Research on Climate Change in Qinghai Lake Basin Based on WRF and CMIP6
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. WRF Configuration and Data Sources
2.3. CMIP6-Related Settings and Data
3. Results and Analysis
3.1. Statistics of Hydrometeorological Elements
3.2. Spatial Numerical Simulation of Metrological Elements
3.3. Prediction Results of Climate Elements
4. Discussion
5. Conclusions
- (1)
- The Qinghai Lake Basin is significantly affected by climate change and its precipitation, runoff, and lake level have all increased to different degrees in recent years. The WRF model can simulate the spatial heterogeneity of summer temperature and precipitation in the Qinghai Lake Basin. In August 2020, the temperature and precipitation near Qinghai Lake were higher than those in the other regions of the basin. Temperature is mainly affected by altitude and underlying surface factors. Precipitation is mainly affected by underlying surface factors and temperature.
- (2)
- Against the background of drastic climate change, the predictions of future temperature and precipitation by the three climate models under the four forced scenarios showed an overall upward trend and were affected by the forced scenarios. Under the high forcing scenario, the annual average temperature predicted by the three climate models was 1.95 °C higher than that under the low forcing scenario in 2015–2100. The temperature was more significantly affected than the precipitation by the forcing scenario.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ba, W.; Du, P.; Liu, T.; Bao, A.; Chen, X.; Liu, J.; Qin, C. Impacts of climate change and agricultural activities on water quality in the Lower Kaidu River Basin, China. J. Geogr. Sci. 2020, 30, 164–176. [Google Scholar] [CrossRef]
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A. Permafrost is warming at a global scale. Nat. Commun. 2019, 10, 264. [Google Scholar] [CrossRef]
- Lu, S.; Hu, Z.; Yu, H.; Fan, W.; Fu, C.; Wu, D. Changes of Extreme Precipitation and its Associated Mechanisms in Northwest China. Adv. Atmos. Sci. 2021, 38, 1665–1681. [Google Scholar] [CrossRef]
- Wu, J.; Miao, C.; Zhang, X.; Yang, T.; Duan, Q. Detecting the quantitative hydrological response to changes in climate and human activities. Sci. Total Environ. 2017, 586, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Hsu, H.; Liang, H. Evaluation and Comparison of CMIP6 and CMIP5 Model Performance in Simulating the Seasonal Extreme Precipitation in the Western North Pacific and East Asia. Weather Clim. Extrem. 2021, 31, 100303. [Google Scholar] [CrossRef]
- Gupta, V.; Singh, V.; Jain, M. Assessment of precipitation extremes in India during the 21st century under SSP1-1.9 mitigation scenarios of CMIP6 GCMs. J. Hydrol. 2020, 590, 125422. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Singh, V.; Shi, P. Contribution of multiple climatic variables and human activities to streamflow changes across China. J. Hydrol. 2017, 545, 145–162. [Google Scholar] [CrossRef]
- Wang, W.; Lee, X.; Xiao, W.; Liu, S.; Schultz, N.; Wang, Y.; Zhang, M.; Zhao, L. Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate. Nat. Geosci. 2018, 11, 410–414. [Google Scholar] [CrossRef]
- Yao, J.; Chen, Y.; Guan, X.; Zhao, Y.; Chen, J.; Mao, W. Recent climate and hydrological changes in a mountain-basin system in Xinjiang, China. Earth-Sci. Rev. 2022, 226, 103957. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, J.; Zhang, Y.; Zhou, J.; Shao, W.; Yu, Y.; Jia, R. Incorporating an urban canopy model with artificial water dissipation into weather research and forecasting: A case study for Beijing. Hydrol. Process. 2022, 36, e14523. [Google Scholar] [CrossRef]
- Rao, W.; Shen, Z.; Duan, X. Spatiotemporal patterns and drivers of soil erosion in Yunnan, Southwest China: RULSE assessments for recent 30 years and future predictions based on CMIP6. Catena 2023, 220, 106703. [Google Scholar] [CrossRef]
- Golroudbary, V.; Zeng, Y.; Mannaerts, C.; Su, Z. Response of Extreme Precipitation to Urbanization over the Netherlands. J. Appl. Meteorol. Clim. 2019, 58, 645–661. [Google Scholar] [CrossRef]
