Glacier Change in the West Kunlun Main Peak Area from 2000 to 2020
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data
3.2. Methods
3.2.1. Glacier Information Extraction
3.2.2. Accuracy Estimation
3.2.3. Analysis of Glacier Change
4. Results
4.1. General Change
4.2. Characteristics of Glacier Area Change
4.3. Characteristics of Glacier Length Change
4.4. Empirical Formula among Glacier Area, Perimeter, and Length
5. Discussion
5.1. Response of Glacier Area to Climate Change
5.2. Glacier Change with an Area More Than 100 km2
5.3. Glacier Separation and Advance
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Synthesis Report of the IPCC Sixth Assessment Report (AR6): Longer Report; Cambridge University Press: London, UK, 2023. [Google Scholar]
- Qin, D.H. Introduction to Cryospheric Science; Science Press: Beijing, China, 2017; p. 1. [Google Scholar]
- Piao, S.L.; Ciais, P.; Huang, Y.; Shen, Z.H.; Peng, S.S.; Li, J.S.; Zhou, L.P.; Liu, H.Y.; Ma, Y.C.; Ding, Y.H.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Sorg, A.; Bolch, T.; Stoffel, M.; Solomina, O.; Beniston, M. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat. Clim. Change 2012, 2, 725–731. [Google Scholar] [CrossRef]
- Zhang, C.; Yao, X.J.; Xiao, J.S.; Zhang, H.F.; Wang, Y.; Xue, J. Spatio-temporal characteristics of glacier and lake variations in Qinghai province from 2000 to 2020. J. Nat. Res. 2023, 38, 822–838. [Google Scholar] [CrossRef]
- Yao, T.D.; Zhu, L.P. The response of environmental changes on Tibetan Plateau to global changes and adaptation strategy. Adv. Earth Sci. 2006, 21, 459–464. [Google Scholar] [CrossRef]
- Yao, X.J.; Liu, S.Y.; Sun, M.P.; Zhang, X.J. Study on the glacial lake outburst flood events in Tibet since the 20th century. J. Nat. Res. 2014, 29, 1377–1390. [Google Scholar] [CrossRef]
- Ye, Q.H.; Cheng, W.M.; Zhao, Y.L.; Zong, J.B.; Zhao, R. A review on the research of glacier changes on the Tibetan Plateau by remote sensing technologies. J. Geo–Inf. Sci. 2016, 18, 920–930. [Google Scholar] [CrossRef]
- You, Q.L.; Zhang, Y.Q.; Xie, X.Y.; Wu, F.Y. Robust elevation dependency warming over the Tibetan Plateau under global warming of 1.5 °C and 2 °C. Clim. Dynam. 2019, 53, 2047–2060. [Google Scholar] [CrossRef]
- China Meteorological Administration Climate Change Centre. Blue Book on Climate Change in China 2021; Science Press: Beijing, China, 2021; pp. 12–17. [Google Scholar]
- Farinotti, D.; Huss, M.; Fürst, J.J.; Landmann, J.; Machguth, H.; Maussion, F.; Pandit, A. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 2019, 12, 168–173. [Google Scholar] [CrossRef]
- Kraaijenbrink, P.D.A.; Bierkens, M.F.P.; Lutz, A.F.; Immerzeel, W.W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 2017, 549, 257–260. [Google Scholar] [CrossRef]
- Yao, T.D.; Xue, Y.K.; Chen, D.L.; Chen, F.H.; Thompson, L.; Cui, P.; Koike, T.; Lau, W.K.M.; Lettenmaier, D.; Mosbrugger, V.; et al. Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multi–disciplinary approach with observation, modeling and analysis. Bull. Am. Meteorol. Soc. 2019, 100, 423–444. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y. Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing. J. Glaciol. 2012, 58, 419–422. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y.; Kääb, A. Region–wide glacier mass balances over the Pamir–Karakoram–Himalaya during 1999–2011. Cryosphere 2013, 7, 1263–1286. [Google Scholar] [CrossRef]
