syst. Dyn. 2014, 32, 241–271. [Google Scholar] [CrossRef]
- Sistema Informativo Fenomeni Franosi Piemonte (SIFRAP). Available online: https://webgis.arpa.piemonte.it/geodissesto/sifrap/iilivelli.php (accessed on 24 May 2023).
- Bourrier, F.; Toe, D.; Garcia, B.; Baroth, J.; Lambert, S. Experimental investigations on complex block propagation for the assessment of propagation models quality. Landslides 2021, 18, 639–654. [Google Scholar] [CrossRef]
- Vöge, M.; Lato, M.J.; Diederichs, M.S. Automated rockmass discontinuity mapping from 3-dimensional surface data. Eng. Geol. 2013, 164, 155–162. [Google Scholar] [CrossRef]
- Riquelme, A.J.; Abellán, A.; Tomás, R.; Jaboyedoff, M. A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Comput. Geosci. 2014, 68, 38–52. [Google Scholar] [CrossRef]
- Gomes, R.K.; De Oliveira, L.P.L.; Gonzaga, L.; Tognoli, F.M.W.; Veronez, M.R.; De Souza, M.K. An algorithm for au-tomatic detection and orientation estimation of planar structures in LiDAR-scanned outcrops. Comput. Geosci. 2016, 90, 170–178. [Google Scholar] [CrossRef]
- Buyer, A.; Aichinger, S.; Schubert, W. Applying photogrammetry and semi-automated joint mapping for rock mass characterization. Eng. Geol. 2020, 264, 105332. [Google Scholar] [CrossRef]
- Kong, D.; Wu, F.; Saroglou, C. Automatic identification and characterization of discontinuities in rock masses from 3D point clouds. Eng. Geol. 2020, 265, 105442. [Google Scholar] [CrossRef]
- Taboni, B.; Tagliaferri, I.D.; Umili, G. A Tool for Performing Automatic Kinematic Analysis on Rock Outcrops. Geosciences 2022, 12, 435. [Google Scholar] [CrossRef]
- Palmstrøm, A. Characterizing rock masses by the RMi for use in practical rock engineering. Tunn. Undergr. Space Technol. 1996, 11, 175–188. [Google Scholar] [CrossRef]
- Widmann, R. International Society for Rock Mechanics (ISRM) commission on standardization of laboratory and field tests. Suggested methods for the quantitative description of discontinuities in rock masses. Int. J. Rock Mech. Min. Sci. 1978, 15, 319–368. [Google Scholar]
- Markland, J.T. A usefull technique for estimating the stability of rock slopes when the rigid wedge slide type of failure is expected. In Interdepartment Rock Mechanics Project; Imperial College of Science and Technology: London, UK, 1972. [Google Scholar]
- Rocscience. Rocfall2. Available online: https://www.rocscience.com/software/rocfall (accessed on 5 March 2023).
- Low, B.K. Reliability-Based Design in Soil and Rock Engineering: Enhancing Partial Facctor Design Approaches, 1st ed.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar] [CrossRef]
- Low, B. Reliability analysis of rock slopes involving correlated nonnormals. Int. J. Rock Mech. Min. Sci. 2007, 44, 922–935. [Google Scholar] [CrossRef]
- Low, B.K.; Tang, W.H.; Low, M.B.K.; Member, A.; Fellow, A. Efficient Reliability Evaluation Using Spreadsheet. J. Eng. Mech. 1997, 123, 749–752. [Google Scholar] [CrossRef]
- Ferrero, A.M.; Forlani, G.; Roncella, R.; Voyat, H.I. Advanced Geostructural Survey Methods Applied to Rock Mass Characterization. Rock Mech. Rock Eng. 2009, 42, 631–665. [Google Scholar] [CrossRef]
- Regione Piemonte, Digital Terrain Model (DTM). Available online: https://www.geoportale.piemonte.it/geonetwork/srv/ita/catalog.search#/metadata/r_piemon:224de2ac-023e-441c-9ae0-ea493b217a8e (accessed on 3 March 2023).
Name | Dip | Dip Direction | Type |
---|---|---|---|
K1 | 78 | 182 | Joint |
K2 | 84 | 95 | Joint |
K3 | 39 | 343 | Foliation |
K1 | K2 | K3 | ||||||
---|---|---|---|---|---|---|---|---|
μ1 | σ21 | μ2 | σ22 | μ3 | σ23 | |||
[m] | [m2] | [m] | [m2] | [m] | [m2] | |||
LogNormal | 2.21 | 7.69 | Weibull | 1.91 | 2.48 | Weibull | 1.69 | 1.30 |
Equation (4) | Equation (5) | IBSD | |
---|---|---|---|
E[V] | Var[V] | F(E[V]) | V99% |
[m3] | [m6] | % | [m3] |
8.00 | 270.45 | 80 | 70 |
Class | Soil Type | Rn Range |
---|---|---|
Bedrock Outcrop | Bedrock | 0.48–0.58 |
Covered Bedrock | Bedrock with a thin layer of weathered material or soil cover | 0.39–0.47 |
Soft Sediments | Medium compact soil with small rock fragments | 0.30–0.36 |
Talus Deposits | Talus deposits | 0.34–0.42 |
Blocks and Debris | Talus deposits | 0.34–0.42 |
Blocks and Boulders | Talus deposits with large rock fragments | 0.34–0.42 |
Buildings | Compact soil with large rock fragments | 0.34–0.42 |
Roads | Dirt road | 0.30–0.36 |
Grass | Compact soil with large rock fragments | 0.34–0.42 |
Water | Water or material where a rock could penetrate completely | 0 |
Block Shape | d1 [m] | d2 [m] | d3 [m] | V [m3] |
---|---|---|---|---|
Equidimensional | 1.87 | 1.87 | 1.87 | 6.50 |
Rod-like | 3.88 | 1.29 | 1.29 | 6.50 |
Blade-like | 3.73 | 1.87 | 0.93 | 6.50 |
Slab-like | 2.96 | 2.96 | 0.74 | 6.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taboni, B.; Umili, G.; Ferrero, A.M. A Design Scenario Approach for Choosing Protection Works against Rockfall Phenomena. Remote Sens. 2023, 15, 4453. https://doi.org/10.3390/rs15184453
Taboni B, Umili G, Ferrero AM. A Design Scenario Approach for Choosing Protection Works against Rockfall Phenomena. Remote Sensing. 2023; 15(18):4453. https://doi.org/10.3390/rs15184453
Chicago/Turabian StyleTaboni, Battista, Gessica Umili, and Anna Maria Ferrero. 2023. "A Design Scenario Approach for Choosing Protection Works against Rockfall Phenomena" Remote Sensing 15, no. 18: 4453. https://doi.org/10.3390/rs15184453
APA StyleTaboni, B., Umili, G., & Ferrero, A. M. (2023). A Design Scenario Approach for Choosing Protection Works against Rockfall Phenomena. Remote Sensing, 15(18), 4453. https://doi.org/10.3390/rs15184453