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Abstract: Physically based hydrologic models require significant effort and extensive information for
development, calibration, and validation. The study explored the use of the random forest regression
(RFR), a supervised machine learning (ML) model, as an alternative to the physically based Soil and
Water Assessment Tool (SWAT) for predicting streamflow in the Rio Grande Headwaters near Del
Norte, a snowmelt-dominated mountainous watershed of the Upper Rio Grande Basin. Remotely
sensed data were used for the random forest machine learning analysis (RFML) and RStudio for
data processing and synthesizing. The RFML model outperformed the SWAT model in accuracy and
demonstrated its capability in predicting streamflow in this region. We implemented a customized
approach to the RFR model to assess the model’s performance for three training periods, across
1991–2010, 1996–2010, and 2001–2010; the results indicated that the model’s accuracy improved
with longer training periods, implying that the model trained on a more extended period is better
able to capture the parameters’ variability and reproduce streamflow data more accurately. The
variable importance (i.e., IncNodePurity) measure of the RFML model revealed that the snow depth
and the minimum temperature were consistently the top two predictors across all training periods.
The paper also evaluated how well the SWAT model performs in reproducing streamflow data of
the watershed with a conventional approach. The SWAT model needed more time and data to
set up and calibrate, delivering acceptable performance in annual mean streamflow simulation,
with satisfactory index of agreement (d), coefficient of determination (R2), and percent bias (PBIAS)
values, but monthly simulation warrants further exploration and model adjustments. The study
recommends exploring snowmelt runoff hydrologic processes, dust-driven sublimation effects, and
more detailed topographic input parameters to update the SWAT snowmelt routine for better monthly
flow estimation. The results provide a critical analysis for enhancing streamflow prediction, which
is valuable for further research and water resource management, including snowmelt-driven semi-
arid regions.

Keywords: streamflow prediction; random forest machine learning; hydrologic modeling; water
resource management; remote sensing data; climate change

1. Introduction

Various modeling tools have been developed and widely used worldwide to predict
hydrologic responses [1,2] and are deemed essential for water resource management [3,4],
particularly in areas where the hydrologic data or information is limited [5–7]. Monitoring

Remote Sens. 2023, 15, 3999. https://doi.org/10.3390/rs15163999 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15163999
https://doi.org/10.3390/rs15163999
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-7735-0672
https://orcid.org/0000-0001-9964-3177
https://orcid.org/0000-0003-2097-9589
https://orcid.org/0000-0002-3622-6226
https://doi.org/10.3390/rs15163999
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15163999?type=check_update&version=4


Remote Sens. 2023, 15, 3999 2 of 27

is more reliable but is constrained by limited time and resources to collect sufficient data for
adequate systems analysis [8–10]. In contrast, hydrologic modeling can interpolate between
the data gaps and improve understanding of the processes and the parameters [6,8,11]. Fur-
thermore, it is cost-effective and time-saving to help estimate flows to support monitoring,
especially when high accuracy is not urgent at the primary stage [12].

However, hydrological processes are sometimes difficult to explain due to the non-
linear climatic and hydrologic factors and the complex parameter relationships [1,13].
Many hydrologic models need improved methods for simulating streamflow across water-
sheds [13,14]. Although the overall performances of these models have been improved in
recent times, the models still warrant further exploration in delineating spatially distributed
hydrologic processes [13,15], and researchers should explore the various approaches in
simulating hydrologic responses for different watersheds [16,17]. Much past and current
research has focused on determining which model among differing model types provides
improved predictions that are well matched with observed data [2,18,19].

Selecting an appropriate model for a specific application is critical, as different mod-
els have different characteristics and methods and are compatible with varying areas of
study [14,20]. For example, Devia et al. (2015) evaluated five hydrologic models: VIC,
TOPMODEL, HBV, MIKE SHE, and SWAT. The VIC model was suitable for agricultural
water management in moist areas, whereas the MIKE SHE model was unsuitable for
smaller watersheds due to the extensive data and physical parameters required. Besides,
the SWAT model needed little calibration to achieve acceptable results, whereas the HBV
model performed satisfactorily, and the TOPMODEL was successful in catchments with
shallow soil and moderate topography [14]. Thus, finding a suitable tool for hydrographic
(i.e., streamflow) prediction is challenging due to the unique dynamics of each basin, and
there is no single model that is perfect for all basins [1,21]. Moreover, hydrologic factors
influencing hydrography vary spatially and temporally [2,14]. Therefore, decision-makers
in watershed management should adopt a suitable approach for acquiring reliable monitor-
ing, modeling, and system characterization information, emphasizing the model’s ability
to capture spatiotemporal variability, suitability for specific time scales, and flexibility in
accommodating different climatic conditions.

Various types of models exist, from physically based distributed models to empirical
ones [1,22]. Physically based models simulate flow in a river basin based on climatic and
hydrologic variables, providing insights into river basin processes [23]. However, the
physically-based models require considerable effort and extensive information for devel-
opment, whereas semi-distributed models divide the watershed into units and capture
spatial heterogeneity [24], providing flexibility in data requirements and making them
more suitable for practical applications in data-limited regions [25]; a well-calibrated semi-
distributed model can adequately represent hydrological processes with balance accuracy
and computational efficiency and provide reliable predictions with fewer computational
resources than a fully distributed model [25–27]. However, calibrating the numerous param-
eters makes the process complex and time-consuming but may sometimes produce different
results from observed data due to model structure and parameter uncertainty [23,28]. Em-
pirical models, on the other hand, can be appropriate when the data are limited or the
physical processes are highly complex and uncertain [1,28]. Past studies also indicated that
complex models were only sometimes the most accurate, whereas simple empirical models
were more effective in reproducing observed flow [14,17]. Hence, we intend to identify
simplicity that retains high accuracy.

Machine learning (ML) has emerged as an efficient alternative to physical process-
based models due to its simplicity and ability to model complex non-linear systems and
estimate variables such as streamflow from the other input variables [1,28]. The study
aims to assess the capability of an ML approach in predicting streamflow as an alternative
to a semi-distributed model. This study compared the random forest machine learning
(RFML) model with the Soil and Water Assessment Tool (SWAT) for estimating long-term
streamflow in a snowmelt-led mountainous watershed.
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Although both SWAT and RFML have been examined separately in hydrographic
prediction in the past [1,23], limited research has compared them [1,28]. Recent studies
have shown improved results with ML methods, including random forest (RF) [1,23].
Snowmelt runoff modeling (SRM) has been previously studied and used in this study
area [29,30], and a water operations model—URGWOM (Upper Rio Grande Water Opera-
tions Model) has also been developed [31,32]. However, the suitability of SWAT, a widely
used semi-distributed model, is still unexplored for the study area. SWAT represents the
complexity of hydrological processes by combining physical understanding and empirical
calibration [33]. Although initially designed for large agricultural basins, not for modeling
the heterogeneous mountain basins [5,34], SWAT often performed poorly in mountainous
locations and required additional routines to be efficient; many published approaches used
integrated features within SWAT [35–37].

