A Novel Approach to Predicting Urban Expansion by the Urban Scaling Law at a Single-City Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Methods
2.3.1. Urban Scaling Law for the Single City
2.3.2. Estimation of Urban Land Demand
2.3.3. CA-Based Hybrid Model Construction
3. Results
3.1. Urban Scaling Law Exponent of a Single City
3.2. Spatial Simulation of Urban Land Expansion and Validation
4. Discussion
4.1. The Implication of Exponent β
4.2. The Comparison between USL and the Traditional Prediction Method
4.3. Limitations and Future Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420); United Nations: New York, NY, USA, 2019. [Google Scholar]
- Seto, K.C.; Sanchez-Rodriguez, R.; Fragkias, M. The New Geography of Contemporary Urbanization and the Environment. Annu. Rev. Environ. Resour. 2010, 35, 167–194. [Google Scholar] [CrossRef]
- Li, Y.; Ye, H.; Sun, X.; Zheng, J.; Meng, D. Coupling Analysis of the Thermal Landscape and Environmental Carrying Capacity of Urban Expansion in Beijing (China) over the Past 35 Years. Sustainability 2021, 13, 584. [Google Scholar] [CrossRef]
- Lafortezza, R.; Sanesi, G. Nature-Based Solutions: Settling The issue of Sustainable Urbanization. Environ. Res. 2019, 172, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ye, H.; Gao, X.; Sun, D.; Li, Z.; Zhang, N.; Leng, X.; Meng, D.; Zheng, J. Spatiotemporal Patterns of Urbanization in the Three Most Developed Urban Agglomerations in China Based on Continuous Nighttime Light Data (2000–2018). Remote Sens. 2021, 13, 2245. [Google Scholar] [CrossRef]
- Kovacs, Z.; Farkas, Z.J.; Egedy, T.; Kondor, A.C.; Szabo, B.; Lennert, J.; Baka, D.; Kohan, B. Urban Sprawl and Land Conversion in Post-Socialist Cities: The Case of Metropolitan Budapest. Cities 2019, 92, 71–81. [Google Scholar] [CrossRef]
- Ye, H.; Li, Z.; Zhang, N.; Leng, X.; Meng, D.; Zheng, J.; Li, Y. Variations in the Effects of Landscape Patterns on the Urban Thermal Environment during Rapid Urbanization (1990–2020) in Megacities. Remote Sens. 2021, 13, 3415. [Google Scholar] [CrossRef]
- Zhou, M.; Ma, Y.; Tu, J.; Wang, M. SDG-Oriented Multi-Scenario Sustainable Land-Use Simulation under the Background of Urban Expansion. Environ. Sci. Pollut. Res. 2022, 29, 72797–72818. [Google Scholar] [CrossRef]
- Boulila, W.; Ghandorh, H.; Khan, M.A.; Ahmed, F.; Ahmad, J. A Novel CNN-LSTM-Based Approach To Predict Urban Expansion. Ecol. Inform. 2021, 64, 101325. [Google Scholar] [CrossRef]
- Koko, A.F.; Han, Z.; Wu, Y.; Abubakar, G.A.; Bello, M. Spatiotemporal Land Use/Land Cover Mapping and Prediction Based on Hybrid Modeling Approach: A Case Study of Kano Metropolis, Nigeria (2020–2050). Remote Sens. 2022, 14, 6083. [Google Scholar] [CrossRef]
- Yussif, K.; Dompreh, E.B.; Gasparatos, A. Sustainability of Urban Expansion in Africa: A Systematic Literature Review Using the Drivers-Pressures-State-Impact-Responses (DPSIR) Framework. Sustain. Sci. 2023, 18, 1459–1479. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, X.; Xu, X.; Liu, C.; Chen, K. Three-Dimensional Simulation Model for Synergistically Simulating Urban Horizontal Expansion and Vertical Growth. Remote Sens. 2022, 14, 1503. [Google Scholar] [CrossRef]
- Wang, J.; Fang, C. Growth of Urban Construction Land: Progress and Prospect. Prog. Geogr. 2011, 30, 1440–1448. [Google Scholar]
