Subsidence of a Coal Ash Landfill in a Power Plant Observed by Applying PSInSAR to Sentinel-1 SAR Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
3. Methods
3.1. PSInSAR
3.2. Ground Range Shift of PS Due to DEM Error
4. Results
4.1. Temporal Changes in the Landfill Site Using Google Earth Images
4.2. Ground Subsidence of Solar Power Plants Using PSInSAR
4.3. Analysis of Ground Subsidence in the Coal Ash Landfill (Solar Field 2) by Averaging PSInSAR
4.4. Analysis of PS Geometric Errors Due to DEM Errors
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- British Petroleum. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf (accessed on 26 May 2023).
- Heidrich, C.; Feuerborn, H.; Weir, A. Coal Combustion Products: A Global Perspective. VGB Power Tech. 2013, 93, 46–52. [Google Scholar]
- Ferreira, C.; Ribeiro, A.; Ottosen, L. Possible Applications for Municipal Solid Waste Fly Ash. J. Hazard. Mater. 2003, 96, 201–216. [Google Scholar] [CrossRef]
- Al Biajawi, M.I.; Embong, R.; Muthusamy, K.; Ismail, N.; Obianyo, I.I. Recycled Coal Bottom Ash as Sustainable Materials for Cement Replacement in Cementitious Composites: A Review. Constr. Build. Mater. 2022, 338, 127624. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M. A Review on the Utilization of Fly Ash. Prog. Energy Combust. Sci. 2010, 36, 327–363. [Google Scholar] [CrossRef]
- Pandey, V.C.; Singh, N. Impact of Fly Ash Incorporation in Soil Systems. Agric. Ecosyst. Environ. 2010, 136, 16–27. [Google Scholar] [CrossRef]
- Kravchenko, J.; Lyerly, H.K. The Impact of Coal-Powered Electrical Plants and Coal Ash Impoundments on the Health of Residential Communities. N. Carol. Med. J. 2018, 79, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.K.; Choi, B.H. Analysis of factors affecting the slope stability of uncontrolled waste landfill. J. Korean Geo-Environ. Soc. 2002, 3, 5–12. [Google Scholar]
- Cowan, E.A.; Seramur, K.C.; Hageman, S.J. Magnetic Susceptibility Measurements to Detect Coal Fly Ash from the Kingston Tennessee Spill in Watts Bar Reservoir. Environ. Pollut. 2013, 174, 179–188. [Google Scholar] [CrossRef]
- Ruhl, L.; Vengosh, A.; Dwyer, G.S.; Hsu-Kim, H.; Deonarine, A.; Bergin, M.; Kravchenko, J. Survey of the Potential Environmental and Health Impacts in the Immediate Aftermath of the Coal Ash Spill in Kingston, Tennessee. Environ. Sci. Technol. 2009, 43, 6326–6333. [Google Scholar] [CrossRef]
- Ramsey, A.B.; Faiia, A.M.; Szynkiewicz, A. Eight Years After the Coal Ash spill–Fate of Trace Metals in the Contaminated River Sediments Near Kingston, Eastern Tennessee. Appl. Geochem. 2019, 104, 158–167. [Google Scholar] [CrossRef]
- Lemly, A.D. Damage Cost of the Dan River Coal Ash Spill. Environ. Pollut. 2015, 197, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Colman, B.P.; Bernhardt, E.S.; Hochella, M.F. Importance of a Nanoscience Approach in the Understanding of Major Aqueous Contamination Scenarios: Case Study from a Recent Coal Ash Spill. Environ. Sci. Technol. 2015, 49, 3375–3382. [Google Scholar] [CrossRef] [PubMed]
- Deonarine, A.; Bartov, G.; Johnson, T.M.; Ruhl, L.; Vengosh, A.; Hsu-Kim, H. Environmental Impacts of the Tennessee Valley Authority Kingston Coal Ash Spill. 2. Effect of Coal Ash on Methylmercury in Historically Contaminated River Sediments. Environ. Sci. Technol. 2013, 47, 2100–2108. [Google Scholar] [CrossRef]
