Impacts of Aerosol Chemical Composition on Cloud Condensation Nuclei (CCN) Activity during Wintertime in Beijing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement Site
2.2. Instrumentation
2.2.1. Size-Resolved CCN Activity and PNSD Measurements
2.2.2. Aerosol Chemical Composition Measurement
2.3. Data Processing
2.3.1. CCN Activation
2.3.2. Aerosol Hygroscopicity Derived from Aerosol Chemical Composition
3. Results
Overview the Observation Data
4. Discussion
4.1. Impacts of Aerosol Physicochemical Properties on CCN Activity
4.1.1. Aerosol Chemical Properties
4.1.2. Mixing State and Its Impacts on CCN Activity
4.2. Estimating Organic Aerosol Hygroscopicity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Köhler, H. The nucleus in and the growth of hygroscopic droplets. Trans. Faraday Soc. 1936, 32, 1152–1161. [Google Scholar] [CrossRef]
- Dusek, U.; Frank, G.; Hildebrandt, L.; Curtius, J.; Schneider, J.; Walter, S.; Chand, D.; Drewnick, F.; Hings, S.; Jung, D.; et al. Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science 2006, 312, 1375–1378. [Google Scholar] [CrossRef] [PubMed]
- Charlson, R.J.; Schwartz, S.E.; Hales, J.M.; Cess, R.D.; Coakley, J.A., Jr.; Hansen, J.E.; Hofmann, D.J. Climate forcing by anthropogenic aerosols. Science 1992, 255, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Twomey, S. The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration. Pure Appl. Geophys. 1959, 43, 243–249. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; p. 959. [Google Scholar] [CrossRef]
- Kacarab, M.; Thornhill, K.L.; Dobracki, A.; Howell, S.G.; O’Brien, J.R.; Freitag, S.; Poellot, M.R.; Wood, R.; Zuidema, P.; Redemann, J.; et al. Biomass burning aerosol as a modulator of the droplet number in the southeast Atlantic region. Atmos. Chem. Phys. 2020, 20, 3029–3040. [Google Scholar] [CrossRef]
- Andreae, M.; Rosenfeld, D. Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Sci. Rev. 2008, 89, 13–41. [Google Scholar] [CrossRef]
- Farmer, D.K.; Cappa, C.D.; Kreidenweis, S.M. Atmospheric Processes and Their Controlling Influence on Cloud Condensation Nuclei Activity. Chem. Rev. 2015, 115, 4199. [Google Scholar] [CrossRef]
- Gysel, M.; Crosier, J.; Topping, D.O.; Whitehead, J.D.; Bower, K.N.; Cubison, M.J.; Williams, P.I.; Flynn, M.J.; McFiggans, G.B.; Coe, H. Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2. Atmos. Chem. Phys. 2007, 7, 6131–6144. [Google Scholar] [CrossRef]
- Feingold, G. Modeling of the first indirect effect: Analysis of measurement requirements. Geophys. Res. Lett. 2003, 30, 1–4. [Google Scholar] [CrossRef]
- Ervens, B.; Feingold, G.; Kreidenweis, S.M. Influence of water-soluble organic carbon on cloud drop number concentration. J. Geophys. Res. Atmos. 2005, 110, D18211. [Google Scholar] [CrossRef]
- Zhang, Q.; Meng, J.; Quan, J.; Gao, Y.; Zhao, D.; Chen, P.; He, H. Impact of aerosol composition on cloud condensation nuclei activity. Atmos. Chem. Phys. 2012, 12, 3783–3790. [Google Scholar] [CrossRef]