Nonetheless, evaluating SWAT’s performance for such regions could be valuable for
further research, providing information on water balance and related parameters [22]. How-
ever, rather than developing techniques or routines for model enhancement, the study’s
secondary objective is to evaluate how well the SWAT model performs in reproducing
the streamflow of the study watershed with a conventional approach and to document
this effort for future research. The RFML approach in predicting streamflow for this study
area is novel, and the comparison with SWAT is also novel. Additionally, the study iden-
tified critical parameters and drivers affecting surface water supplies, which are critical
for effectively modeling and monitoring water resource systems, particularly in semi-arid
snowmelt-driven watersheds. The research outcomes have significant implications for
water resource management and ecosystem services.

2. Materials and Methods
2.1. Study Watershed

The study watershed is Rio Grande Headwaters (RGH) near Del Norte (Figure 1) of the
Upper Rio Grande (URG) basin of southwestern Colorado and northern New Mexico in the
United States (US). The RGH is located at the upper reaches of the San Juan Mountains, in
the upper part of the URG basin [30]. A snow-dominated hydrologic regime characterizes
the watershed’s hydrology. The watershed covers an area of approximately 3380 square
kilometers and includes high-elevation alpine terrain, forested mountain slopes, and some
lower-elevation agricultural regions. The elevation of the watershed ranges from 2434
to 4215 m above sea level, with an average of 3230.68 m. Most of the annual streamflow
occurs during the spring and early summer as the snowpack melts, which can contribute
significant flow to the RG downstream [38,39]. The URG basin exhibits variability in
temperature and precipitation based on latitude and elevation. The watershed’s annual
average temperatures are −6 to −1 ◦C, ranging from −6 to 7 ◦C, and it receives an average
annual precipitation of approximately 630 mm, with much of this falling as snow in
the winter months [38,40]. A series of steep-sided valleys and ridges characterize the
topography of the watershed. Overall, the complex landscape and topography of the
watershed can pose challenges in accurately simulating flow [29].

Efficient management of water resources in the semi-arid Southwest is critical due to
recurring droughts, which are expected to worsen with climate change [38,41,42]. Projected
climate change and related impacts on water resources in the diverse US Southwest are
expected to vary as a function of local elevation and even by hillslope orientation [29,39,43].
The runoff ratio reduction suggests a potential future decline in streamflow due to rising
temperatures [41,42]. Climate change may significantly affect various hydro-geo-climatic
factors of the RGH watershed, leading to a compounded decline in runoff, which serves as
a vital upstream source and water supply for the entire URG basin. The URG basin’s declin-
ing snowpack affects streamflow dynamics, potentially impacting agriculture, ecosystems,
and socio-technical systems [38,41,43]. Long-term simulations through robust models are
needed to efficiently predict streamflow and manage water resources in the region [44].
Temperature rise and precipitation variability are consistently projected across various
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models [18,45], whereas other crucial variables specific to local contexts are often over-
looked. The study’s underlying interest is exploring critical components/factors to the
watershed’s streamflow dynamics by analyzing the parameter sensitivity of SWAT and
variable importance measures of RFML.
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2.2. Prediction Methods and Predictor Variables

Different research groups use different variables and empirical techniques for runoff
estimation. For example, the NRCS employed multiple linear regression models that
establish a mathematical relationship between predictor and response variables expressed
through equations [18]. However, linear methods are appropriate for only some limited
cases [46]; conversely, ensemble decision tree-based algorithms are suitable for diverse data,
can ignore irrelevant predictors, and handle both linear and non-linear mechanisms being
interpretable [47]. RF is a unique ensemble method with inherent accuracy estimation
and predictor importance measures [47,48]. We selected RF for its ability to identify and
rank important predictors through variable importance measures. Furthermore, the RF
algorithm can efficiently use data from diverse sources with different scales, effectively
deals with multicollinearity, and does not require normal data distribution [49]. It can
capture non-linear relationships despite some collinearity [50,51] since it does not depend
on the linearity assumption between predictor and response variables, making it relatively
robust to collinearity compared to other regression methods, such as linear regression [52].

Various predictor variables, including snow water equivalent (SWE), snow depth, pre-
cipitation, antecedent streamflow, soil moisture, sublimation, temperature, etc., have been
used in various studies in predicting the streamflow of the region [18,38,39]. The Natural
Resources Conservation Service (NRCS) uses several predictor variables, including snow
water equivalent (SWE), precipitation, antecedent streamflow, temperature, groundwater
levels, and soil water content, to forecast seasonal streamflow volume [18,53]. Studies indi-
cated that minimum temperature is often significantly connected to snowmelt timing and
rate, affecting snow cover’s persistence and the snowmelt initiation time [45,54]. Elevated
minimum temperatures accelerate snowmelt, leading to earlier peak snowmelt and lower
overall snow water equivalent [39,55]. However, the minimum temperature and snowmelt
relationship depends on many factors, such as snowpack characteristics, elevation, and
regional climate patterns [29,54]. The increasing temperatures can also increase sublima-
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tion by enabling greater latent heat absorption into the snowpack, causing a reduction in
snowpack and earlier runoff and reducing water supplies after runoff [45,55].

Snowpack properties and distribution are vital for water supplies in snowmelt-
dominated river systems, acting as a reservoir and contributing significantly to runoff
patterns [53,56]. Runoff can also be influenced by soil moisture, an essential factor in
providing water from snowmelt runoff and precipitation [57,58]. Based on the literature
review [18,38,39,53,54,58], we selected five non-mutually exclusive predictor variables—
minimum temperature, snow depth, precipitation, soil moisture, and sublimation for
streamflow prediction using the RFML model, as these variables can interact in complex
ways and may co-occur to influence streamflow.

