Estimation of Aerosol Layer Height from OLCI Measurements in the O2A-Absorption Band over Oceans
Abstract
:1. Introduction
2. Methods
2.1. Radiative Transfer Model
2.2. Setup of Radiative Transfer Simulations
2.3. Aerosol Model
2.4. OLCI Data
2.4.1. Preprocessing
2.4.2. Case Study and Reference Data
2.5. 1D Variational Approach
2.6. Retrieval of ALH from OLCI Level 1 Data
3. Results
3.1. Sensitivity Study
3.2. Retrieval of ALH for Test Cases
3.2.1. Dust Case
3.2.2. Smoke Case
4. Uncertainty Propagation
4.1. Linear Uncertainty Propagation
4.2. Uncertainty Based on Bootstrap Method
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ALH | Aerosol Layer Height |
CALIOP | Cloud-Aerosol Lidar with Orthogonal Polarization |
CALIPSO | Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations |
SCIMACHY | Scanning Imaging Absorption Spectrometer for Atmospheric Chartography |
GOME-2 | Global Ozone Monitoring Experiment-2 |
OCO-2 | Orbiting Carbon Observatory 2 |
TROPOMI | Tropospheric Monitoring Instrument |
TOA | Top of Atmosphere |
MERIS | Medium-Resolution Imaging Spectrometer |
POLDER | PoLarization and Directionality of the Earth’s Reflectances |
OCI | Ocean Colour Instrument |
NASA | National Aeronautics and Space Administration |
PACE | Plankton, Aerosol, Cloud, Ocean Ecosystem |
VIIRS | Visible Infrared Imaging Radiometer Suite |
OMI | Ozone Monitoring Instrument |
DOAS | Differential Optical Absorption Spectroscopy |
EPIC | Earth Polychromatic Imaging Camera |
DSCOVR | Deep Space Climate Observatory |
OLCI | Ocean and Land Colour Imager |
AFGL | Air Force Geophysical Laboratory |
LUT | Look-Up table |
MOMO | Matrix Operator Model |
AOT | Aerosol Optical Thickness |
HETEACT | Hybrid End-To-End Aerosol Classification Model for EarthCARE |
SABS | Strong Absorbing Aerosol |
SSA | Single Scattering Albedo |
SZA | Sun Zenith Angle |
VZA | Viewing Zenith Angle |
AZI | Azimuth Difference Angle |
FWHM | Full Width at Half Maximum |
L1 | Level 1 |
S5P | Sentinel-5P |
1Dvar | 1D Variational Approach |
RGB | True color image |
IDEPIX | Identification of Pixel |
wvl | Wavelength |
ESA | European Space Agency |
SLSTR | Sea and Land Surface Temperature Radiometer |
Appendix A. Aerosol Optical Properties
Aerosol Property | Dust | Strong Absorbing Aerosol |
---|---|---|
SSA | 0.98 | 0.76 |
Rel. Extinction coeff. to 550 nm | 1.04 | 0.56 |
Angstrom exponent (755/550) | −0.11 | 1.748 |
Asymmetry factor g | 0.72 | 0.565 |
Appendix B. Harmonization Method
Appendix C. Sensitivity Study for Glint Scene
Appendix D. Sun Glint Geometry for Test Scenes
Appendix E. Uncertainty of ALH Depending on AOT
References
- Xu, X.; Wang, J.; Wang, Y.; Kokhanovsky, A. Passive remote sensing of aerosol height. In Remote Sensing of Aerosols, Clouds, and Precipitation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–22. [Google Scholar]
- Kylling, A.; Vandenbussche, S.; Capelle, V.; Cuesta, J.; Klüser, L.; Lelli, L.; Popp, T.; Stebel, K.; Veefkind, P. Comparison of dust-layer heights from active and passive satellite sensors. Atmos. Meas. Tech. 2018, 11, 2911–2936. [Google Scholar]
- Kipling, Z.; Stier, P.; Johnson, C.E.; Mann, G.W.; Bellouin, N.; Bauer, S.E.; Bergman, T.; Chin, M.; Diehl, T.; Ghan, S.J.; et al. What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II. Atmos. Chem. Phys. 2016, 16, 2221–2241. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Colosimo, S.F.; Natraj, V.; Sander, S.P.; Stutz, J. A sensitivity study on the retrieval of aerosol vertical profiles using the oxygen A-band. Atmos. Meas. Tech. 2016, 9, 1889–1905. [Google Scholar] [CrossRef]
- Copernicus. Record-Breaking North Atlantic Ocean Temperatures Contribute to Extreme Marine Heatwaves. Available online: https://climate.copernicus.eu/record-breaking-north-atlantic-ocean-temperatures-contribute-extreme-marine-heatwaves (accessed on 2 August 2023).
