Factors of Subsidence in Katy, Texas, USA
Abstract
:1. Introduction
2. Geological Background
3. Methods
3.1. InSAR
3.2. Land Cover Classification
- Pasture: “areas of grasses, legumes, or grass-legume mixtures planted for livestock grazing or the production of seed or hay crops, typically on a perennial cycle. Pasture/hay vegetation accounts for greater than 20% of total vegetation” [48];
- Herbaceous: “areas dominated by gramanoid or herbaceous vegetation, generally greater than 80% of total vegetation. These areas are not subject to intensive management such as tilling, but can be utilized for grazing” [48].
- Developed, open space: impervious surfaces <20% of total cover;
- Developed, low intensity: impervious surfaces 20–49% of total cover;
- Developed, medium intensity: impervious surfaces 50–79% of total cover;
- Developed, high intensity: impervious surfaces 80–100% of total cover.
3.3. Generalized Linear Regression
4. Results
5. Discussion
5.1. Groundwater Withdrawal
5.2. Hydrocarbon Withdrawal
5.3. Total Developed Area
5.4. Population
5.5. Risk to Infrastructure
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Oceanic and Atmospheric Administration What Is Subsidence? Available online: https://oceanservice.noaa.gov/facts/subsidence.html (accessed on 15 February 2023).
- Khan, S.D.; Gadea, O.C.A.; Tello Alvarado, A.; Tirmizi, O.A. Surface Deformation Analysis of the Houston Area Using Time Series Interferometry and Emerging Hot Spot Analysis. Remote Sens. 2022, 14, 3831. [Google Scholar] [CrossRef]
- Jones, C.E.; An, K.; Blom, R.G.; Kent, J.D.; Ivins, E.R.; Bekaert, D. Anthropogenic and Geologic Influences on Subsidence in the Vicinity of New Orleans, Louisiana. J. Geophys. Res. Solid Earth 2016, 121, 3867–3887. [Google Scholar] [CrossRef]
- Subsidence Overview. Available online: https://hgsubsidence.org/science-research/what-is-subsidence/ (accessed on 10 May 2023).
- Solarski, M.; Machowski, R.; Rzetala, M.; Rzetala, M.A. Hypsometric Changes in Urban Areas Resulting from Multiple Years of Mining Activity. Sci. Rep. 2022, 12, 2982. [Google Scholar] [CrossRef]
- Zheng, L.; Zhu, L.; Wang, W.; Guo, L.; Chen, B. Land Subsidence Related to Coal Mining in China Revealed by L-Band InSAR Analysis. Int. J. Environ. Res. Public Health 2020, 17, 1170. [Google Scholar] [CrossRef]
- Nádudvari, Á. Using radar interferometry and SBAS technique to detect surface subsidence relating to coal mining in Upper Silesia from 1993–2000 and 2003–2010. Environ. Soc.-Econ. Stud. 2016, 4, 24–34. [Google Scholar] [CrossRef]
- Hettema, M. Analysis of Mechanics of Fault Reactivation in Depleting Reservoirs. Int. J. Rock Mech. Min. Sci. 2020, 129, 104290. [Google Scholar] [CrossRef]
- Zilkoski, D.B.; Hall, L.W.; Mitchell, G.J.; Kammula, V.; Singh, A.; Chrismer, W.M.; Neighbors, R.J. The Harris-Galveston Coastal Subsidence District/ National Geodetic Survey Automated Global Positioning System Subsidence Monitoring Project. In Proceedings of the US Geological Survey Subsidence Interest Group Conference, Reston, VA, USA, 1 November 2003. [Google Scholar]
- Qu, F.; Lu, Z. Mapping Deformation Over Greater Houston Using InSAR. Available online: https://hgsubsidence.org/wp-content/uploads/2022/11/InSAR-Final-Report-2019-2021.pdf (accessed on 10 May 2023).