Several studies emphasized understanding the dynamics of variables’ influence on
estimating runoff [39,59,60] and discussed the potential applications of remote sensing
techniques in monitoring variables’ variability for improving prediction [37,59]. The advent
of novel techniques in remote sensing has enhanced its capability to address the spatial and
temporal variability of snow factors [39,60]. Many researchers, therefore, utilized remote
sensing data and techniques such as synthetic aperture radar (SAR) and optical remote
sensing (ORS) to monitor these variables’ variability [59,61,62].

2.3. Random Forest Machine Learning (RFML)

RFML is a supervised ML method that creates multiple decision trees for the prediction
model, where each tree is trained on a randomly selected subset of the available training
data [48]. During prediction, the algorithm combines the predictions from each decision
tree to generate a final prediction [1,47,63]. In addition, the RFML can handle missing data
and non-linear relationships between the predictors and the target variable [1,63].

RFML: Random Forest Regression (RFR)

RFR is a specific type of RFML that is effective for predicting continuous values [64];
it generates many decision trees on different data subsets, and the final prediction is
made by averaging the results of all the individual trees. RFR has been widely used for
hydrologic prediction utilizing meteorological and hydrological parameters; its feature
of identifying the most critical predictor variables helps comprehend underlying hydro-
logical processes [65–67]. Studies have demonstrated the superiority of RFR over other
ML algorithms and traditional statistical methods in streamflow prediction [63], espe-
cially in regions with intricate hydrological processes and limited data availability [64,68].
Cho et al. (2019) successfully applied RFML predicting hydrographs in snowmelt-driven
mountainous watersheds [69]. RFML has become popular in the remote sensing and hy-
drology communities due to its higher accuracy in streamflow predictions and flood risk
management, which have traditionally been challenging with traditional approaches [69].

2.4. Data Description

The study used a 30 m × 30 m resolution digital elevation model (DEM) obtained
from the Shuttle Radar Topography Mission (SRTM) of the United States Geological Survey
(USGS) EarthExplorer and extracted it using QGIS 3.16 [70]. The watershed was delin-
eated using the DEM and the operational USGS gauging station (Lat 37◦41′19.0′′, Lon
106◦27′35.5′′, NAD83) at Del Norte (08220000) (Appendix A). Monthly time-step data for
selected predictors (i.e., minimum temperature, snow depth, precipitation, soil moisture,
and sublimation) and response (i.e., streamflow) variables were gathered from January
1991 to December 2016 from various sources summarized in Table 1.
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Table 1. Variables used in the study and their respective data format and sources.

Variable Data Format Unit Sources

Minimum
temperature Raster: monthly mean Celsius (◦C)

PRISM—Parameter-elevation
Regression on Independent

Slopes Model [71]

Precipitation Raster: monthly mean mm
PRISM—Parameter-elevation
Regression on Independent

Slopes Model [72,73]

Sublimation Raster: monthly mean Watt/m2

Goddard Earth Sciences Data
and Information Services

Center (GES DISC), National
Aeronautics and Space

Administration (NASA) [74]

Soil moisture Raster: monthly mean Kg/m2
Center for Earth and

Environmental Studies, Texas
A & M Intl. University [75]

Snow depth Raster: monthly mean Meter (m)

Goddard Earth Sciences Data
and Information Services

Center (GES DISC), National
Aeronautics and Space

Administration (NASA) [74]

Streamflow Hydrograph:
monthly Volm Ac-ft

Natural Resources
Conservation Services

(NRCS) [76]

To prepare the remote sensing data for analysis, we first disaggregated the original
monthly raster cells to a resolution of 30 m × 30 m. Then, we clipped the resulting cells to
the sub-watershed border. Subsequently, the sub-watershed responses were derived as the
average of the disaggregated pixels, determining the monthly mean values of the variables
of interest. All data processing and analysis were conducted using RStudio [77]. We use
the raster packages’ disaggregate () function that employs bilinear interpolation in raster
resampling [78].

We extracted the randomForest package [79] to develop the RFR model. The target
variable and input features are defined in the training set. The general process primarily
splits the data into training and validation sets through bootstrapping and out-of-bag (OOB)
sampling. The train () function is used for ML tasks, i.e., bootstrapping and out-of-bag
(OOB) for cross-validation, reducing bias and overfitting. For optimizing the performance
on the validation set, a grid or random search is performed over a range of values for the
hyperparameters ntree (trees), mtry (variables randomly selected at each split), and maxn-
odes (maximum terminal nodes in each tree). We set the root mean square error (RMSE) as
the training control object for a 10-fold cross-validation (method = “cv”, number = 10); the
model adjusts its parameters during training to minimize the RMSE, leading to more accu-
rate predictions of the validation set. The 10-fold cross-validation process involves dividing
the data into 10 subsets, training the model on nine subsets, and evaluating its performance
on the remaining subset. The process is repeated 10 times, using a different subset as the
validation set. The caret package used automatically selects the best combination of the
hyperparameters based on the minimum RMSE value. We applied ridge regularization
during model training to address overfitting concerns and ensure the model’s robustness.
Ridge regularization adds a penalty term to the loss function, which helps control model
complexity and prevents overfitting [80]. The model returned by the train () function is
trained on the entire dataset and, based on the average performance of the model on all the
resampled data, provides a more robust estimate of the model’s performance [64]. Finally,
the trained model makes predictions on a separate validation set, and we evaluated its



Remote Sens. 2023, 15, 3999 7 of 27

capacity to reproduce flow data on the validation set. Figure 2 presents a flowchart for this
RF model connecting predictor and target variables.
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RFML addresses prediction uncertainty through bootstrapping to generate an ensem-
ble of decision trees, which involves randomly sampling the dataset, allowing each decision
tree to be trained on a different subset of the original data and estimating the variance
of predictions across the trees. The OOB error estimate further evaluates the model’s
performance on the test data set, addressing prediction uncertainty. The default OOB
sample size is one-third of the original dataset proposed by Bradley Efron [81]. However,
the optimal proportion may vary depending on the dataset size and complexity. There-
fore, experimenting with different proportions is crucial to determine the best fit for each
situation.