- Farinotti, D.; Immerzeel, W.W.; Kok, R.J.; Quincey, D.J.; Dehecq, A. Manifestations and mechanisms of the Karakoram glacier Anomaly. Nat. Geosci. 2020, 13, 8–16. [Google Scholar] [CrossRef]
- Wang, Y.T.; Hou, S.G.; Huai, B.J.; An, W.L.; Pang, H.X.; Liu, Y.P. Glacier anomaly over the western Kunlun Mountains, Northwestern Tibetan Plateau, since the 1970s. J. Glaciol. 2018, 64, 624–636. [Google Scholar] [CrossRef]
- Yao, T.D.; Yu, W.S.; Wu, G.J.; Xu, B.Q.; Yang, W.; Zhao, H.B.; Wang, W.C.; Li, S.H.; Wang, N.L.; Li, Z.Q.; et al. Glacier anomalies and relevant disaster risks on the Tibetan Plateau and surroundings. Chin. Sci. Bull. 2019, 64, 2770–2782. [Google Scholar] [CrossRef]
- Liu, S.Y.; Yao, X.J.; Guo, W.Q.; Xu, J.L.; Shangguan, D.H.; Wei, J.F.; Bao, W.J.; Wu, L.Z. The contemporary glaciers in China based on the Second Chinese Glacier Inventory. Acta Geo. Sin. 2015, 70, 3–16. [Google Scholar] [CrossRef]
- Bao, W.J.; Liu, S.Y.; Wei, J.F.; Guo, W.Q. Glacier changes during the past 40 years in the West Kunlun Shan. J. Mt. Sci. 2015, 12, 344–357. [Google Scholar] [CrossRef]
- Ma, Q.Q. Monitoring glacier change on West–Kunlun Shan based on multi–source remote sensing data. Master’s Thesis, Nanjing University, Nanjing, China, 2018. [Google Scholar]
- Zhou, Y.; Li, Z.; Li, J.; Zhao, R.; Ding, X.L. Glacier mass balance in the Qinghai Tibet Plateau and its surroundings from the mid–1970s to 2000 based on Hexagon KH–9 and SRTM DEMs. Remote Sens. Environ. 2018, 210, 96–112. [Google Scholar] [CrossRef]
- Han, Y.F. Research on Glacier Change in the West Kunlun Mountains and Flow Velocity Estimation Based on Landsat Images (1977–2013). Master’s Thesis, Nanjing University, Nanjing, China, 2015. [Google Scholar]
- Xu, L.P.; Li, P.H.; Li, Z.Q.; Zhang, Z.Y.; Wang, P.Y.; Xu, C.H. Advances in research on changes and effects of glaciers in Xinjiang mountains. Adv. Water Sci. 2020, 31, 946–959. [Google Scholar] [CrossRef]
- Ni, M.X.; Duan, Z.R.; Xia, J.X. Melting of mountain glacier and its risk to future water resources in Southern Xinjiang, China. Mt. Res. 2022, 40, 329–342. [Google Scholar] [CrossRef]
- Guan, W.J. Modern Glacier Changes in the Main Peak Area of West Kunlun Mountains. Master’s Thesis, Lanzhou University, Lanzhou, China, 2020. [Google Scholar]
- Duan, K.Q.; Shi, P.H.; He, J.P. Numerical simulations of mountain glacial changes and its application in Asian High Mountains. J. Glacio. Geocryo. 2022, 44, 753–761. [Google Scholar] [CrossRef]
- Kääb, A. Monitoring high–mountain terrain deformation from repeated air and spaceborne optical data: Examples using digital aerial imagery and ASTER data. ISPRS J. Photogramm. Remote Sens. 2002, 57, 39–52. [Google Scholar] [CrossRef]
- Mukul, M.; Srivastava, V.; Mukul, M. Analysis of the accuracy of Shuttle Radar Topography Mission (SRTM) height models using International Global Navigation Satellite System Service (IGS) Network. J. Earth Sys. Sci. 2015, 124, 1343–1357. [Google Scholar] [CrossRef]
