Student’s t-Based Robust Poisson Multi-Bernoulli Mixture Filter under Heavy-Tailed Process and Measurement Noises
Abstract
:1. Introduction
2. Background
2.1. PMBM RFS
2.2. Models
2.3. VB Approximation
3. R-ST-PMBM Filter
3.1. Prediction
3.1.1. Poisson Prediction
3.1.2. MBM Prediction
3.2. Update
3.2.1. Update for Undetected Targets
3.2.2. Update for Potential Targets Detected for the First Time
3.2.3. Update for Previously Potentially Detected Targets
3.3. Organization Method of the Filter
Algorithm 1 Pseudocode for one recursion of the filter |
|
4. Simulations
4.1. Scenario with the Same Heavy-Tailed Degrees
4.2. Scenario with Different Heavy-Tailed Degrees
4.3. Real Data Scenario
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Vo, B.T.; Ma, W.K. The Gaussian mixture probability hypothesis density filter. IEEE Trans. Signal Process. 2006, 54, 4091–4104. [Google Scholar] [CrossRef]
- Dong, P.; Jing, Z.; Leung, H.; Wang, J. Student-t mixture labeled multi-Bernoulli filter for multi-target tracking with heavy-tailed noise. Signal Process. 2018, 152, 331–339. [Google Scholar] [CrossRef]
- Lian, Y.; Lian, F.; Hou, L. Robust labeled multi-Bernoulli filter with inaccurate noise covariances. In Proceedings of the 25th International Conference on Information Fusion, Linköping, Sweden, 4–7 July 2022. [Google Scholar]
- Wang, X.; Xie, W.; Li, L. Labeled Multi-Bernoulli Maneuvering Target Tracking Algorithm via TSK Iterative Regression Model. Chinese J. Electron. 2022, 31, 227–239. [Google Scholar]
- Yang, Z.; Li, X.; Yao, X.; Sun, J.; Shan, T. Gaussian process Gaussian mixture PHD filter for 3D multiple extended target tracking. Remote Sens. 2023, 15, 3224. [Google Scholar] [CrossRef]
- Mahler, R. Statistical Multisource-Multitarget Information Fusion; Artech House, Inc.: Norwood, MA, USA, 2007. [Google Scholar]
- Vo, B.T.; Vo, B.N.; Cantoni, A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Trans. Signal Process. 2009, 57, 409–423. [Google Scholar]
- Vo, B.N.; Vo, B.T.; Hoang, H.G. An efficient implementation of the generalized labeled multi-Bernoulli filter. IEEE Trans. Signal Process. 2017, 65, 1975–1987. [Google Scholar] [CrossRef]
- Reuter, S.; Vo, B.T.; Vo, B.N.; Dietmayer, K. The labeled multi-Bernoulli filter. IEEE Trans. Signal Process. 2014, 62, 3246–3260. [Google Scholar]
- Williams, J.L. Marginal multi-Bernoulli filters: RFS derivation of MHT, JIPDA, and association-based MeMBer. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 1664–1687. [Google Scholar] [CrossRef]
- García-Fernández, A.F.; Williams, J.L.; Granstöm, K. Poisson multi-Bernoulli mixture filter: Direct derivation and implementation. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 1883–1901. [Google Scholar] [CrossRef]
- Xia, Y.; Granström, K.; Svensson, L.; García-Fernández, A.F. Performance evaluation of multi-Bernoulli conjugate priors for multi-target filtering. In Proceedings of the 20th International Conference on Information Fusion, Xi’an, China, 10–13 July 2017. [Google Scholar]
- Du, H.; Xie, W. Extended target marginal distribution Poisson multi-Bernoulli mixture filter. Sensors 2020, 20, 5387. [Google Scholar] [CrossRef]