- Houweling, S.; Hartmann, W.; Aben, I.; Schrijver, H.; Skidmore, J.; Roelofs, G.J.; Breon, F.M. Evidence of systematic errors in SCIAMACHY-observed CO2 due to aerosols. Atmos. Chem. Phys. 2005, 5, 3003–3013. [Google Scholar] [CrossRef]
- Guerlet, S.; Butz, A.; Schepers, D.; Basu, S.; Hasekamp, O.; Kuze, A.; Yokota, T.; Blavier, J.F.; Deutscher, N.; Griffith, D.T.; et al. Impact of aerosol and thin cirrus on retrieving and validating XCO2 from GOSAT shortwave infrared measurements. J. Geophys. Res. Atmos. 2013, 118, 4887–4905. [Google Scholar] [CrossRef]
- Chimot, J.; Veefkind, J.P.; De Haan, J.F.; Stammes, P.; Levelt, P.F. Minimizing aerosol effects on the OMI tropospheric NO2 retrieval–An improved use of the 477 nm O2-O2 band and an estimation of the aerosol correction uncertainty. Atmos. Meas. Tech. 2019, 12, 491–516. [Google Scholar] [CrossRef]
- Torres, O.; Ahn, C.; Chen, Z. Improvements to the OMI near UV aerosol algorithm using A-train CALIOP and AIRS observations. Atmos. Meas. Tech. Discuss. 2013, 6, 5621–5652. [Google Scholar] [CrossRef]
- Li, C.; Li, J.; Dubovik, O.; Zeng, Z.C.; Yung, Y.L. Impact of Aerosol Vertical Distribution on Aerosol Optical Depth Retrieval from Passive Satellite Sensors. Remote Sens. 2020, 12, 1524. [Google Scholar] [CrossRef]
- Frankenberg, C.; Butz, A.; Toon, G.C. Disentangling chlorophyll fluorescence from atmospheric scattering effects in O2 A-band spectra of reflected sun-light. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Duforêt, L.; Frouin, R.; Dubuisson, P. Importance and estimation of aerosol vertical structure in satellite ocean-color remote sensing. Appl. Opt. 2007, 46, 1107–1119. [Google Scholar] [CrossRef]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Kokhanovsky, A.A.; Rozanov, V.V. The determination of dust cloud altitudes from a satellite using hyperspectral measurements in the gaseous absorption band. Int. J. Remote Sens. 2010, 31, 2729–2744. [Google Scholar] [CrossRef]
- Hollstein, A.; Fischer, J. Retrieving aerosol height from the oxygen A band: A fast forward operator and sensitivity study concerning spectral resolution, instrumental noise, and surface inhomogeneity. Atmos. Meas. Tech. 2014, 7, 1429–1441. [Google Scholar] [CrossRef]
- Dubuisson, P.; Frouin, R.; Dessailly, D.; Duforêt, L.; Léon, J.F.; Voss, K.; Antoine, D. Estimating the altitude of aerosol plumes over the ocean from reflectance ratio measurements in the O2 A-band. Remote Sens. Environ. 2009, 113, 1899–1911. [Google Scholar] [CrossRef]
- Preusker, R.; Lindstrot, R. Remote sensing of cloud-top pressure using moderately resolved measurements within the oxygen A band—A sensitivity study. J. Appl. Meteorol. Climatol. 2009, 48, 1562–1574. [Google Scholar] [CrossRef]
- Sanghavi, S.; Martonchik, J.; Landgraf, J.; Platt, U. Retrieval of the optical depth and vertical distribution of particulate scatterers in the atmosphere using O2 A-and B-band SCIAMACHY observations over Kanpur: A case study. Atmos. Meas. Tech. 2012, 5, 1099–1119. [Google Scholar] [CrossRef]
- Nanda, S.; Veefkind, J.P.; De Graaf, M.; Sneep, M.; Stammes, P.; De Haan, J.F.; Sanders, A.F.; Apituley, A.; Tuinder, O.; Levelt, P.F. A weighted least squares approach to retrieve aerosol layer height over bright surfaces applied to GOME-2 measurements of the oxygen A band for forest fire cases over Europe. Atmos. Meas. Tech. 2018, 11, 3263–3280. [Google Scholar] [CrossRef]
- Zeng, Z.C.; Chen, S.; Natraj, V.; Le, T.; Xu, F.; Merrelli, A.; Crisp, D.; Sander, S.P.; Yung, Y.L. Constraining the vertical distribution of coastal dust aerosol using OCO-2 O2 A-band measurements. Remote Sens. Environ. 2020, 236, 111494. [Google Scholar] [CrossRef]