- Li, X.; Koh, T.; Panda, J.; Norford, L. Impact of urbanization patterns on the local climate of a tropical city, Singapore: An ensemble study. J. Geophys. Res. Atmos. 2016, 121, 4386–4403. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, J.; Zhang, S.; Shao, W.; Zhou, J.; Zhang, L.; Jia, R. Spatiotemporal evolution of urban rain islands in China under the conditions of urbanization and climate change. Remote Sens. 2022, 14, 4159. [Google Scholar] [CrossRef]
- Zhang, Z.; Chang, J.; Xu, C.; Zhou, Y.; Wu, Y.; Chen, X.; Jiang, S.; Zheng, D. The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30 years. Sci. Total Environ. 2018, 635, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Qiu, J.; Cheng, T.; Huang, B.; Feng, Z. Urban flooding in the Guangdong-Hong Kong-Macao Greater Bay Area and its analysis. J. Hydraul. Eng. 2022, 53, 823–832. [Google Scholar] [CrossRef]
- Zahra, S.; Mahnoosh, M.; Shahla, P. Simultaneous Monitoring of Different Drought Types Using Linear and Nonlinear Combination Approaches. Water Resour. Manag. 2023, 37, 1125–1151. [Google Scholar] [CrossRef]
- Yang, M.; Lei, X.; Jiang, Y.; Wang, H.; He, S. Construction and application of precipitation collection forecast model in Qingshitan Reservoir. J. Hydraul. Eng. 2018, 49, 263–270. [Google Scholar] [CrossRef]
- Saha, U.; Sateesh, M. Rainfall extremes on the rise: Observations during 1951–2020 and bias-corrected CMIP6 projections for near- and late 21st century over Indian landmass. J. Hydrol. 2022, 608, 127682. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, J.; Zhang, Y.; Zhou, J.; Shao, W.; Yu, Y.; Jia, R. Seasonal variation of dry and wet islands in Beijing considering urban artificial water dissipation. npj Clim. Atmos. Sci. 2021, 4, 58. [Google Scholar] [CrossRef]
- Singh, V.; Mohan, M.; Bhati, S. Industrial heat island mitigation in Angul-Talcher region of India: Evaluation using modified WRF-Single Urban Canopy Model. Sci. Total Environ. 2022, 858, 159949. [Google Scholar] [CrossRef] [PubMed]
- Kabano, P.; Harris, A.; Lindley, S. Spatiotemporal dynamics of urban climate during the wet-dry season transition in a tropical African city. Int. J. Biometeorol. 2022, 66, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Liu, J.; Zhang, Y.; Zhou, J.; Yu, Y.; Jia, R. Spatiotemporal characteristics of urban dry/wet islands in China following rapid urbanization. J. Hydrol. 2021, 601, 126618. [Google Scholar] [CrossRef]
- Zhang, W.; Furtado, K.; Zhou, T.; Wu, P.; Chen, X. Constraining extreme precipitation projections using past precipitation variability. Nat. Commun. 2022, 13, 6319. [Google Scholar] [CrossRef]
- Cai, Y.; Ke, C.; Duan, Z. Monitoring ice variations in Qinghai Lake from 1979 to 2016 using passive microwave remote sensing data. Sci. Total Environ. 2017, 607, 120–131. [Google Scholar] [CrossRef]
- Fan, C.; Song, C.; Li, W.; Liu, K.; Wang, J. What drives the rapid water-level recovery of the largest lake (Qinghai Lake) of China over the past half century? J. Hydrol. 2021, 593, 125921. [Google Scholar] [CrossRef]
- Zhang, W.; Villarini, G.; Vecchi, G.; Smith, J. Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston. Nature 2018, 563, 384–388. [Google Scholar] [CrossRef]
- Ma, Y.; Li, X.; Liu, L.; Yang, X.; Miao, C. Evapotranspiration and its dominant controls along an elevation gradient in the Qinghai Lake watershed, northeast Qinghai-Tibet Plateau. J. Hydrol. 2019, 575, 257–268. [Google Scholar] [CrossRef]
- Ma, Y.; Li, X.; Lei, L.; Huang, Y.; Zhou, L.; Xia, H.; Wu, X.; Yang, X.; Pei, W.; Zhao, S. Measurements and Modeling of the Water Budget in Semiarid High-Altitude Qinghai Lake Basin, Northeast Qinghai-Tibet Plateau. J. Geophys. Res. Atmos. 2018, 123, 10857–10871. [Google Scholar] [CrossRef]
- Li, Y.; Su, F.; Chen, D.; Tang, Q. Atmospheric Water Transport to the Endorheic Tibetan Plateau and Its Effect on the Hydrological Status in the Region. J. Geophys. Res. Atmos. 2020, 124, 12864–12881. [Google Scholar] [CrossRef]