- Czernecki, B.; Taszarck, M.; Marosz, M.; Półrolniczak, M.; Kolendowicz, L.; Wyszogrodzki, A.; Szturc, J. Application of machine learning to large hail prediction–The importance of radar reflectivity, lightning occurrence and convective parameters derived from ERA5. Atmos. Res. 2019, 227, 249–262. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. Roy. Meteor. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Paul, F.; Kääb, A.; Maisch, M.; Kellenberger, T.; Haeberli, W. The new remote–sensing–derived Swiss glacier inventory: I. methods. Ann. Glacio. 2002, 34, 355–361. [Google Scholar] [CrossRef]
- Racoviteanu, A.E.; Paul, F.; Raup, B.H.; Khalsa, S.J.S.; Armstrong, R. Challenges and recommendations in mapping of glacier parameters from space: Results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA. Ann. Glacio. 2009, 50, 53–69. [Google Scholar] [CrossRef]
- Paul, F.; Barry, R.G.; Cogley, J.G.; Haeberli, W.; Ohmura, A.; Ommanney, C.S.L.; Raup, B.; Rivera, A.; Zemp, M. Recommendations for the compilation of glacier inventory data from digital sources. Ann. Glacio. 2010, 50, 119–126. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, L.Z.; Xu, J.L.; Liu, S.Y. Variation and uncertainty analysis of the glaciers in the past 50 years in Geladandong of Tibetan Plateau. J. Glacio. Geocryo. 2013, 35, 255–262. [Google Scholar] [CrossRef]
- Guo, W.Q.; Liu, S.Y.; Xu, J.L.; Wu, L.Z.; Shangguan, D.H.; Yao, X.J.; Wei, J.F.; Bao, W.J.; Yu, P.C.; Liu, Q.; et al. The second Chinese glacier inventory: Data, methods and results. J. Glacio. 2015, 61, 357–372. [Google Scholar] [CrossRef]
- Paul, F.; Bolch, T.; Kääb, A.; Nagler, T.; Nuth, C.; Scharrer, K.; Shepherd, K.; Strozzi, T.; Ticconi, F.; Bhambri, R.; et al. The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products. Remote Sens. Environ. 2015, 162, 408–426. [Google Scholar] [CrossRef]
- Raup, B.; Kääb, A.; Kargel, J.S.; Bishop, M.P.; Hamilton, G.; Lee, E.; Paul, F.; Rau, F.; Soltesz, D.; Khalsa, S.J.S.; et al. Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) project. Comput. Geosci. 2007, 33, 104–125. [Google Scholar] [CrossRef]
- Guo, W.Q.; Liu, S.Y.; Yu, P.C.; Xu, J.L. Automatic extraction of ridgelines using on drainage boundaries and aspect difference. Sci. Sur. Map. 2011, 36, 191, 210–212. [Google Scholar] [CrossRef]
- Zhang, D.H.; Yao, X.J.; Duan, H.Y.; Liu, S.Y.; Guo, W.Q.; Sun, M.P.; Li, D.Z. A new automatic approach for extracting glacier centerlines based on Euclidean allocation. Cryosphere 2021, 15, 1955–1973. [Google Scholar] [CrossRef]
- Williams, R.S.; Hall, D.K.; Sigurosson, O.; Chien, J.Y.L. Comparison of satellite—Derived with ground–based measurements of the fluctuations of the margins of Vatnajökull, Iceland, 1973–1992. Ann. Glaciol. 1997, 24, 72–80. [Google Scholar] [CrossRef]
- Hall, D.K.; Bayr, K.J.; Schnöer, W.; Bindschadler, R.A.; Chien, J.Y.L. Consideration of the errors inherent in mapping historical glacier positions in Austria from ground and space (1893–2001). Remote Sens. Environ. 2003, 86, 566–577. [Google Scholar] [CrossRef]