- Nanda, S.; De Graaf, M.; Veefkind, J.P.; Ter Linden, M.; Sneep, M.; De Haan, J.; Levelt, P.F. A neural network radiative transfer model approach applied to the Tropospheric Monitoring Instrument aerosol height algorithm. Atmos. Meas. Tech. 2019, 12, 6619–6634. [Google Scholar] [CrossRef]
- Werdell, P.J.; Behrenfeld, M.J.; Bontempi, P.S.; Boss, E.; Cairns, B.; Davis, G.T.; Franz, B.A.; Gliese, U.B.; Gorman, E.T.; Hasekamp, O.; et al. The Plankton, Aerosol, Cloud, Ocean Ecosystem Mission: Status, Science, Advances. Bull. Am. Meteorol. Soc. 2019, 100, 1775–1794. [Google Scholar] [CrossRef]
- Remer, L.A.; Davis, A.B.; Mattoo, S.; Levy, R.C.; Kalashnikova, O.V.; Coddington, O.; Chowdhary, J.; Knobelspiesse, K.; Xu, X.; Ahmad, Z.; et al. Retrieving aerosol characteristics from the PACE mission, Part 1: Ocean Color Instrument. Front. Earth Sci. 2019, 7, 152. [Google Scholar] [CrossRef]
- Xu, X.; Wang, J.; Wang, Y.; Zeng, J.; Torres, O.; Reid, J.S.; Miller, S.D.; Martins, J.V.; Remer, L.A. Detecting layer height of smoke aerosols over vegetated land and water surfaces via oxygen absorption bands: Hourly results from EPIC/DSCOVR in deep space. Atmos. Meas. Tech. 2019, 12, 3269–3288. [Google Scholar] [CrossRef]
- Chimot, J.; Veefkind, J.P.; Vlemmix, T.; de Haan, J.F.; Amiridis, V.; Proestakis, E.; Marinou, E.; Levelt, P.F. An exploratory study on the aerosol height retrieval from OMI measurements of the 477 nm O2 O2 spectral band using a neural network approach. Atmos. Meas. Tech. 2017, 10, 783–809. [Google Scholar] [CrossRef]
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C. The global monitoring for environment and security (GMES) sentinel-3 mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Hollstein, A.; Fischer, J. Radiative transfer solutions for coupled atmosphere ocean systems using the matrix operator technique. J. Quant. Spectrosc. Radiat. Transf. 2012, 113, 536–548. [Google Scholar] [CrossRef]
- Fell, F.; Fischer, J. Numerical simulation of the light field in the atmosphere–ocean system using the matrix-operator method. J. Quant. Spectrosc. Radiat. Transf. 2001, 69, 351–388. [Google Scholar] [CrossRef]
- Cox, C.; Munk, W. Measurement of the roughness of the sea surface from photographs of the sun’s glitter. Josa 1954, 44, 838–850. [Google Scholar] [CrossRef]
- Doppler, L.; Preusker, R.; Bennartz, R.; Fischer, J. k-bin and k-IR: K-distribution methods without correlation approximation for non-fixed instrument response function and extension to the thermal infrared—Applications to satellite remote sensing. J. Quant. Spectrosc. Radiat. Transf. 2014, 133, 382–395. [Google Scholar] [CrossRef]
- Gordon, I.; Rothman, L.; Hill, C.; Kochanov, R.; Tan, Y.; Bernath, P.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.; et al. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 3–69. [Google Scholar] [CrossRef]
- Drouin, B.J.; Benner, D.C.; Brown, L.R.; Cich, M.J.; Crawford, T.J.; Devi, V.M.; Guillaume, A.; Hodges, J.T.; Mlawer, E.J.; Robichaud, D.J. Multispectrum analysis of the oxygen A-band. J. Quant. Spectrosc. Radiat. Transf. 2017, 186, 118–138. [Google Scholar] [CrossRef]
- Anderson, G.P.; Clough, S.A.; Kneizys, F.X.; Chetwynd, J.H.; Shettle, E.P. AFGL Atmospheric Constituent Profiles (0.120 km). Technical Report AFGL-TR-86-0110, AIR FORCE GEOPHYSICS LAB HANSCOM AFB MA. 1986. Available online: https://apps.dtic.mil/docs/citations/ADA175173 (accessed on 5 September 2022).