2.5. Analytical Procedure

We implemented a customized approach to the RFR model for long-term streamflow
prediction, assessing the model’s performance for three training periods. Adapting the
customized approach involves manually splitting the dataset into different periods for
the training dataset and holding out a validation dataset not used in the model training.
The predict () function in the code utilizes the trained model and the input variables’
data to predict streamflow on the validation dataset. We evaluated the trained model’s
performance on a separate validation dataset not used during training or cross-validation.
Three different training/validation data ratios were considered: (1) a 62.5–37.5% split
(i.e., 2001–2010 for training and 2011–2016 for validation), (2) a 71–29% split (i.e., 1996–2010
for training and 2011–2016 for validation), and (3) a 77–23% split (i.e., 1991–2010 for training
and 2011–2016 for validation), where the same validation data period (2011–2016) was used
for evaluating the model’s prediction accuracy for each ratio. We assessed the impact of
the length of the training data on the model’s prediction accuracy by varying the training
and validation data ratio and evaluating their performance using performance metrics.
Using segregated data splits allows the model’s ability to generalize for unseen future data
to be investigated, which is crucial for hydrologic predictions. It also provides valuable
insights into the model’s adaptability to different climatic conditions and land use patterns,
affecting streamflow. In other words, significant for model development and validation, we
identified the impact of the training period’s length on the hydrologic prediction using RFR.
To the authors’ knowledge, this analytical approach for exploring RFR in hydrographic
prediction has yet to be documented in the literature.

2.6. Variable Importance

RF determines predictor variable importance by measuring the decrease in the impu-
rity of the target variable when a particular predictor variable is included in the model. The
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IncNodePurity represents the total decrease in node impurity, weighted by the probability
of reaching that node, averaged over all decision trees in the ensemble. A higher value of
IncNodePurity indicates that the variable is more important for the model. The importance
() function in the randomForest package computes the importance scores. The algorithm
calculates the importance score for each predictor variable and averages these values over
all trees to measure variable importance [66,79,82].

2.7. SWAT Hydrologic Model

SWAT is a well-known process-based hydrological model for simulating hydrologic
cycles, sediment yield, water quality, and quantity in watersheds, developed by Texas
A&M AgriLife Research and the United States Department of Agriculture—Agricultural
Research Service (USDA-ARS) [7,34]. The SWAT model incorporates both physically based
and empirical elements, such as the curve number (CN) method for estimating runoff
and requiring calibration for parameter adjustment [33,83]. The classification of SWAT
varies among experts, with some considering it a physically based model with empirical
components and others categorizing it as semi-physically based [84]. Primarily developed
for large agricultural watersheds, SWAT is suitable for assessing the impact of long-term
land use, management practices, and climate change on ungagged study basins [36,85].
SWAT requires input variables such as DEM, LULC, soil map, and weather data [86] and is
a suitable hydrologic model for long-term simulations [4,87].

SWAT divides watersheds into sub-basins and hydrological response units (HRUs)
based on land use, lithology, and slope. This creates a more accurate model, with different
HRUs for each sub-basin. The hydrological cycle is simulated using the general water
balance equation [85,88]. The SWAT water balance equation calculates the final water
content (SWt) of a watershed based on the initial water content (SW0), precipitation (Rd),
surface runoff (Qsur), evapotranspiration (Ea), unsaturated zone water accumulation
(Wseed), and return flow (Qqw). The water balance equation is as follows:

SWt = SW0 + Σ(Rd − Qsur − Ea −Wseed − Qqw) (1)

It represents the balance between water cycle components in a watershed or catch-
ment. The SWAT water balance equation helps understand the hydrological processes in
a watershed and is useful for evaluating the impacts of land use and climate change on
water resources [85,88,89].

The study implemented the general process of SWAT 2012 hydrologic modeling,
including data collection, hydrologic model setup, output data calibration, sensitivity
analysis, and validation [33]. First, input data were collected, including climatic and
hydrologic parameters; a hydrologic model was then set up to convert the input parameters
(rainfall, temperature, relative humidity, wind speed, and solar radiation) into runoff
or flow. Next, the simulated flow was calibrated with observed flow through selected
parameters. Finally, a sensitivity analysis was conducted to rank the parameters’ sensitivity,
and the model was validated in the end. The study calibrated monthly and annual mean
simulated flow (a warming period in 2001) with observed flow data from 2002 to 2010 and
validated it from 2011 to 2015.

2.7.1. Input Data

The input data—topography, land use, soil, meteorology, and hydrography data—
were collected from various sources/agencies; the data and the corresponding sources are
given in Table 2.
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Table 2. Data type, data description/scale, and data sources used for the initial setup of the SWAT
model.

Data Type Data Description/Scale Data Sources

Topography SRTM DEM (WGS 1984) with
30 m resolution

Shuttle Radar Topography Mission
(SRTM) of USGS,

https://earthexplorer.usgs.go,
accessed on 21 June 2021

Land use
Global land use and land

cover, ESRI GRID (WGS 1984),
and raster layer

Food and Agricultural Organization
(FAO), dominant land cover and use

Soil

Digitized soil map of the
world, at 1:5,000,000 scale, is
in the geographic projection,

Clarke 1866

FAO digital soil map of the world

Meteorology

Daily precipitation, minimum,
and maximum temperature of
global atmospheric reanalysis
dataset. Other variables from

the weather generator

Climate Forecast System Reanalysis
(CFSR), SWAT weather generator,
UGEN_US_FirstOrder [88,90–93]

Streamflow Hydrography (cubic feet per
second): yearly mean

National Water Information System
(NWIS): web interface of USGS

The observed flow was converted to cubic meters per second to match the SWAT
model’s flow output unit [88]. Similarly, the raster DEM, soil, and land use map were
converted into a common NAD 1983 UTM Zone 13N coordinate system and resampled land
use and soil raster to a 30 m × 30 m resolution to prepare for analysis in QSWAT. QSWAT,
a QGIS plugin, is used to delineate the watershed (Appendix A), calculate hydrologic
responses, and visualize SWAT outputs [70]. Table 3 summarizes the land use and soil
information extracted for the watershed using land use land cover and soil data layers.

Table 3. Land use land cover (Lulc) and soil information for the RGH.

Input Variable SWAT Class Name/Description Area [sq-km] % Watershed

CRDY Dryland cropland and
pasture 3207.38 94.87

Land use land
cover CRWO Cropland–woodland

mosaic 170.08 5.03

SAVA Savanna grasses and
scattered trees 3.36 0.10

Soil I-Rc-77 Alvi Lovisoils 3380.82 99.88
Jc4-2a-116 Eutric Regosols 0.95 0.12

Precipitation and temperature data were downloaded from the CFSR Global Weather
database for the study watershed and re-formatted for the SWAT model. Other variables,
such as wind speed, evapotranspiration, relative humidity, and solar radiation, were
generated through the SWAT weather generator [88,89].

