Exploring Random Forest Machine Learning and Remote Sensing Data for Streamflow Prediction: An Alternative Approach to a Process-Based Hydrologic Modeling in a Snowmelt-Driven Watershed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Watershed
2.2. Prediction Methods and Predictor Variables
2.3. Random Forest Machine Learning (RFML)
RFML: Random Forest Regression (RFR)
2.4. Data Description
2.5. Analytical Procedure
2.6. Variable Importance
2.7. SWAT Hydrologic Model
2.7.1. Input Data
2.7.2. Calculation of Runoff Volume
2.7.3. Model Calibration, Validation, and Performance Evaluation
2.8. Sensitivity Analysis
3. Results
3.1. SWAT Model Performance Assessment
3.2. RFML Model Performance Assessment
3.3. Variable Importance Assessment
4. Discussion
Scope of Future Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. SWAT Subbasins, Streamflow Network, and Flow Distribution
Appendix B. Results of Global Sensitivity Analysis
Appendix C. Correlation Matrices of the Predictor and Response Variables Used in RFML
Appendix D. Scatter Plot and Regression Line for RFML and SWAT Simulations
Appendix E. Simulated Flow vs. Precipitation Inputs vs. Snowmelt
References
- Jimeno-Sáez, P.; Martínez-España, R.; Casalí, J.; Pérez-Sánchez, J.; Senent-Aparicio, J. A Comparison of Performance of SWAT and Machine Learning Models for Predicting Sediment Load in a Forested Basin, Northern Spain. Catena 2022, 212, 105953. [Google Scholar] [CrossRef]
- Tegegne, G.; Park, D.K.; Kim, Y.-O. Comparison of Hydrological Models for the Assessment of Water Resources in a Data-Scarce Region, the Upper Blue Nile River Basin. J. Hydrol. Reg. Stud. 2017, 14, 49–66. [Google Scholar] [CrossRef]
- Dutta, P.; Sarma, A.K. Hydrological Modeling as a Tool for Water Resources Management of the Data-Scarce Brahmaputra Basin. J. Water Clim. Chang. 2020, 12, 152–165. [Google Scholar] [CrossRef] [Green Version]
- Hussainzada, W.; Lee, H.S. Hydrological Modelling for Water Resource Management in a Semi-Arid Mountainous Region Using the Soil and Water Assessment Tool: A Case Study in Northern Afghanistan. Hydrology 2021, 8, 16. [Google Scholar] [CrossRef]
- Leta, O.; El-Kadi, A.; Dulai, H.; Ghazal, K. Assessment of SWAT Model Performance in Simulating Daily Streamflow under Rainfall Data Scarcity in Pacific Island Watersheds. Water 2018, 10, 1533. [Google Scholar] [CrossRef] [Green Version]
- Senent-Aparicio, J.; Jimeno-Sáez, P.; López-Ballesteros, A.; Giménez, J.G.; Pérez-Sánchez, J.; Cecilia, J.M.; Srinivasan, R. Impacts of Swat Weather Generator Statistics from High-Resolution Datasets on Monthly Streamflow Simulation over Peninsular Spain. J. Hydrol. Reg. Stud. 2021, 35, 100826. [Google Scholar] [CrossRef]
- Singh, A.; Imtiyaz, M.; Isaac, R.K.; Denis, D.M. Assessing the Performance and Uncertainty Analysis of the SWAT and RBNN Models for Simulation of Sediment Yield in the Nagwa Watershed, India. Hydrol. Sci. J. 2014, 59, 351–364. [Google Scholar] [CrossRef]
- Cecílio, R.A.; Campanharo, W.A.; Zanetti, S.S.; Lehr, A.T.; Lopes, A.C. Hydrological Modelling of Tropical Watersheds under Low Data Availability. Res. Soc. Dev. 2020, 9, e100953262. [Google Scholar] [CrossRef]
- Herrera, P.A.; Marazuela, M.A.; Hofmann, T. Parameter Estimation and Uncertainty Analysis in Hydrological Modeling. Wiley Interdiscip. Rev. Water 2022, 9, e1569. [Google Scholar] [CrossRef]
- Islam, K.I. A Model of Indicators and GIS Maps for the Assessment of Water Resources. J. Water Resour. Prot. 2015, 7, 973. [Google Scholar] [CrossRef] [Green Version]
- Musie, M.; Sen, S.; Srivastava, P. Comparison and Evaluation of Gridded Precipitation Datasets for Streamflow Simulation in Data Scarce Watersheds of Ethiopia. J. Hydrol. 2019, 579, 124168. [Google Scholar] [CrossRef]
- Mills, W.B.; Porcella, D.B.; Ungs, M.J.; Gherini, S.A.; Summers, K.V.; Mok, L.; Rupp, G.L.; Haith, D.A. Water Quality Assessment 1985; United States Environmental Protection Agency: Washington, DC, USA, 1985.