- Petters, M.D.; Kreidenweis, S.M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 2007, 7, 1961–1971. [Google Scholar] [CrossRef]
- Zhang, Q.; Jimenez, J.L.; Canagaratna, M.R.; Allan, J.D.; Coe, H.; Ulbrich, I.; Alfarra, M.R.; Takami, A.; Middlebrook, A.M.; Sun, Y.L.; et al. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophys. Res. Lett. 2007, 34, L13801. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, D.; Gao, Q.; Tian, P.; Wang, F.; Zhao, D.; Bi, K.; Wu, Y.; Ding, S.; Hu, K.; et al. Vertical characteristics of aerosol hygroscopicity and impacts on optical properties over the North China Plain during winter. Atmos. Chem. Phys. 2020, 20, 3931–3944. [Google Scholar] [CrossRef]
- Wang, Y.H.; Liu, Z.R.; Zhang, J.K.; Hu, B.; Ji, D.S.; Yu, Y.C.; Wang, Y.S. Aerosol physicochemical properties and implications for visibility during an intense haze episode during winter in Beijing. Atmos. Chem. Phys. 2015, 15, 3205–3215. [Google Scholar] [CrossRef]
- Duplissy, J.; DeCarlo, P.F.; Dommen, J.; Alfarra, M.R.; Metzger, A.; Barmpadimos, I.; Prevot, A.S.H.; Weingartner, E.; Tritscher, T.; Gysel, M.; et al. Relating hygroscopicity and composition of organic aerosol particulate matter. Atmos. Chem. Phys. 2011, 11, 1155–1165. [Google Scholar] [CrossRef]
- Mei, F.; Setyan, A.; Zhang, Q.; Wang, J. CCN activity of organic aerosols observed downwind of urban emissions during CARES. Atmos. Chem. Phys. 2013, 13, 12155–12169. [Google Scholar] [CrossRef]
- Mei, F.; Wang, J.; Zhou, S.; Zhang, Q.; Collier, S.; Xu, J. Measurement report: Cloud condensation nuclei activity and its variation with organic oxidation level and volatility observed during an aerosol life cycle intensive operational period (ALC-IOP). Atmos. Chem. Phys. 2021, 21, 13019–13029. [Google Scholar] [CrossRef]
- Wu, Z.J.; Zheng, J.; Shang, D.J.; Du, Z.F.; Wu, Y.S.; Zeng, L.M.; Wiedensohler, A.; Hu, M. Particle hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing, China, during summertime. Atmos. Chem. Phys. 2016, 16, 1123–1138. [Google Scholar] [CrossRef]
- Chang, R.Y.W.; Slowik, J.G.; Shantz, N.C.; Vlasenko, A.; Liggio, J.; Sjostedt, S.J.; Leaitch, W.R.; Abbatt, J.P.D. The hygroscopicity parameter (κ) of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences: Relationship to degree of aerosol oxidation. Atmos. Chem. Phys. 2010, 10, 5047–5064. [Google Scholar] [CrossRef]
- Rickards, A.M.J.; Miles, R.E.H.; Davies, J.F.; Marshall, F.H.; Reid, J.P. Measurements of the Sensitivity of Aerosol Hygroscopicity and the κ Parameter to the O/C Ratio. J. Phys. Chem. A 2013, 117, 14120–14131. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Y.; Huang, S.; Xue, B.; Luo, B.; Song, Q.; Chen, W.; Hu, W.; Li, W.; Zhao, P.; Cai, M.; et al. Contrasting effects of secondary organic aerosol formations on organic aerosol hygroscopicity. Atmos. Chem. Phys. 2021, 21, 10375–10391. [Google Scholar] [CrossRef]