2.7.2. Calculation of Runoff Volume

The model used the SCS-CN (Soil Conservation Service–Curve Number) method,
commonly used for estimating the runoff generated from a rainfall event in a particular
area, preferably in suburban or rural areas [94]. The method is designed for a single storm
event but can be scaled to find average annual runoff values. The curve number is based
on the area’s hydrologic soil group, land use, treatment, and hydrologic condition for
a particular watershed, where hydrologic characteristics of soil and rainfall volume are

https://earthexplorer.usgs.go
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known. The entire runoff hydrography can be produced as an outcome. When specific
information on antecedent conditions is unavailable, the SCS-CN method is widely used to
estimate precipitation [95]. Typically, the SCS model computes direct runoff with the help
of the following relationship:

S = (24,500/CN) − 254 (2)

Q = ((P − 0.3 S) 2)/(P + 0.7 S) CN = (Σ (CN ∗ Ai))/A (3)

where CN = weighted curve number, CN = curve number from 30 to 100, and N. A = area
with curve number CNi.

A is the total area of the watershed. At the same time, CN is the runoff curve based
on hydrologic soil cover, a function of soil type, land cover, and antecedent moisture
condition (AMC). Q is an actual runoff in mm, P is total rainfall in mm, and S is the
potential maximum water retention by the soil in mm [96]. Based on the capacity of the soil
for infiltration, soils are divided into four categories: A, B, C, and D, representing a strong
infiltration capacity, a fairly high infiltration capacity, a moderate infiltration capacity, and
a low infiltration capacity, respectively [97].

2.7.3. Model Calibration, Validation, and Performance Evaluation

The SUFI-2 algorithm provided by SWAT-CUP automatically calibrates the model
parameters [83]. The simulation period is divided into warming-up (2001), calibration
(2002–2010), and validation periods (2011–2016). In this study, the index of agreement
d, Nash–Sutcliffe efficiency coefficient (NSE), coefficient of determination (R2), ratio of
the standard deviation of observations to root mean square error (RSR), and percent bias
(PBIAS) were used to evaluate model performances. The equations are aggregated in
Table 4.

Table 4. Objective functions and their corresponding equations.

Objective Functions Equations No.

Index of agreement (d) 1− ( ∑ |Q obs − Q sim|
∑(|Q obs − mean(Q obs)|) + ∑(|Q sim − mean(Q obs)| ) )

× 100
(4)

Coefficient of determination
(R2) ( ∑(Q obs − mean(Q obs)) × ∑(Q sim − mean(Q sim))√

∑(Q obs − mean(Q obs))2 × ∑(Q sim − mean(Q sim))2
)

2 (5)

Nash–Sutcliffe efficiency
(NSE) 1− ∑ (Q obs − Q sim)2

∑(Q obs − mean(Q obs))2
(6)

Root mean standard deviation
ratio (RSR)

√
∑(Q obs − Q sim)2

n /sd(Q obs) (7)

Percent bias (PBIAS%) ∑(Q osim−Q obs)
∑(Q obs) × 100 (8)

Where Qobs is the observed streamflow, and Qsim is the simulated streamflow. The
index of agreement (d) is a metric used to measure the agreement between observed and
simulated values, ranging from 0 (no agreement) to 1 (perfect agreement) [98]. Although
R-squared (coefficient of determination) is commonly used for performance evaluation in
hydrological modeling, it has limitations, such as oversensitivity to high extreme values
and insensitivity to additive and proportional differences between simulated and observed
data [99]. The Nash–Sutcliffe efficiency (NSE) is a normalized statistic that estimates
the relative magnitude of residual variance and measures how well the observed versus
simulated plot fits on the 1:1 line [100,101]. Finally, the PBIAS measures the central tendency
of the simulated data and indicates whether the model’s performance is poor by identifying
the inclination to be greater or smaller than the observed data [99]. Table 5 presents the
objective function results, their statistical ranges, and optimal values.
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Table 5. The objective functions, range, and optimal and satisfactory values.

Objective
Function R2 d NSE RSR PBIAS Sources

Range 0 to 1 0 to 1 α to 1 0 to α α to α

[85,98,99]Optimal value 1 1 1 0 0
Satisfactory value >0.5 >0.4 <0.5 <0.7 −25 to 25

The SWAT model outputs were calibrated using a multi-objective approach for the
selected parameters to achieve goodness-of-fit between observed and simulated flows;
The sensitivity of parameters was determined to assess their impact on streamflow by
regressing them against the average of the objective function values.

2.8. Sensitivity Analysis

Sensitivity analysis aims to determine the optimal range of parameters and rank their
sensitivity [83]. The study performed a global sensitivity analysis using Latin hypercube
sampling to determine the optimal parameter range and rank sensitivity. It is usually used
in Monte Carlo simulation; it significantly reduces the number of runs necessary to achieve
a reasonable outcome [102]. The t-stat provides a measure of sensitivity identifying relative
significance, and the p-value determines the significance of the analysis (a value close to
zero is more significant). A larger absolute value of the t-stat and a smaller p-value indicates
a more sensitive parameter [83].

3. Results
3.1. SWAT Model Performance Assessment

The study evaluated the performance of SWAT by comparing simulated monthly and
yearly average flows with observed data using the selected objective functions. The results
show that the monthly flow simulation needed more adjustments for better prediction
accuracy, whereas the annual simulation was fairly acceptable.

We selected 22 parameters for streamflow calibration based on relevant literature
of comparable study areas [36,37,103]. The original ranges and fitted values of these
parameters are provided in Table 6.

Table 6. Fitted values with primary ranges of the selected streamflow calibration parameters.

Parameter Name Meaning Min Max Fitted Value
(Monthly)

Fitted Value
(Yearly)

CN2.mgt SCS runoff curve number for moisture condition II −0.5 0.5 0.33 −0.35

ALPHA_BF.gw Baseflow alpha factor 0 1 0.67 0.25

GW_DELAY.gw Groundwater delay time (days) 0 500 265 125

GWQMN.gw Aquifer required for return flow to occur
(mm H2O) 0 5000 650 4250

SMTMP.bsn Snowmelt base temperature (◦C) −5 5 3.9 −1.5

SLSUBBSN.hru Average slope length (m) 10 150 33.80 31

GW REVAP.gw Groundwater “revap” coefficient 0.02 0.2 0.12 0.17

SMFMN.bsn Melt factor for snow on 21 December
(mm H2O/◦C-day) 0 10 4.9 7.5

SMFMX.bsn Melt factor for snow on 21 June (mm H2O/◦C-day) 0 10 7.5 5.5

SFTMP.bsn Snowfall temperature (◦C) −5 5 4.5 −2.5

EPCO.bsn Plant uptake compensation factor 0.01 1 0.22 0.95

ESCO.bsn Soil evaporation compensation factor 0.01 1 0.18 0.95
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Table 6. Cont.