- Krysanova, V.; Hattermann, F.F.; Kundzewicz, Z.W. How Evaluation of Hydrological Models Influences Results of Climate Impact Assessment—An Editorial. Clim. Chang. 2020, 163, 1121–1141. [Google Scholar] [CrossRef]
- Devia, G.K.; Ganasri, B.P.; Dwarakish, G.S. A Review on Hydrological Models. Aquat. Procedia 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
- Segura-Beltrán, F.; Sanchis-Ibor, C.; Morales-Hernández, M.; González-Sanchis, M.; Bussi, G.; Ortiz, E. Using Post-Flood Surveys and Geomorphologic Mapping to Evaluate Hydrological and Hydraulic Models: The Flash Flood of the Girona River (Spain) in 2007. J. Hydrol. 2016, 541, 310–329. [Google Scholar] [CrossRef] [Green Version]
- Kastridis, A.; Theodosiou, G.; Fotiadis, G. Investigation of Flood Management and Mitigation Measures in Ungauged NATURA Protected Watersheds. Hydrology 2021, 8, 170. [Google Scholar] [CrossRef]
- Te Linde, A.H.; Aerts, J.; Dolman, H.; Hurkmans, R. Comparing Model Performance of the HBV and VIC Models in the Rhine Basin. In Proceedings of the International Symposium: Quantification and Reduction of Predictive Uncertainty for Sustainable Water Resources Management-24th General Assembly of the International Union of Geodesy and Geophysics (IUGG), Perugia, Italy, 2–13 July 2007; IAHS-AISH Publication: Perugia, Italy, 2007; pp. 278–285. [Google Scholar]
- Fleming, S.W.; Vesselinov, V.V.; Goodbody, A.G. Augmenting Geophysical Interpretation of Data-Driven Operational Water Supply Forecast Modeling for a Western US River Using a Hybrid Machine Learning Approach. J. Hydrol. 2021, 597, 126327. [Google Scholar] [CrossRef]
- Hossain, S.; Hewa, G.A.; Wella-Hewage, S. A Comparison of Continuous and Event-Based Rainfall–Runoff (RR) Modelling Using EPA-SWMM. Water 2019, 11, 611. [Google Scholar] [CrossRef] [Green Version]
- Horton, P.; Schaefli, B.; Kauzlaric, M. Why Do We Have So Many Different Hydrological Models? A Review Based on the Case of Switzerland. Wiley Interdiscip. Rev. Water 2022, 9, e1574. [Google Scholar] [CrossRef]
- Uwamahoro, S.; Liu, T.; Nzabarinda, V.; Habumugisha, J.M.; Habumugisha, T.; Harerimana, B.; Bao, A. Modifications to Snow-Melting and Flooding Processes in the Hydrological Model—A Case Study in Issyk-Kul, Kyrgyzstan. Atmosphere 2021, 12, 1580. [Google Scholar] [CrossRef]
- Jimeno-Sáez, P.; Senent-Aparicio, J.; Pérez-Sánchez, J.; Pulido-Velazquez, D. A Comparison of SWAT and ANN Models for Daily Runoff Simulation in Different Climatic Zones of Peninsular Spain. Water 2018, 10, 192. [Google Scholar] [CrossRef] [Green Version]
- Hauswirth, S.M.; Bierkens, M.F.P.; Beijk, V.; Wanders, N. The Potential of Data Driven Approaches for Quantifying Hydrological Extremes. Adv. Water Resour. 2021, 155, 104017. [Google Scholar] [CrossRef]
- Jougla, R.; Leconte, R. Short-Term Hydrological Forecast Using Artificial Neural Network Models with Different Combinations and Spatial Representations of Hydrometeorological Inputs. Water 2022, 14, 552. [Google Scholar] [CrossRef]
- Kumar, S.; Zwiers, F.; Dirmeyer, P.A.; Lawrence, D.M.; Shrestha, R.; Werner, A.T. Terrestrial Contribution to the Heterogeneity in Hydrological Changes under Global Warming. Water Resour. Res. 2016, 52, 3127–3142. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, K.; Qin, T.; Lv, Z.; Li, X.; Nie, H.; Liu, F.; He, S. Influence of Subsoiling on the Effective Precipitation of Farmland Based on a Distributed Hydrological Model. Water 2020, 12, 1912. [Google Scholar] [CrossRef]