- Moore, R.H.; Bahreini, R.; Brock, C.A.; Froyd, K.D.; Cozic, J.; Holloway, J.S.; Middlebrook, A.M.; Murphy, D.M.; Nenes, A. Hygroscopicity and composition of Alaskan Arctic CCN during April 2008. Atmos. Chem. Phys. 2011, 11, 11807–11825. [Google Scholar] [CrossRef]
- Deng, Z.; Zhao, C.; Ma, N.; Liu, P.; Ran, L.; Xu, W.; Chen, J.; Liang, Z.; Liang, S.; Huang, M.; et al. Size-resolved and bulk activation properties of aerosols in the North China Plain. Atmos. Chem. Phys. 2011, 11, 3835–3846. [Google Scholar] [CrossRef]
- Moore, R.H.; Cerully, K.; Bahreini, R.; Brock, C.A.; Middlebrook, A.M.; Nenes, A. Hygroscopicity and composition of California CCN during summer 2010. J. Geophys. Res. Atmos. 2012, 117, D00V12. [Google Scholar] [CrossRef]
- Meng, J.W.; Yeung, M.C.; Li, Y.J.; Lee, B.Y.L.; Chan, C.K. Size-resolved cloud condensation nuclei (CCN) activity and closure analysis at the HKUST Supersite in Hong Kong. Atmos. Chem. Phys. 2014, 14, 10267–10282. [Google Scholar] [CrossRef]
- Stokes, R.H.; Robinson, R.A. Interactions in Aqueous Nonelectrolyte Solutions. I. Solute-Solvent Equilibria. J. Phys. Chem. 1966, 70, 2126–2131. [Google Scholar] [CrossRef]
- Cai, M.; Huang, S.; Liang, B.; Sun, Q.; Liu, L.; Yuan, B.; Shao, M.; Hu, W.; Chen, W.; Song, Q.; et al. Measurement report: Distinct size dependence and diurnal variation in organic aerosol hygroscopicity, volatility, and cloud condensation nuclei activity at a rural site in the Pearl River Delta (PRD) region, China. Atmos. Chem. Phys. 2022, 22, 8117–8136. [Google Scholar] [CrossRef]
- Cai, M.; Tan, H.; Chan, C.K.; Qin, Y.; Xu, H.; Li, F.; Schurman, M.I.; Liu, L.; Zhao, J. The size-resolved cloud condensation nuclei (CCN) activity and its prediction based on aerosol hygroscopicity and composition in the Pearl Delta River (PRD) region during wintertime 2014. Atmos. Chem. Phys. 2018, 18, 16419–16437. [Google Scholar] [CrossRef]
- Wang, Y.; Henning, S.; Poulain, L.; Lu, C.; Stratmann, F.; Wang, Y.; Niu, S.; Pöhlker, M.L.; Herrmann, H.; Wiedensohler, A. Aerosol activation characteristics and prediction at the central European ACTRIS research station of Melpitz, Germany. Atmos. Chem. Phys. 2022, 22, 15943–15962. [Google Scholar] [CrossRef]
- Action Plan on Prevention and Control of Air Pollution (Chinese State Council, 2013). Available online: http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm (accessed on 19 January 2022). (In Chinese)
- Zhai, S.; Jacob, D.J.; Wang, X.; Liu, Z.; Wen, T.; Shah, V.; Li, K.; Moch, J.M.; Bates, K.H.; Song, S.; et al. Control of particulate nitrate air pollution in China. Nat. Geosci. 2021, 14, 389–395. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, J.; Wang, Q.; Qi, L.; Manousakas, M.I.; Han, Y.; Ran, W.; Sun, Y.; Liu, H.; Zhang, R.; et al. High-time-resolution chemical composition and source apportionment of PM2.5 in northern Chinese cities: Implications for policy. EGUsphere 2023, 2023, 1–33. [Google Scholar] [CrossRef]