- García-Fernández, A.F.; Svensson, L.; Williams, J.L.; Xia, Y.; Granstöm, K. Trajectory Poisson multi-Bernoulli filters. IEEE Trans. Signal Process. 2020, 68, 4933–4945. [Google Scholar] [CrossRef]
- Li, Y.; Wei, P.; You, M.; Wei, Y.; Zhang, H. Joint detection, tracking, and classification of multiple extended objects based on the JDTC-PMBM-GGIW filter. Remote Sens. 2023, 15, 887. [Google Scholar] [CrossRef]
- Li, G.; Kong, L.; Yi, W.; Li, X. Multiple model Poisson multi-Bernoulli mixture filter for maneuvering targets. IEEE Sens. J. 2021, 21, 3143–3154. [Google Scholar] [CrossRef]
- Li, W.; Gu, H.; Su, W. Robust Poisson multi-Bernoulli mixture filter with inaccurate process and measurement noise covariances. IEEE Access 2020, 8, 52209–52220. [Google Scholar] [CrossRef]
- Qiu, H.; Huang, G.; Gao, J. Variational Bayesian labeled multi-Bernoulli filter with unknown sensor noise statistics. Chin. J. Aeronaut. 2016, 29, 1378–1384. [Google Scholar]
- Li, G.; Wei, P.; Li, Y.; Gao, L.; Zhang, H. A robust fast LMB filter for superpositional sensors. Signal Process. 2020, 174, 107606. [Google Scholar] [CrossRef]
- Ting, J.A.; Theodorou, E.; Schaal, E. Learning an outlier-robust Kalman filter. In Proceedings of the 18th European Conference on Machine Learning, Warsaw, Poland, 17–21 September 2007; pp. 748–756. [Google Scholar]
- Zhu, H.; Leung, H.; He, Z. A variational Bayesian approach to robust sensor fusion based on Student-t distribution. Inf. Sci. 2013, 221, 201–214. [Google Scholar] [CrossRef]
- Li, W.; Jia, Y.; Du, J.; Zhang, J. PHD filter for multi-target tracking with glint noise. Signal Process. 2014, 94, 48–56. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, B.; Zou, Y.; Li, L. Multi-object Bayesian filter for jump Markov system under glint noise. Signal Process. 2019, 157, 131–140. [Google Scholar] [CrossRef]
- Dong, P.; Leung, H.; Jing, Z.; Shen, K.; Li, M. The labeled multi-Bernoulli filter for multitarget tracking with glint noise. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 2253–2268. [Google Scholar] [CrossRef]
- Hou, L.; Lian, F.; Tan, S.; Xu, C.; De Abreu, G.T.F. Robust generalized labeled multi-Bernoulli filter for multitarget tracking with unknown non-stationary heavy-tailed measurement noise. IEEE Access 2021, 9, 94438–94453. [Google Scholar] [CrossRef]
- Roth, M.; Özkan, E.; Gustafsson, F. A Student’s t filter for heavy-tailed process and measurement noise. In Proceedings of the 2013 IEEE Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013. [Google Scholar]
- Wang, M.; Ji, H.; Zhang, Y.; Hu, X. A Student’s t mixture cardinality-balanced multi-target multi-Bernoulli filter with heavy-tailed process and measurement noises. IEEE Access 2018, 6, 51098–51109. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Q.; Song, B.; Zhao, M.; Xia, Z. Student-t mixture GLMB filter with heavy-tailed noises. In Proceedings of the 2013 IEEE Conference on Signal Processing, Communications and Computing, Xi’an, China, 25–27 October 2022. [Google Scholar]
- Huang, Y.; Zhang, Y.; Li, N.; Wu, Z. A novel robust Student’s t-based Kalman filter. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 1545–1554. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Li, N.; Wu, Z. A robust Gaussian approximate fixed-interval smoother for nonlinear systems with heavy-tailed process and measurement noises. IEEE Signal Proc. Let. 2016, 23, 468–472. [Google Scholar] [CrossRef]