- Clark, M.P.; Nijssen, B.; Lundquist, J.D.; Kavetski, D.; Rupp, D.E.; Woods, R.A.; Freer, J.E.; Gutmann, E.D.; Wood, A.W.; Brekke, L.D. A Unified Approach for Process-Based Hydrologic Modeling: 1. Modeling Concept. Water Resour. Res. 2015, 51, 2498–2514. [Google Scholar] [CrossRef]
- Kim, C.; Kim, C.-S. Comparison of the Performance of a Hydrologic Model and a Deep Learning Technique for Rainfall—Runoff Analysis. Trop. Cyclone Res. Rev. 2021, 10, 215–222. [Google Scholar] [CrossRef]
- Elias, E.; James, D.; Heimel, S.; Steele, C.; Steltzer, H.; Dott, C. Implications of Observed Changes in High Mountain Snow Water Storage, Snowmelt Timing and Melt Window. J. Hydrol. Reg. Stud. 2021, 35, 100799. [Google Scholar] [CrossRef]
- Elias, E.H.; Rango, A.; Steele, C.M.; Mejia, J.F.; Smith, R. Assessing Climate Change Impacts on Water Availability of Snowmelt-Dominated Basins of the Upper Rio Grande Basin. J. Hydrol. Reg. Stud. 2015, 3, 525–546. [Google Scholar] [CrossRef]
- Finch, D.M. Rio Grande Ecosystems: Linking Land, Water, and People: Toward a Sustainable Future for the Middle Rio Grande Basin: June 2–5, 1998, Albuquerque, New Mexico; Rocky Mountain Research Station: Fort Collins, CO, USA, 1999. [Google Scholar]
- Stockton, G.; Roark, D.M. Upper Rio Grande Water Operations Model: A Tool for Enhanced System Management. In Rio Grande Ecosystems: Linking Land, Water, and People: Toward a Sustainable Future for the Middle Rio Grande Basin. 1998 June 2–5; Albuquerque, NM; Finch Deborah, M., Whitney Jeffrey, C., Kelly Jeffrey, F., Loftin Samuel, R., Eds.; Proc. RMRS-P-7; U.S. Department of Agriculture, Forest Service: Ogden, UT, USA; Rocky Mountain Research Station: Fort Collins, CO, USA, 1999; Volume 7, pp. 61–67. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Yuan, Y.; Nie, W.; Sanders, E. Problems and Prospects of SWAT Model Application on an Arid/Semi-Arid Watershed in Arizona. In Proceedings of the 2015 SEDHYD Conference, Reno, NV, USA, 22 April 2015; pp. 19–23. [Google Scholar]
- Debele, B.; Srinivasan, R.; Gosain, A.K. Comparison of Process-Based and Temperature-Index Snowmelt Modeling in SWAT. Water Resour. Manag. 2010, 24, 1065–1088. [Google Scholar] [CrossRef]
- Fontaine, T.A.; Cruickshank, T.S.; Arnold, J.G.; Hotchkiss, R.H. Development of a Snowfall–Snowmelt Routine for Mountainous Terrain for the Soil Water Assessment Tool (SWAT). J. Hydrol. 2002, 262, 209–223. [Google Scholar] [CrossRef]
- Zhao, H.; Li, H.; Xuan, Y.; Li, C.; Ni, H. Improvement of the SWAT Model for Snowmelt Runoff Simulation in Seasonal Snowmelt Area Using Remote Sensing Data. Remote Sens. 2022, 14, 5823. [Google Scholar] [CrossRef]
- Chavarria, S.B.; Gutzler, D.S. Observed Changes in Climate and Streamflow in the Upper Rio Grande Basin. J. Am. Water Resour. Assoc. 2018, 54, 644–659. [Google Scholar] [CrossRef] [Green Version]
- Islam, K.I.; Elias, E.; Brown, C.; James, D.; Heimel, S. A Statistical Approach to Using Remote Sensing Data to Discern Streamflow Variable Influence in the Snow Melt Dominated Upper Rio Grande Basin. Remote Sens. 2022, 14, 6076. [Google Scholar] [CrossRef]
- Llewellyn, D.; Vaddey, S. Upper Rio Grande Impact Assessment. 2013. Available online: https://digitalrepository.unm.edu/cgi/viewcontent.cgi?article=1078&context=uc_rio_chama (accessed on 15 January 2021).