- Bartov, G.; Deonarine, A.; Johnson, T.M.; Ruhl, L.; Vengosh, A.; Hsu-Kim, H. Environmental Impacts of the Tennessee Valley Authority Kingston Coal Ash Spill. 1. Source Apportionment using Mercury Stable Isotopes. Environ. Sci. Technol. 2013, 47, 2092–2099. [Google Scholar] [CrossRef]
- Ferretti, A.; Monti-Guarnieri, A.; Prati, C.; Rocca, F.; Massonet, D. InSAR Principles-Guidelines for SAR Interferometry Processing and Interpretation; ESA Publication: Noordwijk, The Netherlands, 2007. [Google Scholar]
- Pepe, A.; Calò, F. A Review of Interferometric Synthetic Aperture RADAR (InSAR) Multi-Track Approaches for the Retrieval of Earth’s Surface Displacements. Appl. Sci. 2017, 7, 1264. [Google Scholar] [CrossRef]
- Han, H.; Lee, H. Surface Strain Rates and Crevassing of Campbell Glacier Tongue in East Antarctica Analysed by Tide-Corrected DInSAR. Remote Sens. Lett. 2017, 8, 330–339. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear Subsidence Rate Estimation using Permanent Scatterers in Differential SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Peltier, A.; Bianchi, M.; Kaminski, E.; Komorowski, J.; Rucci, A.; Staudacher, T. PSInSAR as a New Tool to Monitor Pre-eruptive Volcano Ground Deformation: Validation using GPS Measurements on Piton De La Fournaise. Geophys. Res. Lett. 2010, 37, L12301. [Google Scholar] [CrossRef]
- Kothyari, G.C.; Joshi, N.; Taloor, A.K.; Malik, K.; Dumka, R.; Sati, S.P.; Sundriyal, Y.P. Reconstruction of Active Surface Deformation in the Rishi Ganga Basin, Central Himalaya using PSInSAR: A Feedback Towards Understanding the 7th February 2021 Flash Flood. Adv. Space Res. 2022, 69, 1894–1914. [Google Scholar] [CrossRef]
- Oliveira, S.C.; Zêzere, J.L.; Catalão, J.; Nico, G. The Contribution of PSInSAR Interferometry to Landslide Hazard in Weak Rock-Dominated Areas. Landslides 2015, 12, 703–719. [Google Scholar] [CrossRef]
- Pawluszek-Filipiak, K.; Borkowski, A. Monitoring Mining-Induced Subsidence by Integrating Differential Radar Interferometry and Persistent Scatterer Techniques. Eur. J. Remote Sens. 2021, 54, 18–30. [Google Scholar] [CrossRef]
- Lee, H.; Moon, J.; Lee, H. Activity of Okgye Limestone Mine in South Korea Observed by InSAR Coherence and PSInSAR Techniques. Remote Sens. 2022, 14, 6261. [Google Scholar] [CrossRef]
- Choi, E.; Moon, J.; Kang, T.; Lee, H. Observation of Volume Change and Subsidence at a Coal Waste Dump in Jangseong-dong, Taebaek-si, Gangwon-do by Using Digital Elevation Models and PSInSAR Technique. Korean J. Remote Sens. 2022, 38, 1371–1383. (In Korean) [Google Scholar] [CrossRef]
- Orlando Utilities Commission. Fuel Diversity. 2022. Available online: https://www.ouc.com/environment-community/green-initiatives/stanton-energy-center/fuel-diversity (accessed on 19 May 2023).
- Curtis, H. Stanton Energy Center. 2023. Available online: https://floridadep.gov/water/siting-coordination-office/content/curtis-h-stanton-energy-center (accessed on 26 May 2023).
- Orlando Utilities Commission. 2020 Electric Integrated Resource Plan Report. pp. 1–2. Available online: https://oucroadmap.com/executive-summary-siemens-report (accessed on 19 May 2023).
- Williams, J.H.; Jones, R.A.; Torn, M.S. Observations on the Transition to a Net-Zero Energy System in the United States. Energy Clim. Chang. 2021, 2, 100050. [Google Scholar] [CrossRef]
- ESA Sentinel-1. Available online: https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1/overview (accessed on 19 May 2023).
