A Color Matching Method for Mosaic HY-1 Satellite Images in Antarctica
Abstract
:1. Introduction
2. Data and Methods
2.1. Data and Preprocessing
2.2. Image Nonuniformity and Correction
2.3. Multi-Image Color Match
2.4. Image Color-Matching Process
3. Results
3.1. Image Nonuniformity Correction Results
3.2. Multi-Image Color Match Results
4. Analysis and Discussion
4.1. Image Quality Analysis
4.2. Overstretching in the Color-Matching Process
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Moghimi, A.; Celik, T.; Mohammadzadeh, A. Tensor-based keypoint detection and switching regression model for relative radiometric normalization of bitemporal multispectral images. Int. J. Remote Sens. 2022, 43, 3927–3956. [Google Scholar] [CrossRef]
- Li, J.; Hu, Q.; Ai, M. Optimal Illumination and Color Consistency for Optical Remote-Sensing Image Mosaicking. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1943–1947. [Google Scholar] [CrossRef]
- Liu, J.; Ye, X.; Lan, Y. Remote sensing big data from Chinese ocean satellites and its application service. Big Data Res. 2022, 8, 75–88. [Google Scholar]
- Jezek, K.C.; Sohn, H.G.; Noltimier, K.F. “The RADARSAT Antarctic Mapping Project,” IGARSS’98. Sensing and Managing the Environment. In Proceedings of the 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174), Seattle, WA, USA, 6–10 July 1998; Volume 5, pp. 2462–2464. [Google Scholar] [CrossRef]
- Jezek, K.C.; Farness, K.; Carande, R.; Wu, X.; Labelle-Hamer, N. RADARSAT 1 Synthetic Aperture Radar Observations of Antarctica: Modified Antarctic Mapping Mission, 2000. Radio Sci.-RADIO Sci. 2003, 38, 32-1–32-7. [Google Scholar] [CrossRef]
- Jezek, K. RADARSAT-1 Antarctic Mapping Project: Change-detection and surface velocity campaign. Ann. Glaciol. 2002, 34, 263–268. [Google Scholar] [CrossRef]
- Bindschadler, R.; Vornberger, P.; Fleming, A.; Fox, A.; Mullins, J.; Binnie, D.; Paulsen, S.J.; Granneman, B.; Gorodetzky, D. The Landsat Image Mosaic of Antarctica. Remote Sens. Environ. 2008, 112, 4214–4226. [Google Scholar] [CrossRef]
- Feng, M.H.; Xiao, C.; Yan, L.; Jing, K.; Xin, Q.L. High-Resolution Remote Sensing Mapping of Antarctica; China Ocean Press: Beijing, China, 2021. [Google Scholar]
- Scambos, T.A.; Haran, T.M.; Fahnestock, M.A.; Painter, T.H.; Bohlander, J. MODIS-based Mosaic of Antarctica (MOA) data sets: Continent-wide surface morphology and snow grain size. Remote Sens. Environ. 2007, 111, 242–257. [Google Scholar] [CrossRef]
- Feng, M.H.; Xiao, C.; Yan, L.; Yan, M.Z.; Yu, F.Y.; Xian, W.W. An improved Landsat Image Mosaic of Antarctica. Sci. China (Earth Sci.) 2013, 56, 1–12. [Google Scholar] [CrossRef]
- Hui, F.; Ci, T.; Cheng, X.; Scambo, T.; Liu, Y.; Zhang, Y.; Wang, K. Mapping blue-ice areas in Antarctica using ETM and MODIS data. Ann. Glaciol. 2014, 55, 129–137. [Google Scholar] [CrossRef]
- Mathew, R.; Schwaller; Colin, J.; Southwell; Emmerson, L.M. Continental-scale mapping of Adélie penguin colonies from Landsat imagery. Remote Sens. Environ. 2013, 139, 353–364. [Google Scholar] [CrossRef]
- Campbell, G.G.; Pope, A.; Lazzara, M.; Scambos, T.A. The coldest place on Earth: 90 °C and below in East Antarctica from Landsat 8 and other thermal sensors. In Abstract C21D-0678 Presented at the 2013 Fall Meeting, AGU, San Francisco, CA, USA, 9–13 December 2013; AGU: San Francisco, CA, USA, 2013. [Google Scholar]