- Gambolati, G.; Teatini, P.; Ferronato, M. Anthropogenic Land Subsidence. In Encyclopedia of Hydrological Sciences; Anderson, M.G., McDonnell, J.J., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Candela, T.; Koster, K. The Many Faces of Anthropogenic Subsidence. Science 2022, 376, 1381–1382. [Google Scholar] [CrossRef]
- Herrera-García, G.; Ezquerro, P.; Tomás, R.; Béjar-Pizarro, M.; López-Vinielles, J.; Rossi, M.; Mateos, R.M.; Carreón-Freyre, D.; Lambert, J.; Teatini, P.; et al. Mapping the Global Threat of Land Subsidence. Science 2021, 371, 34–36. [Google Scholar] [CrossRef]
- Petersen, C.; Turco, M.J.; Vinson, A.; Turco, J.A.; Petrov, A.; Evans, M. Groundwater Regulation and the Development of Alternative Source Waters to Prevent Subsidence, Houston Region, Texas, USA. Proc. Int. Assoc. Hydrol. Sci. 2020, 382, 797–801. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, G.; Yu, X.; Wang, K. Sentinel-1 InSAR and GPS-Integrated Long-Term and Seasonal Subsidence Monitoring in Houston, Texas, USA. Remote Sens. 2022, 14, 6184. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Fang, Z.N. Groundwater Level Change Management on Control of Land Subsidence Supported by Borehole Extensometer Compaction Measurements in the Houston-Galveston Region, Texas. Geosciences 2019, 9, 223. [Google Scholar] [CrossRef]
- Braun, C.L.; Ramage, J.K. Status of Groundwater-Level Altitudes and Long-Term Groundwater-Level Changes in the Chicot, Evangeline, and Jasper Aquifers, Houston-Galveston Region, Texas; U.S. Geological Survey: Reston, VA, USA, 2020. [Google Scholar]
- Ellis, J.; Knight, J.E.; White, J.T.; Sneed, M.; Hughes, J.D.; Ramage, J.K.; Braun, C.L.; Teeple, A.; Foster, L.K.; Rendon, S.H.; et al. Hydrogeology, Land-Surface Subsidence, and Documentation of the Gulf Coast Land Subsidence and Groundwater-Flow (GULF) Model, Southeast Texas, 1897–2018; Professional Paper; U.S. Geological Survey: Reston, VA, USA, 2023; Volume 1877, p. 432. [Google Scholar]
- Miller, M.M.; Shirzaei, M. Land Subsidence in Houston Correlated with Flooding from Hurricane Harvey. Remote Sens. Environ. 2019, 225, 368–378. [Google Scholar] [CrossRef]
- Kelley, V.; Turco, M.; Deeds, N.; Petersen, C.; Canonico, C. Assessment of Subsidence Risk Associated with Aquifer Storage and Recovery in the Coastal Lowlands Aquifer System, Houston, Texas, USA. Proc. Int. Assoc. Hydrol. Sci. 2020, 382, 487–491. [Google Scholar] [CrossRef]
- Campbell, M.; Campbell, M.; Wise, H.M. Growth Faulting and Subsidence in the Houston, Texas Area: Guide to the Origins, Relationships, Hazards, Potential Impacts and Methods of Investigation: An Update; Institute of Environmental Technology: Houston, TX, USA, 2015. [Google Scholar]
- Weaver, P.; Sheets, M.M. Active Faults, Subsidence, and Foundation Problems in the Houston, Texas, Area: Field Excursion No. 5, November 11 and 15, 1962; Houston Geological Society: Houston, TX, USA, 1962. [Google Scholar]
- Holzer, T.L.; Gabrysch, R.K. Effect of Water-Level Recoveries on Fault Creep, Houston, Texas. Ground Water 1987, 25, 392–397. [Google Scholar] [CrossRef]
- Kreitler, C.W. Fault Control of Subsidence, Houston, Texas. Ground Water 1977, 15, 203–214. [Google Scholar] [CrossRef]
- Qu, F.; Lu, Z.; Kim, J.-W.; Zheng, W. Identify and Monitor Growth Faulting Using InSAR over Northern Greater Houston, Texas, USA. Remote Sens. 2019, 11, 1498. [Google Scholar] [CrossRef]
- Bird, D.; Burke, K.; Hall, S.; Casey, J. Tectonic Evolution of the Gulf of Mexico Basin. In Gulf of Mexico Origin, Waters, and Biota: Geology; Texas A&M University Press: College Station, TX, USA, 2011; Volume 3. [Google Scholar]
- Stover, S.C.; Weimer, P.; Ge, S. The Effect of Allochthonous Salt Evolution and Overpressure Development on Source Rock Thermal Maturation: A Two-Dimensional Transient Study in the Northern Gulf of Mexico Basin. Pet. Geosci. 2001, 7, 281–290. [Google Scholar] [CrossRef]
- Salvador, A. Late Triassic-Jurassic Paleogeography and Origin of Gulf of Mexico Basin. AAPG Bull. 1987, 71, 419–451. [Google Scholar] [CrossRef]
- Galloway, W. Chapter 15 Depositional Evolution of the Gulf of Mexico Sedimentary Basin. Sediment. Basins World 2008, 5, 505–549. [Google Scholar] [CrossRef]
- Winker, C.D. Cenozoic Shelf Margins, Northwestern Gulf of Mexico(*). Gulf Coast Assoc. Geol. Soc. 1982, 32, 427–448. [Google Scholar]
- Engelkemeir, R.M.; Khan, S.D. Lidar Mapping of Faults in Houston, Texas, USA. Geosphere 2008, 4, 170–182. [Google Scholar] [CrossRef]
- Aronow, S.; Fisher, W.L.; McGowen, J.H.; Barnes, V.E. Geologic Atlas of Texas, Houston Sheet; The University of Texas at Austin, Bureau of Economic Geology, Geologic Atlas of Texas: Houston, TX, USA, 1982. [Google Scholar]
- Lissie Formation (TXQl;0). Available online: https://mrdata.usgs.gov/geology/state/sgmc-unit.php?unit=TXQl%3B0 (accessed on 12 July 2023).