- Alaska Satellite Facility. Available online: https://search.asf.alaska.edu/#/ (accessed on 19 May 2023).
- USGS SRTM. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1 (accessed on 19 May 2023).
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Springer Science & Business Media: Berlin, Germany, 2001. [Google Scholar]
- ESA Copernicus DEM. Available online: https://spacedata.copernicus.eu/collections/copernicus-digital-elevation-model (accessed on 19 May 2023).
- USGS LiDAR Data Download. Available online: https://apps.nationalmap.gov/lidar-explorer/#/ (accessed on 19 May 2023).
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent Scatterer Interferometry: A Review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef]
- Hooper, A.; Segall, P.; Zebker, H. Persistent Scatterer Interferometric Synthetic Aperture Radar for Crustal Deformation Analysis, with Application to Volcán Alcedo, Galápagos. J. Geophys. Res. Solid Earth 2007, 112. [Google Scholar] [CrossRef]
- Hooper, A. A Multi-temporal InSAR Method Incorporating both Persistent Scatterer and Small Baseline Approaches. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- SNAP Download. Available online: https://step.esa.int/main/download/snap-download/ (accessed on 19 May 2023).
- StaMPS. Available online: https://homepages.see.leeds.ac.uk/~earahoo/stamps/ (accessed on 19 May 2023).
- Höser, T. Analysing the Capabilities and Limitations of InSAR Using Sentinel-1 Data for Landslide Detection and Monitoring. Master’s Thesis, University of Bonn, Bonn, Germany, 2018. [Google Scholar]
- Jung, J.; Kim, D.; Palanisamy Vadivel, S.K.; Yun, S. Long-Term Deflection Monitoring for Bridges using X and C-Band Time-Series SAR Interferometry. Remote Sens. 2019, 11, 1258. [Google Scholar] [CrossRef]
Parameter | Used |
---|---|
scla_deramp | ‘y’ |
scn_time_win | 50 |
unwrap_time_win | 24 |
unwrap_grid_size | 10 |
unwrap_gold_n_win | 8 |
Ground Range Error (m) | Min | Max | Average | RMSE |
---|---|---|---|---|
Site A observed | 5.93 | 9.78 | 6.84 | 0.58 |
Site A calculated | 5.91 | 8.39 | 6.61 | |
Site B observed | 4.06 | 7.95 | 6.05 | 0.78 |
Site B calculated | 4.30 | 7.69 | 5.75 | |
Site C observed | 2.90 | 5.27 | 4.20 | 0.66 |
Site C calculated | 2.85 | 4.57 | 3.75 |
Ground Range Error (m) | Min | Max | Average | RMSE |
---|---|---|---|---|
Site A observed | 28.73 | 33.75 | 30.89 | 1.66 |
Site A calculated | 26.86 | 32.73 | 29.60 | |
Site B observed | 28.79 | 33.79 | 31.80 | 0.89 |
Site B calculated | 28.98 | 33.19 | 31.71 | |
Site C observed | 4.98 | 12.03 | 8.69 | 1.79 |
Site C calculated | 4.98 | 17.20 | 9.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, Y.; Lee, H. Subsidence of a Coal Ash Landfill in a Power Plant Observed by Applying PSInSAR to Sentinel-1 SAR Data. Remote Sens. 2023, 15, 4127. https://doi.org/10.3390/rs15174127
Shin Y, Lee H. Subsidence of a Coal Ash Landfill in a Power Plant Observed by Applying PSInSAR to Sentinel-1 SAR Data. Remote Sensing. 2023; 15(17):4127. https://doi.org/10.3390/rs15174127
Chicago/Turabian StyleShin, Youngnam, and Hoonyol Lee. 2023. "Subsidence of a Coal Ash Landfill in a Power Plant Observed by Applying PSInSAR to Sentinel-1 SAR Data" Remote Sensing 15, no. 17: 4127. https://doi.org/10.3390/rs15174127
APA StyleShin, Y., & Lee, H. (2023). Subsidence of a Coal Ash Landfill in a Power Plant Observed by Applying PSInSAR to Sentinel-1 SAR Data. Remote Sensing, 15(17), 4127. https://doi.org/10.3390/rs15174127