- Kochtitzky, W.H.; Edwards, B.R.; Enderlin, E.M.; Marino, J.; Marinque, N. Improved estimates of glacier change rates at Nevado Coropuna Ice Cap, Peru. J. Glaciol. 2018, 64, 175–184. [Google Scholar] [CrossRef]
- Paul, F.; Andreassen, L.M. A new glacier inventory for the Svartisen region, Norway, from Landsat ETM+ data: Challenges and change assessment. J. Glaciol. 2009, 55, 607–618. [Google Scholar] [CrossRef]
- Yao, X.J.; Liu, S.Y.; Zhu, Y.; Gong, P.; An, L.N.; Li, X.F. Design and implementation of an automatic method for deriving glacier centerlines based on GIS. J. Glaciol. Geocryol. 2015, 37, 1563–1570. [Google Scholar] [CrossRef]
- Zhang, C.; Yao, X.J.; Liu, S.Y.; Zhang, D.H.; Xu, J.L. Variation of glacier length in the Altun Mountains during 1970–2016. J. Glaciol. Geocryol. 2021, 43, 49–60. [Google Scholar] [CrossRef]
- Zhou, S.G.; Yao, X.J.; Zhang, Y.; Zhang, D.H.; Duan, H.Y. A glacier vector dataset in the Qaidam Basin from 1977 to 2018. China Sci. Data 2021, 6, 175–182. [Google Scholar] [CrossRef]
- Li, X.F.; Yao, X.J.; Sun, M.P.; Gong, P.; An, L.N.; Qi, M.M.; Gao, Y.P. Spatial–temporal variations in lakes in Northwest China from 2000 to 2014. Acta Ecol. Sin. 2018, 38, 96–104. [Google Scholar] [CrossRef]
- Sun, M.P.; Liu, S.Y.; Yao, X.J.; Guo, W.Q.; Xu, J.L. Glacier changes in the Qilian Mountains in the past half century: Based on the revised First and Second Chinese Glacier Inventory. Acta Geo. Sin. 2015, 70, 1402–1414. [Google Scholar] [CrossRef]
- Gärtner-Roer, I.; Naegeli, K.; Huss, M.; Knecht, T.; Machguth, H.; Zemp, M. A database of worldwide glacier thickness observations. Global Planet. Change 2014, 122, 330–344. [Google Scholar] [CrossRef]
- Heid, T.; Kääb, A. Repeat optical satellite images reveal widespread and long term decrease in land–terminating glacier speeds. Cryosphere 2012, 6, 467–478. [Google Scholar] [CrossRef]
- Melkonian, A.K.; Willis, M.J.; Pritchard, M.E. Satellite–derived volume loss rates and glacier speeds for the Juneau Icefield, Alaska. J. Glaciol. 2017, 60, 743–760. [Google Scholar] [CrossRef]
- Li, H.L.; Ng, F.; Li, Z.Q.; Qin, D.H.; Cheng, G.D. An extended “perfect–plasticity” method for estimating ice thickness along the flow line of mountain glaciers. J. Geophys. Res. Earth Sur. 2012, 117, 1020–1030. [Google Scholar] [CrossRef]
- Linsbauer, A.; Paul, F.; Haeberli, W. Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: Application of a fast and robust approach. J. Geophys. Res. Earth Sur. 2012, 117, 3007–3024. [Google Scholar] [CrossRef]
- Oerlemans, J. A flowline model for Nigardsbreen, Norway: Projection of future glacier length based on dynamic calibration with the historic record. Ann. Glaciol. 1997, 24, 382–389. [Google Scholar] [CrossRef]
- Sugiyama, S.; Bauder, A.; Zahno, C.; Funk, M. Evolution of Rhonegletscher, Switzerland, over the past 125 years and in the future: Application of an improved flowline model. Ann. Glaciol. 2007, 46, 268–274. [Google Scholar] [CrossRef]
- Shi, Y.F. Glaciers and Related Environments in China; Science Press: Beijing, China, 2000; p. 12. [Google Scholar]