- Dubovik, O.; Sinyuk, A.; Lapyonok, T.; Holben, B.N.; Mishchenko, M.; Yang, P.; Eck, T.F.; Volten, H.; Muñoz, O.; Veihelmann, B.; et al. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res. Atmos. 2006, 111, 6619. [Google Scholar] [CrossRef]
- Wandinger, U.; Floutsi, A.A.; Baars, H.; Haarig, M.; Ansmann, A.; Hünerbein, A.; Docter, N.; Donovan, D.; van Zadelhoff, G.J.; Mason, S.; et al. HETEAC–The Hybrid End-To-End Aerosol Classification model for EarthCARE. Atmos. Meas. Tech. 2023, 16, 2485–2510. [Google Scholar] [CrossRef]
- Liou, K.N. An Introduction to Atmospheric Radiation; Elsevier: Amsterdam, The Netherlands, 2002; Volume 84, p. 528. [Google Scholar]
- Wiscombe, W.J. Improved Mie scattering algorithms. Appl. Opt. 1980, 19, 1505–1509. [Google Scholar] [CrossRef]
- Preusker, R. Sentinel-3 OLCI Temporal Model of Spectral Characteristics. 2021. Available online: https://sentinel.esa.int/documents/247904/2700436/S3MPC_OLCI_spectral_characterisation_SD_RP_EUM_SD_v1.1.pdf (accessed on 3 July 2023).
- Preusker, R. SNAP Data Processors-OLCI O2A Harmonisation Algorithm Specification. Available online: https://seadas.gsfc.nasa.gov/help-8.3.0/harmonisation/OlciO2aHarmonisationAlgorithmSpecification.html (accessed on 3 July 2023).
- Preusker, R.; Fischer, J. Study on the Cloud Top Pressure Development from Snetinel-3 OLCI OCTPO2-Algorithm Theoretical Basis Document (ATBD). Technical Report, EUMETSAT. 2021. Available online: https://www-cdn.eumetsat.int/files/2021-09/OCTPO2_ATBD_CTP_v2-2.pdf (accessed on 3 July 2023).
- Yu, H.; Tan, Q.; Zhou, L.; Zhou, Y.; Bian, H.; Chin, M.; Ryder, C.L.; Levy, R.C.; Pradhan, Y.; Shi, Y.; et al. Observation and modeling of the historic “Godzilla” African dust intrusion into the Caribbean Basin and the southern US in June 2020. Atmos. Chem. Phys. 2021, 21, 12359–12383. [Google Scholar] [CrossRef]
- Veefkind, J.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.; de Haan, J.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Nanda, S.; de Graaf, M.; Veefkind, J.P.; Sneep, M.; ter Linden, M.; Sun, J.; Levelt, P.F. A first comparison of TROPOMI aerosol layer height (ALH) to CALIOP data. Atmos. Meas. Tech. 2020, 13, 3043–3059. [Google Scholar] [CrossRef]
- Koffi, B.; Schulz, M.; Bréon, F.M.; Griesfeller, J.; Winker, D.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Chin, M.; Collins, W.D.; et al. Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom phase I results. J. Geophys. Res. Atmos. 2012, 117, 16858. [Google Scholar] [CrossRef]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding: Theory and Practice; World Scientific: Singapore, 2000; Volume 2. [Google Scholar]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Menzel, W.P.; Frey, R.A.; Zhang, H.; Wylie, D.P.; Moeller, C.C.; Holz, R.E.; Maddux, B.; Baum, B.A.; Strabala, K.I.; Gumley, L.E. MODIS Global Cloud-Top Pressure and Amount Estimation: Algorithm Description and Results. J. Appl. Meteorol. Climatol. 2008, 47, 1175–1198. [Google Scholar] [CrossRef]
- Morcrette, J.J.; Boucher, O.; Jones, L.; Salmond, D.; Bechtold, P.; Beljaars, A.; Benedetti, A.; Bonet, A.; Kaiser, J.W.; Razinger, M.; et al. Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: Forward modeling. J. Geophys. Res. Atmos. 2009, 114, 11235. [Google Scholar] [CrossRef]
