A Machine Learning Algorithm to Detect and Analyze Meteor Echoes Observed by the Jicamarca Radar
Abstract
:1. Introduction
2. Data
3. Method
3.1. Preprocessing and Radar Decoding
- A filter bank [15], which essentially repeats the matched filter with different Doppler shifts on TX code and finds the best candidate.
- Multiplying the complex conjugate of the TX code to the Fast Fourier Transform (FFT) of a truncated section of the RX that equals the length of the TX code and repeats on all altitudes [26].
3.2. Meteor Detection
3.3. Detector
3.4. Meteor Samples
3.5. 3D Scatter Cloud
- Interferometry aliasing, i.e., the meteor trajectory is broken into two or more segments due to the interferometer 2 aliasing. This problem can be addressed by merging the aliased components. The aliased segments can be distinguished from the normal ones by examining the vector direction of the separate segments and the corresponding pixel’s locations on the meteor sample (as shown in Figure 4).
- The single linkage would likely be unable to separate overlapping meteor echoes and meteor echoes into the EEJ, but these cases rarely occur and do not constitute a notable portion of the total number of meteors.
3.6. Direction Vector
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koschny, D.; Soja, R.H.; Engrand, C.; Flynn, G.J.; Lasue, J.; Levasseur-Regourd, A.C.; Malaspina, D.; Nakamura, T.; Poppe, A.R.; Sterken, V.J.; et al. Interplanetary dust, meteoroids, meteors and meteorites. Space Sci. Rev. 2019, 215, 34. [Google Scholar] [CrossRef]
- Bradley, J. Interplanetary dust particles. Treatise Geochem. 2003, 1, 711. [Google Scholar]
- Hedges, T.; Lee, N.; Elschot, S. Meteor Head Echo Analyses From Concurrent Radar Observations at AMISR Resolute Bay, Jicamarca, and Millstone Hill. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030709. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Q. Velocity and orbital characteristics of micrometeors observed by the Arecibo 430 MHz incoherent scatter radar. Mon. Not. R. Astron. Soc. 2019, 486, 3517–3523. [Google Scholar] [CrossRef]
- Gao, B.; Mathews, J. High-altitude meteors and meteoroid fragmentation observed at the Jicamarca Radio Observatory. Mon. Not. R. Astron. Soc. 2015, 446, 3404–3415. [Google Scholar] [CrossRef]
- Reach, W.T.; Kelley, M.S.; Sykes, M.V. A survey of debris trails from short-period comets. Icarus 2007, 191, 298–322. [Google Scholar] [CrossRef]
- Chau, J.L.; Galindo, F. First definitive observations of meteor shower particles using a high-power large-aperture radar. Icarus 2008, 194, 23–29. [Google Scholar] [CrossRef]
- Galindo, F.; Urbina, J.; Dyrud, L. Effect of neutral winds on the creation of non-specular meteor trail echoes. In Annales Geophysicae; Copernicus GmbH: Göttingen, Germany, 2021; Volume 39, pp. 709–719. [Google Scholar]
- Zhou, Q.H.; Mathews, J.D.; Nakamura, T. Implications of meteor observations by the MU radar. Geophys. Res. Lett. 2001, 28, 1399–1402. [Google Scholar] [CrossRef]
- Dyrud, L.P.; Ray, L.; Oppenheim, M.; Close, S.; Denney, K. Modelling high-power large-aperture radar meteor trails. J. Atmos. Sol. Terr. Phys. 2005, 67, 1171–1177. [Google Scholar] [CrossRef]
- Sugar, G.; Marshall, R.; Oppenheim, M.; Dimant, Y.; Close, S. Simulation-Derived Radar Cross Sections of a New Meteor Head Plasma Distribution Model. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029171. [Google Scholar] [CrossRef]
- Close, S.; Kelley, M.; Vertatschitsch, L.; Colestock, P.; Oppenheim, M.; Yee, J. Polarization and scattering of a long-duration meteor trail. J. Geophys. Res. Space Phys. 2011, 116, A1. [Google Scholar] [CrossRef]
- Chau, J.; Strelnikova, I.; Schult, C.; Oppenheim, M.; Kelley, M.; Stober, G.; Singer, W. Nonspecular meteor trails from non-field-aligned irregularities: Can they be explained by presence of charged meteor dust? Geophys. Res. Lett. 2014, 41, 3336–3343. [Google Scholar] [CrossRef]
- Zhou, Q.; Tepley, C.A.; Sulzer, M.P. Meteor observations by the Arecibo 430 MHz incoherent scatter radar—I. Results from time-integrated observations. J. Atmos. Terr. Phys. 1995, 57, 421–431. [Google Scholar] [CrossRef]
- Chau, J.; Woodman, R. Observations of meteor-head echoes using the Jicamarca 50 MHz radar in interferometer mode. Atmos. Chem. Phys. 2004, 4, 511–521. [Google Scholar] [CrossRef]
- Kero, J.; Szasz, C.; Nakamura, T.; Meisel, D.; Ueda, M.; Fujiwara, Y.; Terasawa, T.; Nishimura, K.; Watanabe, J. The 2009–2010 MU radar head echo observation programme for sporadic and shower meteors: Radiant densities and diurnal rates. Mon. Not. R. Astron. Soc. 2012, 425, 135–146. [Google Scholar] [CrossRef]
- Close, S.; Oppenheim, M.; Durand, D.; Dyrud, L. A new method for determining meteoroid mass from head echo data. J. Geophys. Res. Space Phys. 2005, 110, A9. [Google Scholar] [CrossRef]