- O’Hagan, A.; Forster, J. Kendall’s Advanced Theory of Statistics, Vol 2B: Bayesian Inference; Arnold Publishers: London, UK, 2004; pp. 402–406. [Google Scholar]
- Bishop, C. Pattern Recognition and Machine Learning (Information Science and Statistics); Springer: New York, NY, USA, 2006; pp. 462–466. [Google Scholar]
- Schihmacher, D.; Vo, B.T.; Vo, B.N. A consistent metric for performance evaluation of multi-object filters. IEEE Trans. Signal Process. 2008, 56, 3447–3457. [Google Scholar] [CrossRef]
- Rahmathullah, A.S.; García-Fernández, A.F.; Svensson, L. Generalized optimal sub-pattern assignment metric. In Proceedings of the 20th International Conference on Information Fusion, Xi’an, China, 10–13 July 2017. [Google Scholar]
- Huang, Y. Researches on High-Accuracy State Estimation Methods and Their Applications to Target Tracking and Cooperative Localization. Ph.D. Dissertation, Harbin Engineering University, Harbin, China, 2018; pp. 162–163. [Google Scholar]
Filter | AOSPA | AGOSPA | ALE | AME | AFE | ART |
---|---|---|---|---|---|---|
STM-CBMeMBer | 18.801 | 26.967 | 18.634 | 15.313 | 11.78 | 4.035 |
STM-LMB | 10.598 | 21.924 | 17.574 | 10.136 | 7.92 | 8.708 |
STM-GLMB | 10.561 | 21.934 | 17.755 | 9.886 | 7.771 | 12.452 |
R-ST-PMBM | 9.571 | 20.299 | 15.923 | 9.25 | 8.138 | 4.02 |
Filter | DOF Settings | AOSPA | AGOSPA | ALE | AME | AFE | ART |
---|---|---|---|---|---|---|---|
STM-CBMeMBer | 19.203 | 27.541 | 19.402 | 15.342 | 11.785 | 4.125 | |
19.387 | 26.393 | 17.524 | 16.511 | 10.484 | 3.739 | ||
STM-LMB | 11.909 | 25.567 | 21.198 | 10.487 | 9.31 | 9.141 | |
12.306 | 24.412 | 19.276 | 11.723 | 8.96 | 8.688 | ||
STM-GLMB | 12.101 | 25.864 | 21.354 | 10.609 | 9.616 | 14.978 | |
11.936 | 24.122 | 19.246 | 11.183 | 8.895 | 12.666 | ||
R-ST-PMBM | , | 10.379 | 21.624 | 16.499 | 10.43 | 8.839 | 4.516 |
Filter | AOSPA | AGOSPA | ALE | AME | AFE | ART |
---|---|---|---|---|---|---|
STM-CBMeMBer | 14.555 | 14.111 | 11.581 | 2.652 | 1.326 | 0.302 |
STM-LMB | 7.964 | 7.353 | 6.62 | 0.884 | 0.442 | 1.152 |
STM-GLMB | 7.977 | 7.366 | 6.634 | 0.884 | 0.442 | 1.531 |
R-ST-PMBM | 6.623 | 6.18 | 5.103 | 0.884 | 0.884 | 0.416 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Xie, W.; Liu, Z. Student’s t-Based Robust Poisson Multi-Bernoulli Mixture Filter under Heavy-Tailed Process and Measurement Noises. Remote Sens. 2023, 15, 4232. https://doi.org/10.3390/rs15174232
Zhu J, Xie W, Liu Z. Student’s t-Based Robust Poisson Multi-Bernoulli Mixture Filter under Heavy-Tailed Process and Measurement Noises. Remote Sensing. 2023; 15(17):4232. https://doi.org/10.3390/rs15174232
Chicago/Turabian StyleZhu, Jiangbo, Weixin Xie, and Zongxiang Liu. 2023. "Student’s t-Based Robust Poisson Multi-Bernoulli Mixture Filter under Heavy-Tailed Process and Measurement Noises" Remote Sensing 15, no. 17: 4232. https://doi.org/10.3390/rs15174232
APA StyleZhu, J., Xie, W., & Liu, Z. (2023). Student’s t-Based Robust Poisson Multi-Bernoulli Mixture Filter under Heavy-Tailed Process and Measurement Noises. Remote Sensing, 15(17), 4232. https://doi.org/10.3390/rs15174232