- Scambos, T.A.; Campbell, G.G.; Pope, A.; Haran, T.; Muto, A.; Lazzara, M.; Reijmer, C.H.; Broeke, M.R.v.D. Ultralow surface temperatures in East Antarctica from satellite thermal infrared mapping: The coldest places on Earth. Geophys. Res. Lett. 2018, 45, 6124–6133. [Google Scholar] [CrossRef]
- Shen, Q.; Wang, H.; Shum, C.K.; Jiang, L.; Hsu, H.T.; Dong, J. Recent high-resolution Antarctic ice velocity maps reveal increased mass loss in Wilkes Land, East Antarctica. Sci. Rep. 2018, 8, 4477. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, D.; Jonathan Wu, Q.M.; Wang, G. A comparative experimental study of image feature detectors and descriptors. Mach. Vis. Appl. 2015, 26, 443–466. [Google Scholar] [CrossRef]
- Forero, M.G.; Mambuscay, C.L.; Monroy, M.F.; Miranda, S.L.; Méndez, D.; Valencia, M.O.; Selvaraj, M.G. Comparative Analysis of Detectors and Feature Descriptors for Multispectral Image Matching in Rice Crops. Plants 2021, 10, 1791. [Google Scholar] [CrossRef]
- Sharma, S.K.; Jain, K.; Shukla, A.K. A Comparative Analysis of Feature Detectors and Descriptors for Image Stitching. Appl. Sci. 2023, 13, 6015. [Google Scholar] [CrossRef]
- Li, X.; Feng, R.; Guan, X.; Shen, H.; Zhang, L. Remote Sensing Image Mosaicking: Achievements and Challenges. IEEE Geosci. Remote Sens. Mag. 2019, 7, 8–22. [Google Scholar] [CrossRef]
- Li, S. Research on the Optimization of Color Consistency Processing and Seamline Determination of Remote Sensing Image. Ph.D. Thesis, Information Engineering University, Zhengzhou, China, 2018. [Google Scholar]
- Li, Z.; Zhu, H.; Zhou, C.; Cao, L.; Zhong, Y.; Zeng, T.; Liu, J. A Color Consistency Processing Method for HY-1C Images of Antarctica. Remote Sens. 2020, 12, 1143. [Google Scholar] [CrossRef]
- Wang, M.; Pan, J. A Method of Removing the Uneven Illumination for Digital Aerial Image. J. Image Graph. 2004, 9, 104–108+127. [Google Scholar]
- Sun, W.; You, H.; Fu, X.; Song, M. A non-linear MASK dodging algorithm for remote sensing images. Sci. Surv. Mapp. 2014, 39, 130–134. [Google Scholar] [CrossRef]
- Fan, C.N.; Zhang, F.Y. Homomorphic Filtering Based Illumination Normalization Method for Face Recognition. Pattern Recognit. Lett. 2011, 32, 1468–1479. [Google Scholar] [CrossRef]
- Rahman, Z.; Jobson, D.J.; Woodell, G.A. Multi-scale Retinex for Color Image Enhancement. IEEE Int. Conf. Image Process. 1996, 3, 1003–1006. [Google Scholar]
- Orsini, G.; Ramponi, Q.; Carrai, P.; Di, F.R. A Modified Retinex for Image Contrast Enhancement and Dynamics Control. Int. Conf. Image Process. 2003, 3, 393–396. [Google Scholar]
- Yu, X.; Fang, J.; Li, C.; Liao, M.; Chen, X. Comparative Study on Dodging Algorithms for A Single UAV Image. Geomat. World 2019, 26, 96–103. [Google Scholar]
- Helmer, E.H.; Ruefenacht, B. Erratum: Cloud-free satellite image mosaics with regression trees and histogram matching. Photogramm. Eng. Remote Sens. 2005, 71, 1079–1089. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Y.; Meng, Y. Research on Color Uniforming for Multi-source Remote Sensing Images Based on Histogram Matching Method. Geospat. Inf. 2020, 18, 54–57+7. [Google Scholar]
- Xie, R.; Xia, M.; Yao, J.; Li, L. Guided color consistency optimization for image mosaicking. ISPRS J. Photogramm. Remote Sens. 2018, 135, 43–59. [Google Scholar] [CrossRef]
- Schroeder, T.A.; Cohen, W.B.; Song, C.; Canty, M.J.; Yang, Z. Radiometric Correction of Multi-Temporal Landsat Data for Characterization of Early Successional Forest Patterns in Western Oregon. Remote Sens. Environ. 2006, 103, 16–26. [Google Scholar] [CrossRef]