Parameter Name Meaning Min Max Fitted Value
(Monthly)

Fitted Value
(Yearly)

CH N2.rte Manning’s “n” value for the main channel 0 0.3 0.24 0.26

CH K2.rte Effective hydraulic conductivity in main channel
alluvium (mm/h) 0 150 13.5 52.5

TIMP.bsn Snowpack temperature lag factor 0.01 1 0.65 0.26

REVAPMN.gw Aquifer for “revap” or percolation to the deep
aquifer to occur (mm H2O) 0 500 455 225

HRU SLP.hru Average slope steepness (m/m) 0 1 0.13 0.15

SOL_Z Depth from soil surface to bottom of layer (mm) −0.5 0.5 0.41 0.15

SOL_AWC Available water capacity of the soil layer
(mm H2O/mm soil) −0.5 0.5 0.43 0.05

SOL_K Saturated hydraulic conductivity (mm/h) −0.8 0.8 0.66 −0.72

SOL_ALB Moist soil albedo - 0.5 0.5 −0.37 0.45

SURLAG.bsn Average slope length (m) 1 24 9.51 13.65

The primary ranges of parameters for monthly and annual simulations were the same;
we also listed the fitted values in Table 6 and depicted the flow hydrographs in Figures 3
and 4. Once the calibrated parameters were validated, the simulated and observed flows
were illustrated and compared for both the calibration and the validation periods, as shown
in Figure 3.
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Figure 4. Comparison of yearly simulated and observed streamflow during calibration and validation
period.

The simulation results showed a slight left shift in most flow peaks compared to the
observed ones, implying that the simulated peak flows occurred a month or two earlier
than the observed peak. This discrepancy suggests a timing issue or error between the
observed and simulated flow [83,103], indicating that the simulated flow peak occurred
slightly earlier, ranging from one month to two earlier than the observed flow peak. Figure 4
presents a comparison between simulated yearly mean discharge and observed discharge.

The SWAT model’s annual simulation results provided better accuracy (Table 7) with
observed flows; however, a model overestimation (Figure 4) still appeared during calibra-
tion and validation periods. The goodness-of-fit metrics, presented in Table 7, provide
a means of evaluating model performance and comparing the accuracy of yearly and
monthly flow simulations.

Table 7. Performance of SWAT model for simulating monthly and yearly flow during calibration and
validation stage.

Objective Functions
Monthly Yearly

Calibration Validation Calibration Validation

d 0.09 0.34 0.70 0.71
R-squared 0.02 0.02 0.56 0.72

NS −0.16 −0.66 0.08 −1.39
RSR 1.07 1.29 0.96 1.54

PBIAS% 5.3 24.77 −23.8 −24.60

Table 7 shows the goodness-of-fit metrics for the observed vs. simulated streamflow
during the calibration and validation periods. The yearly simulation approach performed
better, with higher R2, NS, and d values and a lower RSR value than the monthly simulation.
On the other hand, the performance of the monthly simulation, with R2, NS, and d, was
below satisfactory levels. The annual simulation was acceptable, with satisfactory R2 and d
at both the calibration and validation stages. However, monthly and yearly simulations
overestimated the observed flow during calibration and validation but within acceptable
limits (±25) of PBIAS%. Despite being within the acceptable limit of ±25, this implies that
there might be some uncertainties in the input data or the model structure, which need to
be further investigated and addressed to enhance the model’s performance.

Therefore, during calibration, the sensitive parameters were identified through global
sensitivity analysis. The analysis revealed that HRU SLP.hru (average slope steepness)
was the most sensitive for monthly streamflow, followed by EPCO.bsn, Alpha_BF.gw,
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SMFMX.bsn, and CH_K2, in that order of sensitivity (Appendix B), and these parameters
significantly impacted the model output. Therefore, improving these parameters’ mea-
surement or estimation accuracy could enhance the model performance and the overall
understanding of the watershed hydrological response.

3.2. RFML Model Performance Assessment

The study implemented the 10-fold cross-validation approach, applied ridge regular-
ization, and presented metrics for the cross-validation and validation datasets to compre-
hensively evaluate the model’s performance and its potential for overfitting. The RFML
model was developed for three training periods to predict and validate 2011–2016 data.
The models’ performances were assessed based on the same evaluation metrics—d, R2,
PBIAS%, NSE, and RSR—as shown in Table 8.

Table 8. RFML model performance on different training periods for streamflow prediction/validation.

Training Periods and
Training/Validation

Data Ratio (%)

d R2 PBIAS % NSE RSR

Cross-
Validation Validation Cross-

Validation Validation Cross-
Validation Validation Cross-

Validation Validation Cross-
Validation Validation

2001–2010 62.5 0.902 0.918 0.839 0.791 −1.949 4.982 0.699 0.763 0.526 0.487

1996–2010 71 0.911 0.952 0.785 0.835 0.440 1.939 0.751 0.833 0.461 0.409

1991–2010 77 0.922 0.956 0.804 0.846 −0.312 1.079 0.758 0.845 0.482 0.394

The results indicate that the model performed well on the validation dataset, and
consistency between cross-validated metrics and validation metrics suggests that the model
generalized reasonably well to new, unseen data. The RFML model performed well
in predicting the validation set in all three training periods, with a good R2 (0.79–0.81)
and NSE (0.791–0.846), indicating a good fit between observed and predicted values.
The PBIAS% values ranged from 1.079% to 4.982%, indicating a slight underestimation
of the flow. The ranges (0.918–0.956) of d values suggest that the model’s predictions
agreed with the observed data. The RSR values were low (0.487–0.394), implying that the
model’s predictions had low uncertainty. The overall results suggest that the RFML models
performed well during the cross-validation and testing/validation stages and accurately
predicted streamflow. The results also indicate that increasing the training period length
improved the RFML model’s performance. Although the improvement was not significant,
the significant part was the improving nature, consistent with the increased training period,
which indicates that the model became more capable of capturing variability and delivering
better results with a more extended training period. The model trained in the most extended
period (1991–2010) had the highest values of d, R2, and NSE and the lowest value of RSR
among all three training periods, indicating that the model trained on the longest period
was better able to capture the variability in streamflow data and produce more accurate
predictions.