- Lehner, F.; Wahl, E.R.; Wood, A.W.; Blatchford, D.B.; Llewellyn, D. Assessing Recent Declines in Upper Rio Grande Runoff Efficiency from a Paleoclimate Perspective. Geophys. Res. Lett. 2017, 44, 4124–4133. [Google Scholar] [CrossRef]
- Lehner, F.; Wood, A.W.; Llewellyn, D.; Blatchford, D.B.; Goodbody, A.G.; Pappenberger, F. Mitigating the Impacts of Climate Nonstationarity on Seasonal Streamflow Predictability in the U.S. Southwest. Geophys. Res. Lett. 2017, 44, 12208–12217. [Google Scholar] [CrossRef] [Green Version]
- Bales, R.C.; Molotch, N.P.; Painter, T.H.; Dettinger, M.D.; Rice, R.; Dozier, J. Mountain Hydrology of the Western United States. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Hammouri, N.; Adamowski, J.; Freiwan, M.; Prasher, S. Climate Change Impacts on Surface Water Resources in Arid and Semi-Arid Regions: A Case Study in Northern Jordan. Acta Geod. Geophys. 2017, 52, 141–156. [Google Scholar] [CrossRef] [Green Version]
- Lapp, S.; Byrne, J.; Townshend, I.; Kienzle, S. Climate Warming Impacts on Snowpack Accumulation in an Alpine Watershed. Int. J. Climatol. 2005, 25, 521–536. [Google Scholar] [CrossRef]
- Islam, K.I.; Khan, A.; Islam, T. Correlation between Atmospheric Temperature and Soil Temperature: A Case Study for Dhaka, Bangladesh. Atmos. Clim. Sci. 2015, 5, 200. [Google Scholar] [CrossRef] [Green Version]
- Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.C.; Sheridan, R.P.; Feuston, B.P. Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling. J. Chem. Inf. Comput. Sci. 2003, 43, 1947–1958. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Gounaridis, D.; Chorianopoulos, I.; Symeonakis, E.; Koukoulas, S. A Random Forest-Cellular Automata Modelling Approach to Explore Future Land Use/Cover Change in Attica (Greece), under Different Socio-Economic Realities and Scales. Sci. Total Environ. 2019, 646, 320–335. [Google Scholar] [CrossRef] [PubMed]
- Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R News 2002, 2, 18–22. [Google Scholar]
- Ma, J.; Cheng, J.C.P. Identifying the Influential Features on the Regional Energy Use Intensity of Residential Buildings Based on Random Forests. Appl. Energy 2016, 183, 193–201. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Y.; Wallace, J.; Campbell, E. Estimating Annual Runoff in Response to Forest Change: A Statistical Method Based on Random Forest. J. Hydrol. 2020, 589, 125168. [Google Scholar] [CrossRef]
- Garen, D.; Perkins, T.; Abramovich, R.; Julander, R.; Kaiser, R.; Lea, J.; McClure, R.; Tama, R. Snow Survey and Water Supply Forecasting. In Water Supply Forecasting; VI-NEH, Amend. 41; Natural Resources Conservation Service, USDA: Washington, DC, USA, 2011; p. 210. [Google Scholar]
- Zhang, Y.; Touzi, R.; Feng, W.; Hong, G.; Lantz, T.C.; Kokelj, S.V. Landscape-Scale Variations in near-Surface Soil Temperature and Active-Layer Thickness: Implications for High-Resolution Permafrost Mapping. Permafr. Periglac. Process. 2021, 32, 627–640. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Dunne, K.A. Colorado River Flow Dwindles as Warming-Driven Loss of Reflective Snow Energizes Evaporation. Science 2020, 367, 1252–1255. [Google Scholar] [CrossRef]
- Sexstone, G.A.; Driscoll, J.M.; Hay, L.E.; Hammond, J.C.; Barnhart, T.B. Runoff Sensitivity to Snow Depletion Curve Representation within a Continental Scale Hydrologic Model. Hydrol. Process. 2020, 34, 2365–2380. [Google Scholar] [CrossRef]
- Cooley, E.; Frame, D.; Wunderlin, A. Soil Moisture and Potential for Runoff. 2010, p. 6. Available online: https://uwdiscoveryfarms.org/UWDiscoveryFarms/media/sitecontent/PublicationFiles/farmpagel/Soil-Moisture-and-Potential-for-Runoff-factsheet.pdf?ext=.pdf (accessed on 7 February 2023).