- Khan, S.; Stewart, R.; Otoum, M.; Chang, L. A Geophysical Investigation of the Active Hockley Fault System near Houston, Texas. Geophysics 2013, 78, B177–B185. [Google Scholar] [CrossRef]
- Fattahi, H.; Agram, P.; Simons, M. A Network-Based Enhanced Spectral Diversity Approach for TOPS Time-Series Analysis. IEEE Trans. Geosci. Remote Sens. 2017, 55, 777–786. [Google Scholar] [CrossRef]
- Mirzaee, S.; Amelung, F.; Fattahi, H. Non-Linear Phase Inversion Package for Time Series Analysis. In Proceedings of the AGU Fall Meeting Abstracts 2019, San Francisco, CA, USA, 9–13 December 2019; p. G13C-0572. [Google Scholar]
- Mirzaee, S.; Amelung, F.; Fattahi, H. Non-Linear Phase Linking Using Joined Distributed and Persistent Scatterers. Comput. Geosci. 2023, 171, 105291. [Google Scholar] [CrossRef]
- Mirzaee, S.; Amelung, F. Volcanic Activity Change Detection Using SqueeSAR-InSAR and Backscatter Analysis. In Proceedings of the AGU Fall Meeting Abstracts 2018, Washington, DC, USA, 10–14 December 2018; p. G41B-0707. [Google Scholar]
- Yunjun, Z.; Fattahi, H.; Amelung, F. Small Baseline InSAR Time Series Analysis: Unwrapping Error Correction and Noise Reduction. Comput. Math. Geosci. 2019, 133, 104331. [Google Scholar] [CrossRef]
- Ansari, H.; De Zan, F.; Parizzi, A. Study of Systematic Bias in Measuring Surface Deformation With SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1285–1301. [Google Scholar] [CrossRef]
- Ansari, H.; Zan, F.D.; Bamler, R. Sequential Estimator: Toward Efficient InSAR Time Series Analysis. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5637–5652. [Google Scholar] [CrossRef]
- Ansari, H.; Zan, F.D.; Bamler, R. Efficient Phase Estimation for Interferogram Stacks. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4109–4125. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Two-Dimensional Phase Unwrapping with Use of Statistical Models for Cost Functions in Nonlinear Optimization. J. Opt. Soc. Am. A 2001, 18, 338. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Fialko, Y.; Simons, M.; Agnew, D. The Complete (3-D) Surface Displacement Field in the Epicentral Area of the 1999 MW7.1 Hector Mine Earthquake, California, from Space Geodetic Observations. Geophys. Res. Lett. 2001, 28, 3063–3066. [Google Scholar] [CrossRef]
- Wright, T.; Parsons, B.; Lu, Z. Toward Mapping Surface Deformation in Three Dimensions Using InSAR. Geophys. Res. Lett. 2004, 31, L01607. [Google Scholar] [CrossRef]
- Zhong, W.; Chu, T.; Tissot, P.; Wu, Z.; Chen, J.; Zhang, H. Integrated Coastal Subsidence Analysis Using InSAR, LiDAR, and Land Cover Data. Remote Sens. Environ. 2022, 282, 113297. [Google Scholar] [CrossRef]
- National Land Cover Database Class Legend and Description | Multi-Resolution Land Characteristics (MRLC) Consortium. Available online: https://www.mrlc.gov/data/legends/national-land-cover-database-class-legend-and-description (accessed on 23 May 2023).
- Regression Analysis Basics—ArcGIS Pro|Documentation. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/regression-analysis-basics.htm (accessed on 26 April 2023).