3.3. Variable Importance Assessment

This relative importance (IncNodePurity) ranking was significant to the study; it
allowed for prioritizing critical predictors and understanding their relative contributions
to the model’s predictions. We analyzed the variable importance measure to identify key
predictors that became significant during specific training periods, which allowed us to
understand how the predictor rankings evolved and adapted to changing hydrological
conditions, providing valuable insights into influential variables under different climatic
and environmental settings. Incorporating the variable importance measure enhanced
the interpretability of the models, making it valuable for decision-making in hydrological
applications.

The IncNodePurity (Figure 5) suggested that mean_snowDepth was the most in-
fluential predictor of the streamflow of the watershed; however, it was not correlated
(Appendix C) with streamflow. The IncNodePurity importance measure also revealed
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that mean_snowDepth and Tmean were consistently the top predictors across all training
periods, whereas Tmean also had a good correlation with streamflow. Figure 5 shows each
training period’s RF variable importance (i.e., IncNodePurity).

Remote Sens. 2023, 15, 3999 15 of 28 
 

 

The IncNodePurity (Figure 5) suggested that mean_snowDepth was the most influ-

ential predictor of the streamflow of the watershed; however, it was not correlated (Ap-

pendix C) with streamflow. The IncNodePurity importance measure also revealed that 

mean_snowDepth and Tmean were consistently the top predictors across all training pe-

riods, whereas Tmean also had a good correlation with streamflow. Figure 5 shows each 

training period’s RF variable importance (i.e., IncNodePurity). 

   

Figure 5. Random forest variable importance (i.e., IncNodePurity) for training period 1991–2010, 

1996–2010, and 2001–2010 consecutively from left to right. 

Mean_ppt was weakly but interestingly negatively correlated with streamflow in the 

correlation table (Appendix C), which may require further investigation. The correlation 

between precipitation and streamflow can be negative in watersheds with high evapotran-

spiration rates or soils with high infiltration capacity. More rain can lead to less water in 

rivers and streams, negatively correlating precipitation and streamflow. In addition, a 

negative correlation can occur if precipitation falls as rain, causing early snowmelt or not 

accumulating as much. The relationship in mountainous basins dominated by snowmelt 

is complex and depends on temperature, snow accumulation, and snowmelt timing. 

Mean_soilMoisture and mean_ppt importance varied for different training periods and 

mean_sublimation was consistently the least important, according to IncNodePurity. Soil 

moisture and snow depth were also strongly correlated, whereas snow depth was the 

most important predictor variable. Therefore, we plotted the snow depth with the pre-

dicted and observed streamflow in Figure 6. 

Figure 5. Random forest variable importance (i.e., IncNodePurity) for training period 1991–2010,
1996–2010, and 2001–2010 consecutively from left to right.

Mean_ppt was weakly but interestingly negatively correlated with streamflow in
the correlation table (Appendix C), which may require further investigation. The corre-
lation between precipitation and streamflow can be negative in watersheds with high
evapotranspiration rates or soils with high infiltration capacity. More rain can lead to less
water in rivers and streams, negatively correlating precipitation and streamflow. In addi-
tion, a negative correlation can occur if precipitation falls as rain, causing early snowmelt
or not accumulating as much. The relationship in mountainous basins dominated by
snowmelt is complex and depends on temperature, snow accumulation, and snowmelt
timing. Mean_soilMoisture and mean_ppt importance varied for different training periods
and mean_sublimation was consistently the least important, according to IncNodePurity.
Soil moisture and snow depth were also strongly correlated, whereas snow depth was
the most important predictor variable. Therefore, we plotted the snow depth with the
predicted and observed streamflow in Figure 6.
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Figure 6 shows the relationship between snow depth and the observed/predicted
streamflow. The peak flow occurred when the snow depth was diminishing, indicating
that snowmelt is a significant factor in determining the timing and magnitude of the peak
flow. This relationship is essential to the hydrological cycle in snow-dominated regions
and can inform water resource management decisions. It is important to note that the peak
snow depth/diminishing varied by a couple of months and did not consistently occur at
the same time each year, influencing the streamflow and the peak flow timing in the basin.

4. Discussion

The SWAT monthly simulation exhibited a leftward shift in the flow peak compared to
the observed data, indicating a timing error. Snowmelt timing likely played a crucial role in
this case. The degree–day approach in the SWAT model assumes uniform snowmelt across
the watershed [21,89], which may not be the case in some areas of this large mountainous
watershed for topographic and meteorological factors. This approach defines snowmelt as
happening when the temperature on a given day is higher than the melting temperature
of snow [89]. However, this approach only takes the daily average temperature and
does not consider the total amount of heat accumulating over time [21]. SWAT considers
0 ◦C a linear function of the difference between the average snowpack–maximum air
temperature and the base or threshold temperature for snowmelt [89], but the dust in snow
of the watershed can also change the mechanism, which can allow more solar radiation
into the snowpack [104,105]. Absorbing more solar energy can enhance sublimation and
affect snowmelt timing by accelerating the snowmelt rate [105,106]. The accurate data
or prediction of these snowmelt characteristics is critical for the model prediction for
this area (Figure A7). Many researchers, therefore, use remote sensing data or develop
particular routines (i.e., a temperature index-based approach within SWAT) to capture
spatial variability in snow accumulation and melting [21,35–37,43]. For example, Debele
et al. (2009) compared two methods for simulating snowmelt processes—a physically based
energy budget model and a simpler temperature index model within SWAT, and they found
that the simpler temperature index model was sufficient for most practical applications
and that the inclusion of ground surface slope and aspect could improve results [35]; this
approach can be adopted to improve monthly simulation, as accurately representing slope
steepness is also crucial in this watershed in simulating hydrologic response due to the
sensitivity of the SLP.hru parameter.

The HRU SLP.hru parameter is the most sensitive parameter for the watershed, and
accurately representing slope steepness is crucial for capturing hydrological behavior.
Incorporating more detailed topographic information for calibrating the SLP.hru parameter
in a large watershed like the RGH may be challenging but necessary to improve model
performance. Improving accuracy in estimating slope steepness using DEMs or remote
sensing techniques can be utilized. Accurate data or prediction of these factors is critical
for model accuracy, as slight changes can significantly change the model prediction.