- Wevers, J.; Müller, D.; Kirches, G.; Quast, R.; Brockmann, C. IdePix for Sentinel-3 OLCI Algorithm Theoretical Basis Document. Technical Report, Brockmann Consult GMBH; Zenodo: Vienna, Austria, 2022. [Google Scholar] [CrossRef]
- Griffin, D.; Sioris, C.; Chen, J.; Dickson, N.; Kovachik, A.; de Graaf, M.; Nanda, S.; Veefkind, P.; Dammers, E.; McLinden, C.A.; et al. The 2018 fire season in North America as seen by TROPOMI: Aerosol layer height intercomparisons and evaluation of model-derived plume heights. Atmos. Meas. Tech. 2020, 13, 1427–1445. [Google Scholar] [CrossRef]
- Michailidis, K.; Koukouli, M.E.; Balis, D.; Veefkind, J.P.; de Graaf, M.; Mona, L.; Papagianopoulos, N.; Pappalardo, G.; Tsikoudi, I.; Amiridis, V.; et al. Validation of the TROPOMI/S5P aerosol layer height using EARLINET lidars. Atmos. Chem. Phys. 2023, 23, 1919–1940. [Google Scholar] [CrossRef]
- Chen, X.; Wang, J.; Xu, X.; Zhou, M.; Zhang, H.; Castro Garcia, L.; Colarco, P.R.; Janz, S.J.; Yorks, J.; McGill, M.; et al. First retrieval of absorbing aerosol height over dark target using TROPOMI oxygen B band: Algorithm development and application for surface particulate matter estimates. Remote Sens. Environ. 2021, 265, 112674. [Google Scholar] [CrossRef]
- Peuch, V.H.; Engelen, R.; Rixen, M.; Dee, D.; Flemming, J.; Suttie, M.; Ades, M.; Agustí-Panareda, A.; Ananasso, C.; Andersson, E.; et al. The Copernicus Atmosphere Monitoring Service: From Research to Operations. Bull. Am. Meteorol. Soc. 2022, 103, E2650–E2668. [Google Scholar] [CrossRef]
- Kokhanovsky, A.A.; Leeuw, G. Satellite Aerosol Remote Sensing over Land; Springer: Berlin/Heidelberg, Germany, 2009; Volume 111, p. 24. [Google Scholar]
- Bentley, J.L. Multidimensional binary search trees used for associative searching. Commun. ACM 1975, 18, 509–517. [Google Scholar] [CrossRef]
Parameter | Values | Data Source |
---|---|---|
Y | , , , | OLCI L1 |
, , , | OLCI L1 | |
wind speed, SZA, VZA, AZI | OLCI L1 | |
(AOT) | Dust case: 3.7; Smoke case: 5.5 | first guess |
(ALH) | Dust case: 3000 m; Smoke case: 1000 m | first guess |
(AOT) | Dust case: ; Smoke case: | guess |
(ALH) | Dust case: ; Smoke case: | guess |
Parameter | Input Values | Uncertainty |
---|---|---|
ALH in m | 450, 750, 1000, 3000, 5000 | - |
AOT | 0.55–5.5 | - |
wind speed in m/s | 4, 6, 8 | +/− 1 |
SZA in Degrees | 25–40 | +/− 3 |
VZA in Degrees | 0–60 | +/− 3 |
AZI in Degrees | 10–50; 130–150 | +/− 3 |
wvl in nm | 753.75, 761.25, 764.375 and 767.5 | +/− 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jänicke, L.K.; Preusker, R.; Docter, N.; Fischer, J. Estimation of Aerosol Layer Height from OLCI Measurements in the O2A-Absorption Band over Oceans. Remote Sens. 2023, 15, 4080. https://doi.org/10.3390/rs15164080
Jänicke LK, Preusker R, Docter N, Fischer J. Estimation of Aerosol Layer Height from OLCI Measurements in the O2A-Absorption Band over Oceans. Remote Sensing. 2023; 15(16):4080. https://doi.org/10.3390/rs15164080
Chicago/Turabian StyleJänicke, Lena Katharina, Rene Preusker, Nicole Docter, and Jürgen Fischer. 2023. "Estimation of Aerosol Layer Height from OLCI Measurements in the O2A-Absorption Band over Oceans" Remote Sensing 15, no. 16: 4080. https://doi.org/10.3390/rs15164080
APA StyleJänicke, L. K., Preusker, R., Docter, N., & Fischer, J. (2023). Estimation of Aerosol Layer Height from OLCI Measurements in the O2A-Absorption Band over Oceans. Remote Sensing, 15(16), 4080. https://doi.org/10.3390/rs15164080