- Oubeidillah, A.; Tootle, G.; Piechota, T. Incorporating Antecedent Soil Moisture into Streamflow Forecasting. Hydrology 2019, 6, 50. [Google Scholar] [CrossRef] [Green Version]
- Gascoin, S.; Grizonnet, M.; Bouchet, M.; Salgues, G.; Hagolle, O. Theia Snow Collection: High-Resolution Operational Snow Cover Maps from Sentinel-2 and Landsat-8 Data. Earth Syst. Sci. Data 2019, 11, 493–514. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-E. Variations of Microwave Scattering Properties by Seasonal Freeze/Thaw Transition in the Permafrost Active Layer Observed by ALOS PALSAR Polarimetric Data. Remote Sens. 2015, 7, 17135–17148. [Google Scholar] [CrossRef] [Green Version]
- Muhuri, A.; Manickam, S.; Bhattacharya, A. Snow Cover Mapping Using Polarization Fraction Variation with Temporal RADARSAT-2 C-Band Full-Polarimetric SAR Data over the Indian Himalayas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2192–2209. [Google Scholar] [CrossRef]
- Qiao, D.; Li, Z.; Zhang, P.; Zhou, J.; Liang, S. Prediction of Snow Depth Based on Multi-Source Data and Machine Learning Algorithms. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 5578–5581. [Google Scholar]
- Schoppa, L.; Disse, M.; Bachmair, S. Evaluating the Performance of Random Forest for Large-Scale Flood Discharge Simulation. J. Hydrol. 2020, 590, 125531. [Google Scholar] [CrossRef]
- Liu, D.; Fan, Z.; Fu, Q.; Li, M.; Faiz, M.A.; Ali, S.; Li, T.; Zhang, L.; Khan, M.I. Random Forest Regression Evaluation Model of Regional Flood Disaster Resilience Based on the Whale Optimization Algorithm. J. Clean. Prod. 2020, 250, 119468. [Google Scholar] [CrossRef]
- Liu, J.; Xiong, J.; Chen, Y.; Sun, H.; Zhao, X.; Tu, F.; Gu, Y. A New Avenue to Improve the Performance of Integrated Modeling for Flash Flood Susceptibility Assessment: Applying Cluster Algorithms. Ecol. Indic. 2023, 146, 109785. [Google Scholar] [CrossRef]
- Archer, K.J.; Kimes, R.V. Empirical Characterization of Random Forest Variable Importance Measures. Comput. Stat. Data Anal. 2008, 52, 2249–2260. [Google Scholar] [CrossRef]
- Jiang, W.; Pokharel, B.; Lin, L.; Cao, H.; Carroll, K.C.; Zhang, Y.; Galdeano, C.; Musale, D.A.; Ghurye, G.L.; Xu, P. Analysis and Prediction of Produced Water Quantity and Quality in the Permian Basin Using Machine Learning Techniques. Sci. Total Environ. 2021, 801, 149693. [Google Scholar] [CrossRef]
- Virro, H.; Kmoch, A.; Vainu, M.; Uuemaa, E. Random Forest-Based Modeling of Stream Nutrients at National Level in a Data-Scarce Region. Sci. Total Environ. 2022, 840, 156613. [Google Scholar] [CrossRef]
- Cho, E.; Jacobs, J.M.; Jia, X.; Kraatz, S. Identifying Subsurface Drainage Using Satellite Big Data and Machine Learning via Google Earth Engine. Water Resour. Res. 2019, 55, 8028–8045. [Google Scholar] [CrossRef]
- QGIS.Org 2020.QGIS Geogrpahic Information System. QGIS Association. Available online: http://www.qgis.org (accessed on 7 August 2023).
- PRISM Climate Group. Oregon State U. Available online: http://www.prism.oregonstate.edu/historical/ (accessed on 5 June 2020).
- Daly, C.; Bryant, K. The PRISM Climate and Weather System—An Introduction; Northwest Alliance for Computational Science and Engineering, Oregon State University: Corvallis, OR, USA, 2013; Volume 2. [Google Scholar]
- Hooper, R.; Clark, J.; Richter, D.; Harmon, M. Chris Daly (Precipitation). PRISM Climate Group: Corvallis, OR, USA.
- Xia, Y.; Mitchell, K.; Ek, M.; Sheffield, J.; Cosgrove, B.; Wood, E.; Luo, L.; Alonge, C.; Wei, H.; Meng, J. NLDAS NOAH Land Surface Model L4 Hourly 0.125 × 0.125 Degree V002; NASA: Greenbelt, MD, USA, 2012; p. 1025. Available online: https://disc.gsfc.nasa.gov/datasets/NLDAS_NOAH0125_H_2.0/summary (accessed on 2 July 2020).
- Data Access—Smerge Version 2.0. Available online: https://www.tamiu.edu/cees/smerge/data.shtml (accessed on 5 June 2020).
- Goodbody, A. Hydrologist, Natural Resources Conservation Service (NRCS). Personal communication, 24 June 2020.
- Allaire, J. RStudio: Integrated Development Environment for R; RPubs: Boston, MA, USA, 2012; Volume 770, pp. 165–171. [Google Scholar]
- Hijmans, R.J.; van Etten, J.; Sumner, M.; Cheng, J.; Baston, D.; Bevan, A.; Bivand, R.; Busetto, L.; Canty, M.; Fasoli, B.; et al. Raster: Geographic Data Analysis and Modeling. 2023. Available online: https://cran.r-project.org/web/packages/raster/raster.pdf (accessed on 3 February 2023).
- RColor Brewer, S.; Liaw, M.A. Package ‘Randomforest’; University of California, Berkeley: Berkeley, CA, USA, 2018. [Google Scholar]
- Hoerl, A.E.; Kennard, R.W. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Efron, B. Jackknife-after-Bootstrap Standard Errors and Influence Functions. J. R. Stat. Soc. Ser. B Stat. Methodol. 1992, 54, 83–111. [Google Scholar] [CrossRef]
- Dewi, C.; Chen, R.-C. Random Forest and Support Vector Machine on Features Selection for Regression Analysis 2019. Int. J. Innov. Comput. Inf. Control 2019, 15, 2027–2037. [Google Scholar]
- Abbaspour, K.C. SWATCalibration and Uncertainty Programs. 2015, p. 100. Available online: https://swat.tamu.edu/media/114860/usermanual_swatcup.pdf (accessed on 12 January 2023).