- Araya, Y.H.; Cabral, P. Analysis and Modeling of Urban Land Cover Change in Setubal and Sesimbra, Portugal. Remote Sens. 2010, 2, 1549–1563. [Google Scholar] [CrossRef]
- Ouyang, X.; Xu, J.; Li, J.; Wei, X.; Li, Y. Land Space Optimization of Urban-Agriculture-Ecological Functions in the Changsha-Zhuzhou-Xiangtan Urban Agglomeration, China. Land Use Policy 2022, 117, 106112. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Wang, Y.; Liu, D.; Xia, C.; Wang, Z.; Wang, H.; Liu, Y. Urban Expansion Simulation towards Low-Carbon Development: A Case Study of Wuhan, China. Sustain. Cities Soc. 2020, 63, 102455. [Google Scholar] [CrossRef]
- Zhou, L.; Dang, X.; Sun, Q.; Wang, S. Multi-Scenario Simulation of Urban Land Change in Shanghai by Random Forest and CA-Markov Model. Sustain. Cities Soc. 2020, 55, 102045. [Google Scholar] [CrossRef]
- Hou, W.; Zhou, W.; Li, J.; Li, C. Simulation of the Potential Impact of Urban Expansion on Regional Ecological Corridors: A Case Study of Taiyuan, China. Sustain. Cities Soc. 2022, 83, 103933. [Google Scholar] [CrossRef]
- Aburas, M.M.; Ahamad, M.S.S.; Omar, N.Q. Spatio-Temporal Simulation and Prediction of Land-Use Change Using Conventional and Machine Learning Models: A Review. Environ. Monit. Assess. 2019, 191, 205. [Google Scholar] [CrossRef]
- Bettencourt, L.M.A. The Origins of Scaling in Cities. Science 2013, 340, 1438–1441. [Google Scholar] [CrossRef]
- Bettencourt, L.; West, G. A Unified Theory of Urban Living. Nature 2010, 467, 912–913. [Google Scholar] [CrossRef]
- Barthelemy, M. The Statistical Physics of Cities. Nat. Rev. Phys. 2019, 1, 406–415. [Google Scholar] [CrossRef]
- Alvioli, M. Administrative Boundaries and Urban Areas in Italy: A Perspective from Scaling Laws. Landsc. Urban Plan. 2020, 204, 103906. [Google Scholar] [CrossRef]
- Bettencourt, L.M.A.; Lobo, J.; Helbing, D.; Kuehnert, C.; West, G.B. Growth, Innovation, Scaling, and the Pace of Life in Cities. Proc. Natl. Acad. Sci. USA 2007, 104, 7301–7306. [Google Scholar] [CrossRef] [PubMed]
- Leitao, J.C.; Miotto, J.M.; Gerlach, M.; Altmann, E.G. Is This Scaling Nonlinear? R. Soc. Open Sci. 2016, 3, 150649. [Google Scholar] [CrossRef] [PubMed]
- Keuschnigg, M.; Mutgan, S.; Hedstrom, P. Urban Scaling and the Regional Divide. Sci. Adv. 2019, 5, eaav0042. [Google Scholar] [CrossRef] [PubMed]
- National Bureau of Statistics of China. Available online: http://www.stats.gov.cn/english/ (accessed on 1 June 2023).
- Statistics Bureau of Shenzhen Municipality. Available online: http://tjj.sz.gov.cn/ (accessed on 1 June 2023).
- Dong, L.; Wang, H.; Zhao, H. The Definition of City Boundary and Scaling Law. Acta Geogr. Sin. 2017, 72, 213–223. [Google Scholar]
- Yang, J.; Huang, X. The 30 M Annual Land Cover Dataset and Its Dynamics in China from 1990 To 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Wang, J.; Bai, Y.; Cheng, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W.; et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2020, 236, 111510. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration. Alaska Satellite Facility (ASF) Data Search Vertex; Alaska Satellite Facility: Fairbanks, AK, USA, 2015; Available online: https://search.asf.alaska.edu (accessed on 1 June 2023).