- Janches, D.; Mathews, J.; Meisel, D.; Zhou, Q.H. Micrometeor observations using the Arecibo 430 MHz radar: I. Determination of the ballistic parameter from measured Doppler velocity and deceleration results. Icarus 2000, 145, 53–63. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Q.; Scott, M.; Milla, M. A study on meteor head echo using a probabilistic detection model at Jicamarca. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027459. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Q.; Urbina, J.; Huang, T.Y. Sporadic micro-meteoroid source radiant distribution inferred from the Arecibo 430 MHz radar observations. Mon. Not. R. Astron. Soc. 2022, 515, 2088–2098. [Google Scholar] [CrossRef]
- Chau, J.L.; Woodman, R.F.; Galindo, F. Sporadic meteor sources as observed by the Jicamarca high-power large-aperture VHF radar. Icarus 2007, 188, 162–174. [Google Scholar] [CrossRef]
- Evans, J. Radar observations of meteor deceleration. J. Geophys. Res. 1966, 71, 171–188. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. arXiv 2015, arXiv:1603.04467. [Google Scholar]
- Sulzer, M. Meteoroid velocity distribution derived from head echo data collected at Arecibo during regular world day observations. Atmos. Chem. Phys. 2004, 4, 947–954. [Google Scholar] [CrossRef]
- Lehtinen, M.; Damtie, B.; Nygrén, T. Optimal binary phase codes and sidelobe-free decoding filters with application to incoherent scatter radar. In Annales Geophysicae; Copernicus Publications: Göttingen, Germany, 2004; Volume 22, pp. 1623–1632. [Google Scholar]
- Li, Y. A Study on Meteor Echoes Using the Arecibo and Jicamarca High Power Large Aperture Radars. Master’s Thesis, Miami University, Oxford, OH, USA, 2019. [Google Scholar]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef]
- Ballard, D.H. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit. 1981, 13, 111–122. [Google Scholar] [CrossRef]
- Li, Y.; Galindo, F.; Urbina, J.; Zhou, Q.; Huang, T.Y. Meteor detection with a new computer vision approach. Radio Sci. 2022, 57, e2022RS007515. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 24–27 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In NeurIPS Proceedings: Advances in Neural Information Processing Systems 28 (NIPS 2015); Curran Associates, Inc.: Red Hook, NY, USA, 2015. [Google Scholar]
- Zhu, Q.; Dinsmore, R.; Gao, B.; Mathews, J.D. High-resolution radar observations of meteoroid fragmentation and flaring at the Jicamarca Radio Observatory. Mon. Not. R. Astron. Soc. 2016, 457, 1759–1769. [Google Scholar] [CrossRef]
- Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2020, arXiv:2010.16061. [Google Scholar]
- Serra, J.; Vincent, L. An overview of morphological filtering. Circuits Syst. Signal Process. 1992, 11, 47–108. [Google Scholar] [CrossRef]
- Everitt, B.S.; Landau, S.; Leese, M.; Stahl, D. Cluster Analysis, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Golub, G.; Kahan, W. Calculating the singular values and pseudo-inverse of a matrix. J. Soc. Ind. Appl. Math. Ser. Numer. Anal. 1965, 2, 205–224. [Google Scholar] [CrossRef]
- Nesvornỳ, D.; Jenniskens, P.; Levison, H.F.; Bottke, W.F.; Vokrouhlickỳ, D.; Gounelle, M. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. Astrophys. J. 2010, 713, 816. [Google Scholar] [CrossRef]
- Robertson, H. Dynamical effects of radiation in the solar system. Mon. Not. R. Astron. Soc. 1937, 97, 423. [Google Scholar] [CrossRef]
- Nesvornỳ, D.; Vokrouhlickỳ, D.; Pokornỳ, P.; Janches, D. Dynamics of dust particles released from Oort cloud comets and their contribution to radar meteors. Astrophys. J. 2011, 743, 37. [Google Scholar] [CrossRef]
- Scholarsphere, P.S.U. Machine-Learning Approach to Detecting and Analyzing Meteor Echoes (MADAME). 2023. Available online: https://scholarsphere.psu.edu/resources/d3ae6356-4c9b-48b0-9159-4a1361026d37 (accessed on 23 March 2023).
Precision | Recall | F1 Score | AP | |
---|---|---|---|---|
Head | 0.99 | 0.94 | 0.96 | 0.94 |
Trail | 0.98 | 0.89 | 0.93 | 0.88 |
EEJ | 1 | 0.63 | 0.773 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Galindo, F.; Urbina, J.; Zhou, Q.; Huang, T.-Y. A Machine Learning Algorithm to Detect and Analyze Meteor Echoes Observed by the Jicamarca Radar. Remote Sens. 2023, 15, 4051. https://doi.org/10.3390/rs15164051
Li Y, Galindo F, Urbina J, Zhou Q, Huang T-Y. A Machine Learning Algorithm to Detect and Analyze Meteor Echoes Observed by the Jicamarca Radar. Remote Sensing. 2023; 15(16):4051. https://doi.org/10.3390/rs15164051
Chicago/Turabian StyleLi, Yanlin, Freddy Galindo, Julio Urbina, Qihou Zhou, and Tai-Yin Huang. 2023. "A Machine Learning Algorithm to Detect and Analyze Meteor Echoes Observed by the Jicamarca Radar" Remote Sensing 15, no. 16: 4051. https://doi.org/10.3390/rs15164051
APA StyleLi, Y., Galindo, F., Urbina, J., Zhou, Q., & Huang, T. -Y. (2023). A Machine Learning Algorithm to Detect and Analyze Meteor Echoes Observed by the Jicamarca Radar. Remote Sensing, 15(16), 4051. https://doi.org/10.3390/rs15164051