- Gao, X.Q.; Tang, M.C.; Feng, S. Discussion on the relationship between glacial fluctuation and climate change. Pla. Meteorol. 2000, 19, 9–16. [Google Scholar]
- Duan, J.P.; Wang, L.L.; Ren, J.W.; Li, L. Progress in glacier variations in China and its sensitivity to climate change during the past century. Pro. Geo. 2009, 28, 231–237. [Google Scholar] [CrossRef]
- Ren, J.W.; Qin, D.H.; Kang, S.C.; Hou, S.G.; Pu, J.C.; Jing, Z.F. Glacier variation and climate warming and drying in the middle Himalayas. Chi. Sci. Bull. 2003, 48, 2478–2482. [Google Scholar] [CrossRef]
- Raper, S.C.B.; Brown, O.; Braithwaite, R.J. Ageometric glacier model for sea level change calculations. J. Glaciol. 2000, 46, 357–368. [Google Scholar] [CrossRef]
- Oerlemans, J. Linear modelling of glacier length fluctuations. Geogr. Ann. A 2012, 94, 183–194. [Google Scholar] [CrossRef]
- Beedle, M.J.; Menounos, B.; Wheate, R. Glacier change in the Cariboo Mountains, British Columbia, Canada (1952–2005). Cryosphere 2015, 9, 65–80. [Google Scholar] [CrossRef]
- Chen, Y.N.; Li, W.H.; Xu, C.C.; Hao, X.M. Effects of climate change on water resources in Tarim River Basin, Northwest China. J. Environ. Sci. 2007, 4, 488–493. [Google Scholar] [CrossRef]
- Frappé, T.P.; Clarke, G.K.C. Slow surge of Trapridge Glacier, Yukon Territory, Canada. J. Geophys. Res. Earth 2007, 112, 1–17. [Google Scholar] [CrossRef]
- Jamieson, S.S.; Ewertowski, M.W.; Evans, D.J. Rapid advance of two mountain glaciers in response to mine–related debris loading. J. Geophys. Res. Earth 2015, 120, 1418–1435. [Google Scholar] [CrossRef]
Year | Number | Area (km2) | Length (m) |
---|---|---|---|
2000 | 437 | 2989.42 ± 109.87 | 2982 ± 60 |
2005 | 439 | 2975.52 ± 110.10 | 2947 ± 60 |
2010 | 440 | 2973.86 ± 109.34 | 2935 ± 60 |
2015 | 440 | 2974.61 ± 54.81 | 2935 ± 60 |
2020 | 440 | 2964.59 ± 54.87 | 2916 ± 60 |
Year | Area (km2) | Change Rate (km2·a−1) | Year | Temperature (°C) | Change Rate | |
---|---|---|---|---|---|---|
Temperature (°C·a−1) | Precipitation (mm·a−1) | |||||
2000 | 2989.42 ± 109.87 | 1988 | −4.00 | |||
2005 | 2975.52 ± 110.10 | −2.78 | 1993 | −3.57 | 0.07 | −0.05 |
2010 | 2973.86 ± 109.34 | −0.33 | 1998 | −3.43 | 0.05 | 6.67 |
2015 | 2974.61 ± 54.81 | 0.15 | 2003 | −4.31 | −0.19 | −2.18 |
2020 | 2964.59 ± 54.87 | −2.00 | 2008 | −4.18 | 0.01 | 2.93 |
2013 | −4.11 | 0.06 | −1.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Yao, X.; Li, S.; Liu, L.; Sha, T.; Zhang, Y. Glacier Change in the West Kunlun Main Peak Area from 2000 to 2020. Remote Sens. 2023, 15, 4236. https://doi.org/10.3390/rs15174236
Zhang C, Yao X, Li S, Liu L, Sha T, Zhang Y. Glacier Change in the West Kunlun Main Peak Area from 2000 to 2020. Remote Sensing. 2023; 15(17):4236. https://doi.org/10.3390/rs15174236
Chicago/Turabian StyleZhang, Cong, Xiaojun Yao, Suju Li, Longfei Liu, Te Sha, and Yuan Zhang. 2023. "Glacier Change in the West Kunlun Main Peak Area from 2000 to 2020" Remote Sensing 15, no. 17: 4236. https://doi.org/10.3390/rs15174236
APA StyleZhang, C., Yao, X., Li, S., Liu, L., Sha, T., & Zhang, Y. (2023). Glacier Change in the West Kunlun Main Peak Area from 2000 to 2020. Remote Sensing, 15(17), 4236. https://doi.org/10.3390/rs15174236