- Baskaran, L.; Jager, H.I.; Schweizer, P.E.; Srinivasan, R. Progress toward Evaluating the Sustainability of Switchgrass as a Bioenergy Crop Using the SWAT Model. Trans. ASABE 2010, 53, 1547–1556. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Salvador, A.; Conesa-García, C. Suitability of the SWAT Model for Simulating Water Discharge and Sediment Load in a Karst Watershed of the Semiarid Mediterranean Basin. Water Resour. Manag. 2020, 34, 785–802. [Google Scholar] [CrossRef]
- Moges, E.; Demissie, Y.; Larsen, L.; Yassin, F. Review: Sources of Hydrological Model Uncertainties and Advances in Their Analysis. Water 2020, 13, 28. [Google Scholar] [CrossRef]
- Tran, Q.Q.; Niel, J.D.; Willems, P. Spatially Distributed Conceptual Hydrological Model Building: A Generic Top-Down Approach Starting from Lumped Models. Water Resour. Res. 2018, 54, 8064–8085. [Google Scholar] [CrossRef] [Green Version]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Soil and Water Assessment Tool Input/Output File Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- de Almeida Bressiani, D.; Srinivasan, R.; Jones, C.A.; Mendiondo, E.M. Effects of Spatial and Temporal Weather Data Resolutions on Streamflow Modeling of a Semi-Arid Basin, Northeast Brazil. Int. J. Agric. Biol. Eng. 2015, 8, 125–139. [Google Scholar]
- Acharya, A. Modeled hydrologic response under climate change impacts over the bankhead national forest in northern alabama. Eur. Sci. J. 2015, 15, 140–154. [Google Scholar]
- Fuka, D.R.; Walter, M.T.; MacAlister, C.; Degaetano, A.T.; Steenhuis, T.S.; Easton, Z.M. Using the Climate Forecast System Reanalysis as Weather Input Data for Watershed Models. Hydrol. Process. 2014, 28, 5613–5623. [Google Scholar] [CrossRef]
- Auerbach, D.A.; Easton, Z.M.; Walter, M.T.; Flecker, A.S.; Fuka, D.R. Evaluating Weather Observations and the Climate Forecast System Reanalysis as Inputs for Hydrologic Modelling in the Tropics. Hydrol. Process. 2016, 30, 3466–3477. [Google Scholar] [CrossRef]
- Salami, A.W.; Bilewu, S.O.; Ibitoye, B.A.; Ayanshola, M.A. Runoff Hydrographs Using Snyder and SCS Synthetic Unit Hydrograph Methods: A Case Study of Selected Rivers in South West Nigeria. J. Ecol. Eng. 2017, 18, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Sapountzis, M.; Kastridis, A.; Kazamias, A.P.; Karagiannidis, A.; Nikopoulos, P.; Lagouvardos, K. Utilization and Uncertainties of Satellite Precipitation Data in Flash Flood Hydrological Analysis in Ungauged Watersheds. Glob. Nest J. 2021, 23, 388–399. [Google Scholar]
- Mockus, V. National Engineering Handbook; US Soil Conservation Service: Washington, DC, USA, 1964; Volume 4.
- Askar, M.K. Rainfall-Runoff Model Using the SCS-CN Method and Geographic Information Systems: A Case Study of Gomal River Watershed. WIT Trans. Ecol. Environ. 2013, 178, 159–170. [Google Scholar]
- Willmott, C.J.; Robeson, S.M.; Matsuura, K. A Refined Index of Model Performance. Int. J. Climatol. 2012, 32, 2088–2094. [Google Scholar] [CrossRef]
- Sao, D.; Kato, T.; Tu, L.H.; Thouk, P.; Fitriyah, A.; Oeurng, C. Evaluation of Different Objective Functions Used in the SUFI-2 Calibration Process of SWAT-CUP on Water Balance Analysis: A Case Study of the Pursat River Basin, Cambodia. Water 2020, 12, 2901. [Google Scholar] [CrossRef]
- Singh, V.P. Hydrologic Modeling: Progress and Future Directions. Geosci. Lett. 2018, 5, 15. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Stephanie Latin Hypercube Sampling: Simple Definition. Available online: https://www.statisticshowto.com/latin-hypercube-sampling/ (accessed on 14 April 2021).