- Tang, X.; Xie, G.; Deng, J.; Shao, K.; Hu, Y.; He, J.; Zhang, J.; Gao, G. Effects of climate change and anthropogenic activities on lake environmental dynamics: A case study in Lake Bosten Catchment, NW China. J. Environ. Manag. 2022, 319, 115764. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, J.; Shao, W.; Zhou, J.; Jia, R. Distribution of dry and wet islands in the Pearl River Delta urban agglomeration using numerical simulations. Atmos. Res. 2022, 273, 106170. [Google Scholar] [CrossRef]
- Shikhovtsev, A.Y.; Kovadlo, P.G.; Lezhenin, A.A.; Korobov, O.A.; Kiselev, A.V.; Russkikh, I.V.; Kolobov, D.Y.; Shikhovtsev, M.Y. Influence of Atmospheric Flow Structure on Optical Turbulence Characteristics. Appl. Sci. 2023, 13, 1282. [Google Scholar] [CrossRef]
- Ma, H.; Cao, X.; Ma, X.; Su, H.; Jing, Y.; Zhu, K. Improving the Wind Power Density Forecast in the Middle- and High-Latitude Regions of China by Selecting the Relatively Optimal Planetary Boundary Layer Schemes. Atmosphere 2022, 13, 2034. [Google Scholar] [CrossRef]
- Li, C.; Ma, M.; Kou, W.; Zeng, X.; Cheng, W.; Wang, H.; Zhang, J.; Wang, W.; Lin, W.; Li, H.; et al. Substantial Near-Surface Spring Ozone Enhancement due to Stratospheric Intrusion in the Northeastern Qinghai-Tibet Plateau, China. Front. Environ. Sci. 2022, 10, 894937. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, D.; Wen, X.; Li, D.; Zheng, Z.; Zhu, X.; Wang, B.; Wang, C.; Wang, L. Comparative analysis of the meteorological elements simulated by different land surface process schemes in the WRF model in the Yellow River source region. Theor. Appl. Climatol. 2020, 139, 145–162. [Google Scholar] [CrossRef]
- Guo, Y.; Xu, Y.; Yu, X.; Xie, J.; Chen, H.; Si, Y. Impacts of GCM credibility on hydropower production robustness under climate change: CMIP5 vs CMIP6. J. Hydrol. 2023, 618, 129233. [Google Scholar] [CrossRef]
- Olmo, M.; Bettolli, M. Statistical downscaling of daily precipitation over southeastern South America: Assessing the performance in extreme events. Int. J. Climatol. 2021, 42, 1283–1302. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y.; Huang, G.; Wang, H.; Li, Y.; Liu, Y.; Shen, Z. A novel statistical downscaling approach for analyzing daily precipitation and extremes under the impact of climate change: Application to an arid region. J. Hydrol. 2022, 615, 128730. [Google Scholar] [CrossRef]
- Lei, B.; Shi, C.; Li, L.; Yang, Y.; Wu, J. Accuracy of CHIRPS Satellite-Rainfall Products over China’s mainland. Remote Sens. 2018, 10, 362. [Google Scholar] [CrossRef]
- Ahmadi, H.; Rostami, N.; Dadashi, R. The impact of climate change on snowfall in Iran Basins using the satellite-derived snow products and CMIP6 Bias Corrected model. Theor. Appl. Climatol. 2022, 151, 603–618. [Google Scholar] [CrossRef]
Physical Process | Parameterization Scheme | ||
---|---|---|---|
D01 | D02 | D03 | |
Atmospheric Longwave Radiation | RRTM | RRTM | RRTM |
Shortwave Radiation | Dudhia | Dudhia | Dudhia |
Planetary Boundary layer | YSU | YSU | YSU |
Land Surface | Noah | Noah | Noah |
Microphysics | WSM 5 | WSM 5 | WSM 5 |
Cumulus | KF | None | None |
Lake | None | None | Open |
Number | Climate Model | Country | Horizontal Resolution |
---|---|---|---|
1 | MIROC6 | Japan | 1.4° × 1.4° |
2 | IPSL-CM6A-LR | France | 2.5° × 1.3° |
3 | MRI-ESM2-0 | Japan | 1.1° × 1.1° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Z.; Liu, J.; Zhang, S.; Shao, W.; Zhang, L. Research on Climate Change in Qinghai Lake Basin Based on WRF and CMIP6. Remote Sens. 2023, 15, 4379. https://doi.org/10.3390/rs15184379
Luo Z, Liu J, Zhang S, Shao W, Zhang L. Research on Climate Change in Qinghai Lake Basin Based on WRF and CMIP6. Remote Sensing. 2023; 15(18):4379. https://doi.org/10.3390/rs15184379
Chicago/Turabian StyleLuo, Zhuoran, Jiahong Liu, Shanghong Zhang, Weiwei Shao, and Li Zhang. 2023. "Research on Climate Change in Qinghai Lake Basin Based on WRF and CMIP6" Remote Sensing 15, no. 18: 4379. https://doi.org/10.3390/rs15184379
APA StyleLuo, Z., Liu, J., Zhang, S., Shao, W., & Zhang, L. (2023). Research on Climate Change in Qinghai Lake Basin Based on WRF and CMIP6. Remote Sensing, 15(18), 4379. https://doi.org/10.3390/rs15184379