- Galloway, D.; Coplin, L.; Ingebritsen, S. Effects of Land Subsidence in the Greater Houston Area. Water Sci. Technol. Libr. 2003, 46, 187–204. [Google Scholar] [CrossRef]
- Qu, F.; Lu, Z.; Zhang, Q.; Bawden, G.W.; Kim, J.-W.; Zhao, C.; Qu, W. Mapping Ground Deformation over Houston–Galveston, Texas Using Multi-Temporal InSAR. Remote Sens. Environ. 2015, 169, 290–306. [Google Scholar] [CrossRef]
- Bawden, G.W.; Johnson, M.R.; Kasmarek, M.C.; Brandt, J.T.; Middleton, C.S. Investigation of Land Subsidence in the Houston-Galveston Region of Texas by Using the Global Positioning System and Interferometric Synthetic Aperture Radar, 1993–2000; Scientific Investigations Report; U.S. Geological Survey: Reston, VA, USA, 2012; 98p. [Google Scholar]
- Groundwater Decline and Depletion|U.S. Geological Survey. Available online: https://www.usgs.gov/special-topics/water-science-school/science/groundwater-decline-and-depletion (accessed on 17 May 2023).
- Younas, M.; Khan, S.D.; Qasim, M.; Hamed, Y. Assessing Impacts of Land Subsidence in Victoria County, Texas, Using Geospatial Analysis. Land 2022, 11, 2211. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Fang, Z.N.; Rashvand, M.; Griffin, T. The Secondary Consolidation (Creep) Due to Geohistorical Overburden Pressure in the Houston-Galveston Region, Texas. Proc. Int. Assoc. Hydrol. Sci. 2020, 382, 315–320. [Google Scholar] [CrossRef]
- Yu, J.; Wang, G. GPS-Derived Ground Deformation within the Gulf of Mexico Region Referred to a Stable Gulf of Mexico Reference Frame. Nat. Hazards Earth Syst. Sci. 2016, 16, 1583–1602. [Google Scholar] [CrossRef]
- Khorzad, K. Land Subsidence Along the Texas Gulf Coast Due to Oil and Gas Withdrawal. Environ. Geosci. 1999, 6, 157. [Google Scholar] [CrossRef]
- Pratt, W.E.; Johnson, D.W. Local Subsidence of the Goose Creek Oil Field. J. Geol. 1926, 34, 577–590. [Google Scholar] [CrossRef]
- Shuster, W.D.; Bonta, J.; Thurston, H.; Warnemuende, E.; Smith, D.R. Impacts of Impervious Surface on Watershed Hydrology: A Review. Urban Water J. 2005, 2, 263–275. [Google Scholar] [CrossRef]
- Sohn, W.; Kim, J.-H.; Li, M.-H.; Brown, R.D.; Jaber, F.H. How Does Increasing Impervious Surfaces Affect Urban Flooding in Response to Climate Variability? Ecol. Indic. 2020, 118, 106774. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Xu, J.; Pan, G.; Zhao, Y.; Liu, Y.; Liu, H.; Liu, J. Accumulated Impacts of Imperviousness on Surface and Subsurface Hydrology—Continuous Modelling at Urban Street Block Scale. J. Hydrol. 2022, 608, 127621. [Google Scholar] [CrossRef]
- Ramamurthy, P.; Bou-Zeid, E. Contribution of Impervious Surfaces to Urban Evaporation. Water Resour. Res. 2014, 50, 2889–2902. [Google Scholar] [CrossRef]
- Kaur, L.; Rishi, M.; Sharma, S.; Khosla, A. Impervious Surfaces an Indicator of Hydrological Changes in Urban Watershed: A Review. Open Access J. Environ. Soil Sci. 2019, 4, 469–473. [Google Scholar] [CrossRef]
- Kim, H.; Jeong, H.; Jeon, J.; Bae, S. The Impact of Impervious Surface on Water Quality and Its Threshold in Korea. Water 2016, 8, 111. [Google Scholar] [CrossRef]
- Giglou, A.N.; Nazari, R.; Jazaei, F.; Karimi, M. Assessing the Effects of Increased Impervious Surface on the Aquifer Recharge through River Flow Network, Case Study of Jackson, Tennessee, USA. Sci. Total Environ. 2023, 872, 162203. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.C.-C.; Lin, F.T. Analysis of Elastic Consolidation Due to Fluid Extraction from a Cross-Anisotropic Poroelastic Half Space. In Proceedings of the EASEC-11—Eleventh East Asia-Pacific Conference on Structural Engineering and Construction, Taipei, Taiwan, 19–21 November 2008. [Google Scholar]