- Pesaresi, M.; Florczyk, A.; Schiavina, M.; Melchiorri, M.; Maffenini, L. GHS-SMOD R2019A—GHS Settlement Layers, Updated and Refined REGIO Model 2014 in Application to GHS-BUILT R2018A and GHS-POP R2019A, Multitemporal (1975–1990–2000–2015)—OBSOLETE RELEASE; European Commission, Joint Research Centre (JRC): Luxembourg, 2019; Available online: http://data.europa.eu/89h/42e8be89-54ff-464e-be7b-bf9e64da5218 (accessed on 1 June 2023).
- OpenStreetMap Foundation. Open Street Map; Open Street Map: Cambridge, UK, 2023; Available online: https://openstreetmap.org (accessed on 1 June 2023).
- Shenzhen Government. Available online: http://www.sz.gov.cn/szzt2010/wgkzl/jcgk/jchgk/content/post_1319256.html (accessed on 1 June 2023).
- Bettencourt, L.M.A.; Lobo, J.; Strumsky, D.; West, G.B. Urban Scaling and Its Deviations: Revealing the Structure of Wealth, Innovation and Crime across Cities. PLoS ONE 2010, 5, e13541. [Google Scholar] [CrossRef]
- Molinero, C.; Thurner, S. How The Geometry of Cities Determines Urban Scaling Laws. J. R. Soc. Interface 2021, 18, 20200705. [Google Scholar] [CrossRef]
- Lei, W.; Jiao, L.; Xu, G. Understanding the Urban Scaling of Urban Land with an Internal Structure View to Characterize China’s Urbanization. Land Use Policy 2022, 112, 105781. [Google Scholar] [CrossRef]
- Sahasranaman, A.; Bettencourt, L.M.A. Urban Geography and Scaling of Contemporary Indian Cities. J. R. Soc. Interface 2019, 16, 20180758. [Google Scholar] [CrossRef] [PubMed]
- Bettencourt, L.M.A.; Yang, V.C.; Lobo, J.; Kempes, C.P.; Rybski, D.; Hamilton, M.J. The Interpretation of Urban Scaling Analysis in Time. J. R. Soc. Interface 2020, 17, 20190846. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Li, X.; Liu, X.; Chen, Y.; Liang, X.; Leng, J.; Xu, X.; Liao, W.; Qiu, Y.; Wu, Q.; et al. Global Projections of Future Urban Land Expansion under Shared Socioeconomic Pathways. Nat. Commun. 2020, 11, 537. [Google Scholar] [CrossRef]
- Xu, G.; Xu, Z.; Gu, Y.; Lei, W.; Pan, Y.; Liu, J.; Jiao, L. Scaling Laws in Intra-Urban Systems and Over Time at the District Level in Shanghai, China. Phys. A Stat. Mech. Its Appl. 2020, 560, 125162. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A Future Land Use Simulation Model (FLUS) for Simulating Multiple Land Use Scenarios by Coupling Human and Natural Effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Jin, X.; Long, Y.; Sun, W.; Lu, Y.; Yang, X.; Tang, J. Evaluating Cities’ Vitality and Identifying Ghost Cities in China with Emerging Geographical Data. Cities 2017, 63, 98–109. [Google Scholar] [CrossRef]
- Woodworth, M.D.; Wallace, J.L. Seeing Ghosts: Parsing China’s “Ghost City” Controversy. Urban Geogr. 2017, 38, 1270–1281. [Google Scholar] [CrossRef]
- Thompson, E.S.; de Beurs, K.M. Tracking the Removal of Buildings in Rust Belt Cities with Open-Source Geospatial Data. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 471–481. [Google Scholar] [CrossRef]
- Xie, Y.; Gong, H.; Lan, H.; Zeng, S. Examining Shrinking City of Detroit in the Context of Socio-Spatial Inequalities. Landsc. Urban Plan. 2018, 177, 350–361. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Shenzhen Government. Shenzhen Sustainable Development Plan (2017–2030). Available online: http://www.sz.gov.cn/zfgb/2023/gb1275/content/post_10428246.html (accessed on 19 August 2023).