- Nielsen, A.A. The Regularized Iteratively Reweighted MAD Method for Change Detection in Multi- and Hyperspectral Data. IEEE Trans. Image Process. 2007, 16, 463–478. [Google Scholar] [CrossRef] [PubMed]
- Velloso, M.L.F.; Souza, F.J.D. Non-Parametric Smoothing for Relative Radiometric Correction on Remotely Sensed Data. In Proceedings of the IEEE XV Brazilian Symposium on Computer Graphics and Image Processing, Fortaleza, Brazil, 10 October 2002; pp. 83–89. [Google Scholar]
- Palubinskas, G.; Muller, R.; Reinartz, P. Mosaicking of Optical Remote Sensing Imagery. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; pp. 3955–3957. [Google Scholar]
- Pan, J.; Wang, M.; Li, D.R. A Network-Based Radiometric Equalization Approach for Digital Aerial Ortho Image. IEEE Geosci. Remote Sens. Lett. 2011, 7, 401–405. [Google Scholar] [CrossRef]
- Li, L.; Xia, M.; Liu, C.; Li, L.; Wang, H.; Yao, J. Jointly optimizing global and local color consistency for multiple image mosaicking. ISPRS J. Photogramm. Remote Sens. 2020, 170, 45–56. [Google Scholar] [CrossRef]
- Chen, L.; Ma, Y.; Lian, Y.; Zhang, H.; Yu, Y.; Lin, Y. Radiometric Normalization Using a Pseudo−Invariant Polygon Features−Based Algorithm with Contemporaneous Sentinel−2A and Landsat−8 OLI Imagery. Appl. Sci. 2023, 13, 2525. [Google Scholar] [CrossRef]
- Pan, J. The Research on Seamless Mosaic Approach of Stereo Orthophoto. Master’s Thesis, Wuhan University, Wuhan, China, 2005. [Google Scholar]
- Han, Y. Research on Key Technology of Color Consistency Processing for Digtial Ortho Map Mosaicing. Ph.D. Thesis, Wuhan University, Wuhan, China, 2014. [Google Scholar]
- Richards, J.A. Remote Sensing Digital Image Analysis; Springer: Berlin/Heidelberg, Germany, 1999; Volume 3. [Google Scholar]
- Yao, F.; Wan, Y.; Hu, H. Research on the Improved Image Dodging Algorithm Based on Mask Technique. Remote Sens. Inf. 2013, 28, 8–13. [Google Scholar] [CrossRef]
- Ruan, Q. Digital Image Processing; Publising House of Electronics Industy: Beijing, China, 2007. [Google Scholar]
- Liu, H. Research and Implementation of Remote Sensing Image Dodging Algorithm Based on IDL. Master’s Thesis, Hebei University of Engineering, Handan, China, 2018. [Google Scholar]
HY-1C/D | |
---|---|
Launch date | 7 September 2018 (HY-1C), 11 June 2020 (HY-1D) |
Orbital | Sun-synchronous orbit, altitude of 782 km, inclination = 98.6° HY-1C LTDN (local time on descending node) = 10:30 ± 30 min HY-1D LTAN (local time on ascending node) = 13:30 ± 30 min. |
Instruments | COCTS (China ocean color and temperature scanner) CZI (Coastal Zone Imager) UVI (ultraviolet imager) SCS (satellite calibration spectrometer) AIS (automatic identification system) |
Observation objective | Global ocean-color, sea-surface temperature, sea-ice, dynamic environment information of coastal zone |
No. | Image Date | Filename |
---|---|---|
1 | 3 December 2021 | H1D_OPER_CZI_L1C_20211203T055702_20211203T055757_07755_10 |
2 | 6 December 2021 | H1D_OPER_CZI_L1C_20211206T091605_20211206T091700_07799_10 |
3 | 8 December 2021 | H1D_OPER_CZI_L1C_20211208T094805_20211208T094900_07827_10 |
4 | 13 December 2021 | H1D_OPER_CZI_L1C_20211213T052354_20211213T052449_07899_10 |
Image No. | Original Image (STD) | Result Image (STD) | |||||
---|---|---|---|---|---|---|---|
Band | R | G | B | R | G | B | |
1 | 49.3 | 49.4 | 49.8 | 45.8 | 45.0 | 46.2 | |
2 | 49.1 | 53.4 | 63.2 | 17.7 | 17.9 | 17.8 | |
3 | 50.8 | 52.6 | 54.5 | 16.1 | 14.0 | 13.2 |
Image 1 | Image 2 | Image 3 | Image 4 | Average | |
---|---|---|---|---|---|