The SWAT model warrants more time and data to set up and calibrate; still, a viable
model delivering acceptable performance in simulating annual streamflow simulation
with satisfactory d, R2 (Appendix D), and PBIAS% values but monthly simulation war-
rants further exploration and model adjustments. In contrast, the RFML model showed
good performance with a simplified procedure in predicting monthly flow using remotely
sensed data and some predictor variables, as indicated by the high values of R2 and NSE,
which measure the model’s accuracy in capturing the observed streamflow variability.
Although the model tended to underestimate streamflow values (positive PBIAS%), it still
predicted streamflow well during the validation period with different training lengths. A
more extended training period enhanced the RFML model’s performance, allowing it to
capture more complex relationships between input and output variables, resulting in better
predictions.

IncNodePurity of RFML determined the importance of snow depth as a predictor,
which is intriguing despite not correlating with streamflow. The feature importance of
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RFR is typically calculated based on how much a particular feature contributes to reducing
the impurity in the nodes of the decision trees. The RFML model can capture complex
non-linear relationships between snow depth and streamflow, which traditional correlation
analysis may not reveal. The peak flow observed after a month or two of diminishing
snow depth, as shown in Figure 5, indicates that the variability in snowmelt rate posed
challenges in establishing a direct correlation. Other factors like climate change and
dust may contribute to this complexity, affecting the snowmelt rate. Here, the snowmelt
(Figure A8) rate would be more likely to correlate with streamflow rather than snow
depth. Although the IncNodePurity and global sensitivity analysis employ different
methodologies, they both indicate the importance of snow parameters, with the sensitivity
analysis identifying the SMFMX.bsn (melt factor) as one of the top sensitive parameters.

Scope of Future Study

We evaluated the sensitive parameter ranking of the SWAT model, which highlighted
mountain slope (HRU SLP.hru, average slope steepness) and snowmelt factor (SMFMX.bsn)
as essential parameters for model sensitivity. On the other hand, snow depth and min
temperature consistently emerged as the top predictor variables from RFML variable im-
portance analysis across different periods. Interestingly, altitude, min temperature, snow
depth, and snowmelt rate are interconnected and mutually inclusive, influencing the
streamflow dynamics, which provides a significant insight into the watershed response.
The relative importance ranking, combined with the sensitive parameter analysis from
SWAT, enhances understanding of the watershed’s behavior, shedding light on the contri-
bution of identifying critical parameters. Enhancing these parameters’ estimation accuracy
could significantly improve model performance and deepen understanding of watershed
hydrological response, laying a solid foundation for future research.

The study focused on a watershed with specific characteristics critical for the en-
tire basin; future studies can incorporate a broader dataset with multiple heterogeneous
watersheds, allowing for a more comprehensive analysis of watershed behavior. Such
an approach can enable a deeper understanding of the relative influence of parameters,
enhancing its analysis by quantifying the impact of predictors on the model’s error and
incorporating lag effects in the analysis, which would provide a better understanding of
temporal relationships between variables, such as the influence of winter soil moisture on
summer flow.

5. Conclusions

The study assessed SWAT performance in a semi-arid snowmelt-driven region of
the RGH, calibrating monthly and annual average streamflow from 2002 to 2010 with
a one-year (2001) warm-up period and validating from 2011 to 2015. The SWAT model
produced acceptable results for the annual average streamflow simulation; however, more
exploration and adjustments were required for the monthly simulation. The study recom-
mends exploring snowmelt runoff hydrologic processes, dust-driven sublimation effects,
and more detailed topographic input parameters to enhance the model for better flow
estimation. This study serves as a reference, documenting a primary study with SWAT
for the study area and identifying challenges that require the development of additional
routines for model enhancement, foundational for future modeling efforts.

The RFML models’ performances were assessed during three training periods, across
1991–2010, 1996–2010, and 2001–2010. Model validation was conducted on the data from
2011 to 2016. The results showed that the RFML model performed well in all three training
periods. Furthermore, they indicated that the model’s performance increased as the training
period increased, with the highest d, R2, and NSE values and the lowest PBIAS% and RSR
values found for the most extended training period (1991–2010).

A critical aspect of the study was the utilization of remotely sensed datasets, such as
SRTM, PRISM, and GES DISC, to generate derived datasets, which played a significant
role in the investigation and provided valuable inputs for modeling efforts. The remote
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sensing data used in this study were explicitly derived for monthly response and subse-
quently utilized in RFML to explore reproducing streamflow data. As a result, the research
presented an exclusive approach for deriving remote sensing data and using it in RFML,
demonstrating the usefulness of the process for watershed modeling and monitoring.

Every hydrological model has specific applications and distinct limitations associated
with uncertainties [9,86]. These uncertainties can be addressed by comparing different
models for a given geographic region [2,19,28]. The study compared the effectiveness of the
SWAT and the RFML models and provided insights into the strengths and limitations of
their simulating streamflow in a snowmelt-dominated watershed. For example, SWAT can
simulate flow in watersheds with no streamflow data and can be valuable for understanding
underlying hydrologic processes. However, it takes large input data, including land use,
soil type, topography, weather data, and other parameters influencing the hydrologic
process; consequently, the model requires substantial time and effort. Therefore, it was
crucial to pursue a more efficient alternative to reproduce streamflow closest to reality
with as simple an approach as possible (i.e., the principle of parsimony). The RFML model
demonstrated higher prediction accuracy than the SWAT model, utilizing a simplified
procedure, even without requiring parameter tuning or predictor reduction.

Process-based hydrologic models can provide valuable insight into hydrologic pro-
cesses and model parameters; however, simulating the process warrants much more
information and time. A simpler machine learning model may be more suitable when the
main goal is to predict or reproduce streamflow to support watershed management with
limited information. Based on validation data metrics, RFML appears to be a desirable
alternative or a complementary tool to process-based models. The RFML model outper-
formed the SWAT model in accuracy by utilizing remote sensing data of the hydroclimatic
predictor variables of the snowmelt-driven watershed, where snowmelt runoff modeling
is particularly challenging. This also opens up new scopes for research in hydrographic
predictions.

Simulating hydrologic responses is crucial for operational hydrology and water re-
source management, especially in data-scarce regions. Although both models are useful,
their performance can be improved by reducing uncertainty and enhancing the estima-
tion accuracy of the critical parameters. Furthermore, integrating semi-distributed (i.e.,
SWAT) and ML approaches in predicting hydrologic responses can enhance monitoring and
management efforts. The results provide a critical analysis for enhancing the streamflow
prediction needed for monitoring and managing water resources, including snowmelt-led
semi-arid regions. In addition, the findings can aid in modeling hydrologic events such as
climate change, land use change, floods, and droughts, leading to improved water security,
ecosystem health, and sustainability.
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