- Li, H.; Cheng, J.; Zhang, Q.; Zheng, B.; Zhang, Y.; Zheng, G.; He, K. Rapid transition in winter aerosol composition in Beijing from 2014 to 2017: Response to clean air actions. Atmos. Chem. Phys. 2019, 19, 11485–11499. [Google Scholar] [CrossRef]
- Tuch, T.M.; Haudek, A.; Müller, T.; Nowak, A.; Wex, H.; Wiedensohler, A. Design and performance of an automatic regenerating adsorption aerosol dryer for continuous operation at monitoring sites. Atmos. Meas. Tech. 2009, 2, 417–422. [Google Scholar] [CrossRef]
- Hu, X.; Sun, J.; Xia, C.; Shen, X.; Zhang, Y.; Liu, Q.; Liu, Z.; Zhang, S.; Wang, J.; Yu, A.; et al. Measurement report: Rapid decline of aerosol absorption coefficient and aerosol optical property effects on radiative forcing in an urban area of Beijing from 2018 to 2021. Atmos. Chem. Phys. 2023, 23, 5517–5531. [Google Scholar] [CrossRef]
- Xia, C.; Sun, J.; Hu, X.; Shen, X.; Zhang, Y.; Zhang, S.; Wang, J.; Liu, Q.; Lu, J.; Liu, S.; et al. Effects of hygroscopicity on aerosol optical properties and direct radiative forcing in Beijing: Based on two-year observations. Sci. Total Environ. 2023, 857, 159233. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.H.; Nenes, A.; Medina, J. Scanning Mobility CCN Analysis—A Method for Fast Measurements of Size-Resolved CCN Distributions and Activation Kinetics. Aerosol Sci. Technol. 2010, 44, 861–871. [Google Scholar] [CrossRef]
- Middlebrook, A.M.; Bahreini, R.; Jimenez, J.L.; Canagaratna, M.R. Evaluation of Composition-Dependent Collection Efficiencies for the Aerodyne Aerosol Mass Spectrometer using Field Data. Aerosol Sci. Technol. 2012, 46, 258–271. [Google Scholar] [CrossRef]
- Canagaratna, M.R.; Jayne, J.T.; Jimenez, J.L.; Allan, J.D.; Alfarra, M.R.; Zhang, Q.; Onasch, T.B.; Drewnick, F.; Coe, H.; Middlebrook, A.; et al. Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrom. Rev. 2007, 26, 185–222. [Google Scholar] [CrossRef]
- Fröhlich, R.; Cubison, M.J.; Slowik, J.G.; Bukowiecki, N.; Prévôt, A.S.H.; Baltensperger, U.; Schneider, J.; Kimmel, J.R.; Gonin, M.; Rohner, U.; et al. The ToF-ACSM: A portable aerosol chemical speciation monitor with TOFMS detection. Atmos. Meas. Tech. 2013, 6, 3225–3241. [Google Scholar] [CrossRef]
- Drinovec, L.; Močnik, G.; Zotter, P.; Prévôt, A.S.H.; Ruckstuhl, C.; Coz, E.; Rupakheti, M.; Sciare, J.; Müller, T.; Wiedensohler, A.; et al. The “dual-spot” Aethalometer: An improved measurement of aerosol black carbon with real-time loading compensation. Atmos. Meas. Tech. 2015, 8, 1965–1979. [Google Scholar] [CrossRef]
- Hagen, D.E.; Alofs, D.J. Linear Inversion Method to Obtain Aerosol Size Distributions from Measurements with a Differential Mobility Analyzer. Aerosol Sci. Technol. 1983, 2, 465–475. [Google Scholar] [CrossRef]
- Deng, Z.Z.; Zhao, C.S.; Ma, N.; Ran, L.; Zhou, G.Q.; Lu, D.R.; Zhou, X.J. An examination of parameterizations for the CCN number concentration based on in situ measurements of aerosol activation properties in the North China Plain. Atmos. Chem. Phys. 2013, 13, 6227–6237. [Google Scholar] [CrossRef]