- Tkachenko, I.; Lytvynenko, T.; Hasenko, L.; Sorochuk, N. Streets and Urban Roads Surface Runoff Problems: A Case Study in the Poltava City, Ukraine. In Proceedings of the TRANSBALTICA XIII: Transportation Science and Technology, Vilnius, Lithuania, 15–16 September 2022; Prentkovskis, O., Yatskiv (Jackiva), I., Skačkauskas, P., Maruschak, P., Karpenko, M., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 576–585. [Google Scholar]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef]
- Cabral-Cano, E.; Osmanoglu, B.; Dixon, T.; Wdowinski, S.; Demets, C.; Cigna, F.; D’iaz-Molina, O. Subsidence and Fault Hazard Maps Using PSI and Permanent GPS Networks in Central Mexico. In Land Subsidence, Associated Hazards and the Role of Natural Resources Development; IAHS-AISH Publication: Wallingford, UK, 2010; Volume 339, pp. 255–259. [Google Scholar]
- Holzer, T.L.; Johnson, A.I. Land Subsidence Caused by Ground Water Withdrawal in Urban Areas. GeoJournal 1985, 11, 245–255. [Google Scholar] [CrossRef]
- Tirmizi, O.; Khan, S.D.; Mirzaee, S.; Fattahi, H. Hazard Potential in Southern Pakistan: A Study on the Subsidence and Neotectonics of Karachi and Surrounding Areas. Remote Sens. 2023, 15, 1290. [Google Scholar] [CrossRef]
- Younas, M.; Khan, S.; Tirmizi, O.; Hamed, Y. Geospatial Analytics of Driving Mechanism of Land Subsidence in Gulf Coast of Texas, United States. Sci. Total Environ. 2023, 902, 166102. [Google Scholar] [CrossRef] [PubMed]
Data | Source | Purpose | Method |
---|---|---|---|
Sentinel-1 SLC | Alaska Satellite Facility (ASF) Vertex https://search.asf.alaska.edu/, accessed on 17 May 2022 | Surface deformation | InSAR |
Copernicus 30 m DEM | European Space Agency (ESA) https://spacedata.copernicus.eu/, accessed on 18 May 2022 | Surface deformation | InSAR |
GNSS Vertical Displacement Data | Global Navigation Satellite Systems (GNSS) http://geodesy.unr.edu/, accessed on 11 April 2023 | Subsidence rate | GLR |
Population Records | Texas A & M University Texas Real Estate Research Center https://www.recenter.tamu.edu/, accessed on 20 March 2023 | Subsidence contribution | GLR |
Groundwater Pumping Records | Texas Water Development Board (TWDB) https://www3.twdb.texas.gov/, accessed on 20 March 2023 | Subsidence contribution | GLR |
Hydrocarbon Production Records | Railroad Commission of Texas https://www.rrc.texas.gov/, accessed on 23 March 2023 | Subsidence contribution | GLR |
Precipitation Records | Southern Regional Climate Center (SRCC) https://www.srcc.tamu.edu/, accessed on 22 March 2023 | Subsidence contribution | GLR |
Landsat 8/9 Level 2 Surface Reflectance Imagery | United States Geological Survey (USGS) Earth Explorer https://earthexplorer.usgs.gov/, accessed on 20 April 2023 | Land-use classification | ArcGIS Pro |
Landsat Land Cover Classification Deep Learning Model | ESRI https://arcg.is/HLKyf, accessed on 23 March 2023 | Land-use classification | ArcGIS Pro |
Total Developed Area | Generated using Landsat imagery and ESRI’s pre-trained model | Subsidence contribution | GLR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tirmizi, O.; Khan, S.D. Factors of Subsidence in Katy, Texas, USA. Remote Sens. 2023, 15, 4424. https://doi.org/10.3390/rs15184424
Tirmizi O, Khan SD. Factors of Subsidence in Katy, Texas, USA. Remote Sensing. 2023; 15(18):4424. https://doi.org/10.3390/rs15184424
Chicago/Turabian StyleTirmizi, Osman, and Shuhab D. Khan. 2023. "Factors of Subsidence in Katy, Texas, USA" Remote Sensing 15, no. 18: 4424. https://doi.org/10.3390/rs15184424
APA StyleTirmizi, O., & Khan, S. D. (2023). Factors of Subsidence in Katy, Texas, USA. Remote Sensing, 15(18), 4424. https://doi.org/10.3390/rs15184424