- Feng, Y.; Wang, X.; Du, W.; Liu, J.; Li, Y. Spatiotemporal Characteristics and Driving Forces of Urban Sprawl in China during 2003–2017. J. Clean. Prod. 2019, 241, 118061. [Google Scholar] [CrossRef]
- Chen, M.; Liu, W.; Lu, D.; Chen, H.; Ye, C. Progress of China’s New-Type Urbanization Construction since 2014: A Preliminary Assessment. Cities 2018, 78, 180–193. [Google Scholar] [CrossRef]
- Xinhua News Agency. Available online: http://news.xinhuanet.com/politics/2016-07/13/c_1119214482.htm (accessed on 1 June 2023).
- Jiang, Y.; Mohabir, N.; Ma, R.; Zhu, P. Sorting through Neoliberal Variations of Ghost Cities in China. Land Use Policy 2017, 69, 445–453. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, P.; Gao, S.; Yasir, M.; Islam, Q.U. Combining LSTM and PLUS Models to Predict Future Urban Land Use and Land Cover Change: A Case in Dongying City, China. Remote Sens. 2023, 15, 2370. [Google Scholar] [CrossRef]
- Sefrin, O.; Riese, F.M.; Keller, S. Deep Learning for Land Cover Change Detection. Remote Sens. 2021, 13, 78. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
Data | Year | Data Type | Spatial Resolution | Sources |
---|---|---|---|---|
Land use | 2000–2020 | Raster data | 30 m | Landsat-derived annual China land cover dataset [30] |
Urban impervious surface | 2015, 2019 | Raster data | 30 m | Global Artificial Impervious Areas, GAIA [31] |
Digital elevation model (DEM) | 2015 | Raster data | 12.5 m | ALOS (Advanced Land Observing Satellite) [32] |
Population density | 2015 | Raster data | 250 m | Global Human Settlement Layer [33] |
Road network | 2015 | Shapefile | OSM (OpenStreetMap) [34] | |
Water bodies | 2015 | Shapefile | OSM (OpenStreetMap) [34] | |
Ecological protection red line | 2013 | Shapefile | Shenzhen Government [35] | |
POI | 2015 | Shapefile | Baidu Map |
Model | Urban Land Area (km2) | Kappa Coefficient | FoM | Total Accuracy | |
---|---|---|---|---|---|
2019 | 2025 | ||||
Traditional panel data regression | 813.52 | 852.31 | 82.57% | 0.4006 | 81.42% |
LSTM | 815.44 | 880.77 | 89.04% | 0.1397 | 85.57% |
Hybrid model | 811.77 | 842.48 | 88.23% | 0.4314 | 87.95% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, H.; Zheng, Z.; Liu, X.; Wang, S.; Zhao, H. A Novel Approach to Predicting Urban Expansion by the Urban Scaling Law at a Single-City Scale. Remote Sens. 2023, 15, 4326. https://doi.org/10.3390/rs15174326
Ye H, Zheng Z, Liu X, Wang S, Zhao H. A Novel Approach to Predicting Urban Expansion by the Urban Scaling Law at a Single-City Scale. Remote Sensing. 2023; 15(17):4326. https://doi.org/10.3390/rs15174326
Chicago/Turabian StyleYe, Haipeng, Zhuofan Zheng, Xintong Liu, Shu Wang, and Hongrui Zhao. 2023. "A Novel Approach to Predicting Urban Expansion by the Urban Scaling Law at a Single-City Scale" Remote Sensing 15, no. 17: 4326. https://doi.org/10.3390/rs15174326
APA StyleYe, H., Zheng, Z., Liu, X., Wang, S., & Zhao, H. (2023). A Novel Approach to Predicting Urban Expansion by the Urban Scaling Law at a Single-City Scale. Remote Sensing, 15(17), 4326. https://doi.org/10.3390/rs15174326