Image size | 0.87 Gb | 0.95 Gb | 1.03 Gb | 0.98 Gb | |
Histogram specification | 131.80 s | 174.47 s | 193.09 s | 176.69 s | 169.01 s |
Wallis | 22.93 s | 25.91 s | 27.41 s | 26.94 s | 25.80 s |
Proposed method | 133.11 s | 149.18 s | 189.59 s | 173.71 s | 161.39 s |
Index | Region | Image Category | Band | Average | ||
---|---|---|---|---|---|---|
R | G | B | ||||
A | Original image | 25.74 | 26.03 | 22.55 | 24.77 | |
Histogram specification | 24.84 | 25.19 | 24.19 | 24.74 | ||
Wallis | 29.40 | 28.26 | 27.96 | 28.54 | ||
Our result | 9.19 | 11.07 | 11.57 | 10.61 | ||
B | Original image | 12.44 | 10.33 | 2.11 | 8.29 | |
Histogram specification | 13.60 | 12.06 | 9.79 | 11.82 | ||
Wallis | 8.84 | 8.14 | 7.91 | 8.30 | ||
Our result | 0.52 | 0.37 | 1.55 | 0.81 | ||
C | Original image | 32.43 | 33.67 | 33.40 | 33.16 | |
Histogram specification | 13.98 | 15.00 | 15.03 | 14.67 | ||
Wallis | 1.22 | 0.41 | 1.44 | 1.02 | ||
Our result | 11.27 | 12.43 | 12.66 | 12.12 | ||
D | Original image | 15.05 | 10.69 | 3.68 | 9.81 | |
Histogram specification | 5.78 | 3.32 | 6.84 | 5.31 | ||
Wallis | 13.19 | 12.31 | 11.64 | 12.38 | ||
Our result | 1.62 | 0.80 | 0.97 | 1.13 | ||
s | A | Original image | 2.04 | 3.18 | 4.70 | 3.31 |
Histogram specification | 1.52 | 1.77 | 1.56 | 1.62 | ||
Wallis | 11.10 | 10.05 | 10.47 | 10.54 | ||
Our result | 7.40 | 8.41 | 8.07 | 7.96 | ||
B | Original image | 5.74 | 5.38 | 0.17 | 3.76 | |
Histogram specification | 18.11 | 18.08 | 12.13 | 16.11 | ||
Wallis | 1.67 | 1.71 | 1.35 | 1.58 | ||
Our result | 1.46 | 1.30 | 0.07 | 0.94 | ||
C | Original image | 6.67 | 5.92 | 2.76 | 5.12 | |
Histogram specification | 6.99 | 7.09 | 5.90 | 6.66 | ||
Wallis | 9.64 | 8.15 | 8.01 | 8.60 | ||
Our result | 6.30 | 7.80 | 9.53 | 7.87 | ||
D | Original image | 0.55 | 0.89 | 3.32 | 1.59 | |
Histogram specification | 3.39 | 2.47 | 5.16 | 3.67 | ||
Wallis | 7.49 | 6.74 | 6.28 | 6.84 | ||
Our result | 0.99 | 0.18 | 0.12 | 0.43 |
Image No. | Original Image | Result Image of This Paper | |||||
---|---|---|---|---|---|---|---|
Band | R | G | B | R | G | B | |
1 | 9.6 | 9.4 | 9.5 | 10.9 | 10.7 | 10.5 | |
2 | 1.6 | 1.6 | 1.9 | 1.8 | 1.7 | 1.9 | |
3 | 4.6 | 4.5 | 4.6 | 5.7 | 5.5 | 5.6 | |
4 | 1.8 | 1.6 | 1.8 | 2.6 | 2.5 | 2.6 | |
5 | 2.6 | 2.5 | 2.7 | 3.5 | 3.3 | 3.5 | |
6 | 5.3 | 5.2 | 5.3 | 6.6 | 6.3 | 6.3 | |
7 | 6.3 | 6.1 | 6.4 | 7.3 | 7.0 | 6.8 |
Image No. | Band | Original Image | General Method Image Result | Study Image Result |
---|---|---|---|---|
1 | R | 8.3 | 30.3 | 9.1 |
G | 8.3 | 31.0 | 9.0 | |
B | 8.4 | 29.9 | 9.0 | |
2 | R | 8.4 | 27.3 | 10.2 |
G | 8.4 | 28.0 | 10.1 | |
B | 8.5 | 26.9 | 10.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, T.; Shi, L.; Huang, L.; Zhang, Y.; Zhu, H.; Yang, X. A Color Matching Method for Mosaic HY-1 Satellite Images in Antarctica. Remote Sens. 2023, 15, 4399. https://doi.org/10.3390/rs15184399
Zeng T, Shi L, Huang L, Zhang Y, Zhu H, Yang X. A Color Matching Method for Mosaic HY-1 Satellite Images in Antarctica. Remote Sensing. 2023; 15(18):4399. https://doi.org/10.3390/rs15184399
Chicago/Turabian StyleZeng, Tao, Lijian Shi, Lei Huang, Ying Zhang, Haitian Zhu, and Xiaotong Yang. 2023. "A Color Matching Method for Mosaic HY-1 Satellite Images in Antarctica" Remote Sensing 15, no. 18: 4399. https://doi.org/10.3390/rs15184399
APA StyleZeng, T., Shi, L., Huang, L., Zhang, Y., Zhu, H., & Yang, X. (2023). A Color Matching Method for Mosaic HY-1 Satellite Images in Antarctica. Remote Sensing, 15(18), 4399. https://doi.org/10.3390/rs15184399