- Jurányi, Z.; Tritscher, T.; Gysel, M.; Laborde, M.; Gomes, L.; Roberts, G.; Baltensperger, U.; Weingartner, E. Hygroscopic mixing state of urban aerosol derived from size-resolved cloud condensation nuclei measurements during the MEGAPOLI campaign in Paris. Atmos. Chem. Phys. 2013, 13, 6431–6446. [Google Scholar] [CrossRef]
- Dusek, U.; Frank, G.P.; Curtius, J.; Drewnick, F.; Schneider, J.; Kürten, A.; Rose, D.; Andreae, M.O.; Borrmann, S.; Pöschl, U. Enhanced organic mass fraction and decreased hygroscopicity of cloud condensation nuclei (CCN) during new particle formation events. Geophys. Res. Lett. 2010, 37, L03804. [Google Scholar] [CrossRef]
- Gunthe, S.S.; Rose, D.; Su, H.; Garland, R.M.; Achtert, P.; Nowak, A.; Wiedensohler, A.; Kuwata, M.; Takegawa, N.; Kondo, Y.; et al. Cloud condensation nuclei (CCN) from fresh and aged air pollution in the megacity region of Beijing. Atmos. Chem. Phys. 2011, 11, 11023–11039. [Google Scholar] [CrossRef]
- Zhong, J.; Zhang, X.; Dong, Y.; Wang, Y.; Wang, J.; Zhang, Y.; Che, H. Feedback effects of boundary-layer meteorological factors on explosive growth of PM2.5 during winter heavy pollution episodes in Beijing from 2013 to 2016. Atmos. Chem. Phys. 2018, 18, 247–258. [Google Scholar] [CrossRef]
- Cruz, C.; Pandis, S. Deliquescence and Hygroscopic Growth of Mixed Inorganic−Organic Atmospheric Aerosol. Environ. Sci. Technol. 2000, 34, 4313–4319. [Google Scholar] [CrossRef]
- Aklilu, Y.; Mozurkewich, M.; Prenni, A.J.; Kreidenweis, S.M.; Alfarra, M.R.; Allan, J.D.; Anlauf, K.; Brook, J.; Leaitch, W.R.; Sharma, S. Hygroscopicity of particles at two rural, urban influenced sites during Pacific 2001: Comparison with estimates of water uptake from particle composition. Atmos. Environ. 2006, 40, 2650–2661. [Google Scholar] [CrossRef]
- Pringle, K.J.; Tost, H.; Pozzer, A.; Pöschl, U.; Lelieveld, J. Global Distribution of the Effective Aerosol Hygroscopicity Parameter for CCN Activation. Atmos. Chem. Phys. 2010, 10, 5241–5255. [Google Scholar] [CrossRef]
- Wang, J.; Lee, Y.-N.; Daum, P.H.; Jayne, J.; Alexander, M.L. Effects of aerosol organics on cloud condensation nucleus (CCN) concentration and first indirect aerosol effect. Atmos. Chem. Phys. 2008, 8, 6325–6339. [Google Scholar] [CrossRef]
- Wu, Z.J.; Poulain, L.; Henning, S.; Dieckmann, K.; Birmili, W.; Merkel, M.; van Pinxteren, D.; Spindler, G.; Müller, K.; Stratmann, F.; et al. Relating particle hygroscopicity and CCN activity to chemical composition during the HCCT-2010 field campaign. Atmos. Chem. Phys. 2013, 13, 7983–7996. [Google Scholar] [CrossRef]
- Kuang, Y.; He, Y.; Xu, W.; Zhao, P.; Cheng, Y.; Zhao, G.; Tao, J.; Ma, N.; Su, H.; Zhang, Y.; et al. Distinct diurnal variation in organic aerosol hygroscopicity and its relationship with oxygenated organic aerosol. Atmos. Chem. Phys. 2020, 20, 865–880. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, Y.; Hu, B.; Liu, Z.R.; Akio, S.; Wang, Y.S. In situ measurement of PM1 organic aerosol in Beijing winter using a high-resolution aerosol mass spectrometer. Chin. Sci. Bull. 2012, 57, 819–826. [Google Scholar] [CrossRef]