- Abbaspour, K.C.; Vaghefi, S.A.; Srinivasan, R. A Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference. Water 2017, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, H.L.; Reynolds, R.L.; Landry, C.; Derry, J.E.; Kokaly, R.F.; Breit, G.N. The Effects of Dust on Colorado Mountain Snow Cover Albedo and Compositional Links to Dust-Source Areas. In AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2016; Volume 21. [Google Scholar]
- Landry, C.; Buck, K. Dust-on-Snow Effects on Colorado Hydrographs. 2014, p. 6. Available online: https://westernsnowconference.org/sites/westernsnowconference.org/PDFs/2014Landry.pdf (accessed on 12 August 2019).
- Painter, T.H.; Skiles, S.M.; Deems, J.S.; Bryant, A.C.; Landry, C.C. Dust Radiative Forcing in Snow of the Upper Colorado River Basin: 1. A 6 Year Record of Energy Balance, Radiation, and Dust Concentrations. Water Resour. Res. 2012, 48, 7521. [Google Scholar] [CrossRef] [Green Version]
Variable | Data Format | Unit | Sources |
---|---|---|---|
Minimum temperature | Raster: monthly mean | Celsius (°C) | PRISM—Parameter-elevation Regression on Independent Slopes Model [71] |
Precipitation | Raster: monthly mean | mm | PRISM—Parameter-elevation Regression on Independent Slopes Model [72,73] |
Sublimation | Raster: monthly mean | Watt/m2 | Goddard Earth Sciences Data and Information Services Center (GES DISC), National Aeronautics and Space Administration (NASA) [74] |
Soil moisture | Raster: monthly mean | Kg/m2 | Center for Earth and Environmental Studies, Texas A & M Intl. University [75] |
Snow depth | Raster: monthly mean | Meter (m) | Goddard Earth Sciences Data and Information Services Center (GES DISC), National Aeronautics and Space Administration (NASA) [74] |
Streamflow | Hydrograph: monthly Volm | Ac-ft | Natural Resources Conservation Services (NRCS) [76] |
Data Type | Data Description/Scale | Data Sources |
---|---|---|
Topography | SRTM DEM (WGS 1984) with 30 m resolution | Shuttle Radar Topography Mission (SRTM) of USGS, https://earthexplorer.usgs.go, accessed on 21 June 2021 |
Land use | Global land use and land cover, ESRI GRID (WGS 1984), and raster layer | Food and Agricultural Organization (FAO), dominant land cover and use |
Soil | Digitized soil map of the world, at 1:5,000,000 scale, is in the geographic projection, Clarke 1866 | FAO digital soil map of the world |
Meteorology | Daily precipitation, minimum, and maximum temperature of global atmospheric reanalysis dataset. Other variables from the weather generator | Climate Forecast System Reanalysis (CFSR), SWAT weather generator, UGEN_US_FirstOrder [88,90,91,92,93] |
Streamflow | Hydrography (cubic feet per second): yearly mean | National Water Information System (NWIS): web interface of USGS |
Input Variable | SWAT Class | Name/Description | Area [sq-km] | % Watershed |
---|---|---|---|---|
CRDY | Dryland cropland and pasture | 3207.38 | 94.87 | |
Land use land cover | CRWO | Cropland–woodland mosaic | 170.08 | 5.03 |
SAVA | Savanna grasses and scattered trees | 3.36 | 0.10 | |
Soil | I-Rc-77 | Alvi Lovisoils | 3380.82 | 99.88 |
Jc4-2a-116 | Eutric Regosols | 0.95 | 0.12 |
Objective Functions | Equations | No. |
---|---|---|
Index of agreement (d) | ) × 100 | (4) |
Coefficient of determination (R2) | (5) | |
Nash–Sutcliffe efficiency (NSE) | (6) | |
Root mean standard deviation ratio (RSR) | (7) | |
Percent bias (PBIAS%) | (8) |
Objective Function | R2 | d | NSE | RSR | PBIAS | Sources |
---|---|---|---|---|---|---|
Range | 0 to 1 | 0 to 1 | α to 1 | 0 to α | α to α | [85,98,99] |
Optimal value | 1 | 1 | 1 | 0 | 0 | |
Satisfactory value | >0.5 | >0.4 | <0.5 | <0.7 | −25 to 25 |
Parameter Name | Meaning | Min | Max | Fitted Value (Monthly) | Fitted Value (Yearly) |
---|---|---|---|---|---|
CN2.mgt | SCS runoff curve number for moisture condition II | −0.5 | 0.5 | 0.33 | −0.35 |
ALPHA_BF.gw | Baseflow alpha factor | 0 | 1 | 0.67 | 0.25 |
GW_DELAY.gw | Groundwater delay time (days) | 0 | 500 | 265 | 125 |
GWQMN.gw | Aquifer required for return flow to occur (mm H2O) | 0 | 5000 | 650 | 4250 |
SMTMP.bsn | Snowmelt base temperature (°C) | −5 | 5 | 3.9 | −1.5 |
SLSUBBSN.hru | Average slope length (m) | 10 | 150 | 33.80 | 31 |
GW REVAP.gw | Groundwater “revap” coefficient | 0.02 | 0.2 | 0.12 | 0.17 |
SMFMN.bsn | Melt factor for snow on 21 December (mm H2O/°C-day) | 0 | 10 | 4.9 | 7.5 |
SMFMX.bsn | Melt factor for snow on 21 June (mm H2O/°C-day) | 0 | 10 | 7.5 | 5.5 |
SFTMP.bsn | Snowfall temperature (°C) | −5 | 5 | 4.5 | −2.5 |
EPCO.bsn | Plant uptake compensation factor | 0.01 | 1 | 0.22 | 0.95 |
ESCO.bsn | Soil evaporation compensation factor | 0.01 | 1 | 0.18 | 0.95 |
CH N2.rte | Manning’s “n” value for the main channel | 0 | 0.3 | 0.24 | 0.26 |
CH K2.rte | Effective hydraulic conductivity in main channel alluvium (mm/h) | 0 | 150 | 13.5 | 52.5 |
TIMP.bsn | Snowpack temperature lag factor | 0.01 | 1 | 0.65 | 0.26 |
REVAPMN.gw | Aquifer for “revap” or percolation to the deep aquifer to occur (mm H2O) | 0 | 500 | 455 | 225 |
HRU SLP.hru | Average slope steepness (m/m) | 0 | 1 | 0.13 | 0.15 |
SOL_Z | Depth from soil surface to bottom of layer (mm) | −0.5 | 0.5 | 0.41 | 0.15 |
SOL_AWC | Available water capacity of the soil layer (mm H2O/mm soil) | −0.5 | 0.5 | 0.43 | 0.05 |
SOL_K | Saturated hydraulic conductivity (mm/h) | −0.8 | 0.8 | 0.66 | −0.72 |
SOL_ALB | Moist soil albedo | - 0.5 | 0.5 | −0.37 | 0.45 |
SURLAG.bsn | Average slope length (m) | 1 | 24 | 9.51 | 13.65 |
Objective Functions | Monthly | Yearly | ||
---|---|---|---|---|
Calibration | Validation | Calibration | Validation | |
d | 0.09 | 0.34 | 0.70 | 0.71 |
R-squared | 0.02 | 0.02 | 0.56 | 0.72 |
NS | −0.16 | −0.66 | 0.08 | −1.39 |
RSR | 1.07 | 1.29 | 0.96 | 1.54 |
PBIAS% | 5.3 | 24.77 | −23.8 | −24.60 |
Training Periods and Training/Validation Data Ratio (%) | d | R2 | PBIAS % | NSE | RSR | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cross-Validation | Validation | Cross-Validation | Validation | Cross-Validation | Validation | Cross-Validation | Validation | Cross-Validation | Validation | ||
2001–2010 | 62.5 | 0.902 | 0.918 | 0.839 | 0.791 | −1.949 | 4.982 | 0.699 | 0.763 | 0.526 | 0.487 |
1996–2010 | 71 | 0.911 | 0.952 | 0.785 | 0.835 | 0.440 | 1.939 | 0.751 | 0.833 | 0.461 | 0.409 |
1991–2010 | 77 | 0.922 | 0.956 | 0.804 | 0.846 | −0.312 | 1.079 | 0.758 | 0.845 | 0.482 | 0.394 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, K.I.; Elias, E.; Carroll, K.C.; Brown, C. Exploring Random Forest Machine Learning and Remote Sensing Data for Streamflow Prediction: An Alternative Approach to a Process-Based Hydrologic Modeling in a Snowmelt-Driven Watershed. Remote Sens. 2023, 15, 3999. https://doi.org/10.3390/rs15163999
Islam KI, Elias E, Carroll KC, Brown C. Exploring Random Forest Machine Learning and Remote Sensing Data for Streamflow Prediction: An Alternative Approach to a Process-Based Hydrologic Modeling in a Snowmelt-Driven Watershed. Remote Sensing. 2023; 15(16):3999. https://doi.org/10.3390/rs15163999
Chicago/Turabian StyleIslam, Khandaker Iftekharul, Emile Elias, Kenneth C. Carroll, and Christopher Brown. 2023. "Exploring Random Forest Machine Learning and Remote Sensing Data for Streamflow Prediction: An Alternative Approach to a Process-Based Hydrologic Modeling in a Snowmelt-Driven Watershed" Remote Sensing 15, no. 16: 3999. https://doi.org/10.3390/rs15163999
APA StyleIslam, K. I., Elias, E., Carroll, K. C., & Brown, C. (2023). Exploring Random Forest Machine Learning and Remote Sensing Data for Streamflow Prediction: An Alternative Approach to a Process-Based Hydrologic Modeling in a Snowmelt-Driven Watershed. Remote Sensing, 15(16), 3999. https://doi.org/10.3390/rs15163999