- Sun, Y.L.; Wang, Z.F.; Fu, P.Q.; Yang, T.; Jiang, Q.; Dong, H.B.; Li, J.; Jia, J.J. Aerosol composition, sources and processes during wintertime in Beijing, China. Atmos. Chem. Phys. 2013, 13, 4577–4592. [Google Scholar] [CrossRef]
- Che, H.C.; Zhang, X.Y.; Zhang, L.; Wang, Y.Q.; Zhang, Y.M.; Shen, X.J.; Ma, Q.L.; Sun, J.Y.; Zhong, J.T. Prediction of size-resolved number concentration of cloud condensation nuclei and long-term measurements of their activation characteristics. Sci. Rep. 2017, 7, 5819. [Google Scholar] [CrossRef]
- Hu, D.; Liu, D.; Zhao, D.; Yu, C.; Liu, Q.; Tian, P.; Bi, K.; Ding, S.; Hu, K.; Wang, F.; et al. Closure Investigation on Cloud Condensation Nuclei Ability of Processed Anthropogenic Aerosols. J. Geophys. Res.-Atmos. 2020, 125, e2020JD032680. [Google Scholar] [CrossRef]
- Aiken, A.C.; Salcedo, D.; Cubison, M.J.; Huffman, J.A.; DeCarlo, P.F.; Ulbrich, I.M.; Docherty, K.S.; Sueper, D.; Kimmel, J.R.; Worsnop, D.R.; et al. Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0)—Part 1: Fine particle composition and organic source apportionment. Atmos. Chem. Phys. 2009, 9, 6633–6653. [Google Scholar] [CrossRef]
- Liu, Q.; Sheng, J.; Wu, Y.; Ma, Z.; Sun, J.; Tian, P.; Zhao, D.; Li, X.; Hu, K.; Li, S.; et al. Source characterization of volatile organic compounds in urban Beijing and its links to secondary organic aerosol formation. Sci. Total Environ. 2023, 860, 160469. [Google Scholar] [CrossRef]
Species | Density (kg m−3) | κ |
---|---|---|
NH4NO3 | 1725 | 0.68 |
(NH4)2SO4 | 1769 | 0.52 |
NH4HSO4 | 1780 | 0.56 |
H2SO4 | 1830 | 0.92 |
Organics | 1400 | 0.1 |
BC | 1800 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Shen, X.; Li, L.; Sun, J.; Liu, Z.; Zhu, W.; Zhong, J.; Zhang, Y.; Hu, X.; Liu, S.; et al. Impacts of Aerosol Chemical Composition on Cloud Condensation Nuclei (CCN) Activity during Wintertime in Beijing, China. Remote Sens. 2023, 15, 4119. https://doi.org/10.3390/rs15174119
Liu Q, Shen X, Li L, Sun J, Liu Z, Zhu W, Zhong J, Zhang Y, Hu X, Liu S, et al. Impacts of Aerosol Chemical Composition on Cloud Condensation Nuclei (CCN) Activity during Wintertime in Beijing, China. Remote Sensing. 2023; 15(17):4119. https://doi.org/10.3390/rs15174119
Chicago/Turabian StyleLiu, Quan, Xiaojing Shen, Lei Li, Junying Sun, Zirui Liu, Weibin Zhu, Junting Zhong, Yangmei Zhang, Xinyao Hu, Shuo Liu, and et al. 2023. "Impacts of Aerosol Chemical Composition on Cloud Condensation Nuclei (CCN) Activity during Wintertime in Beijing, China" Remote Sensing 15, no. 17: 4119. https://doi.org/10.3390/rs15174119
APA StyleLiu, Q., Shen, X., Li, L., Sun, J., Liu, Z., Zhu, W., Zhong, J., Zhang, Y., Hu, X., Liu, S., Che, H., & Zhang, X. (2023). Impacts of Aerosol Chemical Composition on Cloud Condensation Nuclei (CCN) Activity during Wintertime in Beijing, China. Remote Sensing, 15(17), 4119. https://doi.org/10.3390/rs15174119